summaryrefslogtreecommitdiff
path: root/drivers/firmware/arm_scmi/sensors.c
blob: 4541b891b733f80ca5798d4ca06dd38a24738e25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// SPDX-License-Identifier: GPL-2.0
/*
 * System Control and Management Interface (SCMI) Sensor Protocol
 *
 * Copyright (C) 2018-2020 ARM Ltd.
 */

#define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt

#include <linux/bitfield.h>
#include <linux/scmi_protocol.h>

#include "common.h"
#include "notify.h"

#define SCMI_MAX_NUM_SENSOR_AXIS	63
#define	SCMIv2_SENSOR_PROTOCOL		0x10000

enum scmi_sensor_protocol_cmd {
	SENSOR_DESCRIPTION_GET = 0x3,
	SENSOR_TRIP_POINT_NOTIFY = 0x4,
	SENSOR_TRIP_POINT_CONFIG = 0x5,
	SENSOR_READING_GET = 0x6,
	SENSOR_AXIS_DESCRIPTION_GET = 0x7,
	SENSOR_LIST_UPDATE_INTERVALS = 0x8,
	SENSOR_CONFIG_GET = 0x9,
	SENSOR_CONFIG_SET = 0xA,
	SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
};

struct scmi_msg_resp_sensor_attributes {
	__le16 num_sensors;
	u8 max_requests;
	u8 reserved;
	__le32 reg_addr_low;
	__le32 reg_addr_high;
	__le32 reg_size;
};

/* v3 attributes_low macros */
#define SUPPORTS_UPDATE_NOTIFY(x)	FIELD_GET(BIT(30), (x))
#define SENSOR_TSTAMP_EXP(x)		FIELD_GET(GENMASK(14, 10), (x))
#define SUPPORTS_TIMESTAMP(x)		FIELD_GET(BIT(9), (x))
#define SUPPORTS_EXTEND_ATTRS(x)	FIELD_GET(BIT(8), (x))

/* v2 attributes_high macros */
#define SENSOR_UPDATE_BASE(x)		FIELD_GET(GENMASK(31, 27), (x))
#define SENSOR_UPDATE_SCALE(x)		FIELD_GET(GENMASK(26, 22), (x))

/* v3 attributes_high macros */
#define SENSOR_AXIS_NUMBER(x)		FIELD_GET(GENMASK(21, 16), (x))
#define SUPPORTS_AXIS(x)		FIELD_GET(BIT(8), (x))

/* v3 resolution macros */
#define SENSOR_RES(x)			FIELD_GET(GENMASK(26, 0), (x))
#define SENSOR_RES_EXP(x)		FIELD_GET(GENMASK(31, 27), (x))

struct scmi_msg_resp_attrs {
	__le32 min_range_low;
	__le32 min_range_high;
	__le32 max_range_low;
	__le32 max_range_high;
};

struct scmi_msg_resp_sensor_description {
	__le16 num_returned;
	__le16 num_remaining;
	struct scmi_sensor_descriptor {
		__le32 id;
		__le32 attributes_low;
/* Common attributes_low macros */
#define SUPPORTS_ASYNC_READ(x)		FIELD_GET(BIT(31), (x))
#define NUM_TRIP_POINTS(x)		FIELD_GET(GENMASK(7, 0), (x))
		__le32 attributes_high;
/* Common attributes_high macros */
#define SENSOR_SCALE(x)			FIELD_GET(GENMASK(15, 11), (x))
#define SENSOR_SCALE_SIGN		BIT(4)
#define SENSOR_SCALE_EXTEND		GENMASK(31, 5)
#define SENSOR_TYPE(x)			FIELD_GET(GENMASK(7, 0), (x))
		u8 name[SCMI_MAX_STR_SIZE];
		/* only for version > 2.0 */
		__le32 power;
		__le32 resolution;
		struct scmi_msg_resp_attrs scalar_attrs;
	} desc[];
};

/* Base scmi_sensor_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ	28

/* Sign extend to a full s32 */
#define	S32_EXT(v)							\
	({								\
		int __v = (v);						\
									\
		if (__v & SENSOR_SCALE_SIGN)				\
			__v |= SENSOR_SCALE_EXTEND;			\
		__v;							\
	})

struct scmi_msg_sensor_axis_description_get {
	__le32 id;
	__le32 axis_desc_index;
};

struct scmi_msg_resp_sensor_axis_description {
	__le32 num_axis_flags;
#define NUM_AXIS_RETURNED(x)		FIELD_GET(GENMASK(5, 0), (x))
#define NUM_AXIS_REMAINING(x)		FIELD_GET(GENMASK(31, 26), (x))
	struct scmi_axis_descriptor {
		__le32 id;
		__le32 attributes_low;
		__le32 attributes_high;
		u8 name[SCMI_MAX_STR_SIZE];
		__le32 resolution;
		struct scmi_msg_resp_attrs attrs;
	} desc[];
};

/* Base scmi_axis_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ	28

struct scmi_msg_sensor_list_update_intervals {
	__le32 id;
	__le32 index;
};

struct scmi_msg_resp_sensor_list_update_intervals {
	__le32 num_intervals_flags;
#define NUM_INTERVALS_RETURNED(x)	FIELD_GET(GENMASK(11, 0), (x))
#define SEGMENTED_INTVL_FORMAT(x)	FIELD_GET(BIT(12), (x))
#define NUM_INTERVALS_REMAINING(x)	FIELD_GET(GENMASK(31, 16), (x))
	__le32 intervals[];
};

struct scmi_msg_sensor_request_notify {
	__le32 id;
	__le32 event_control;
#define SENSOR_NOTIFY_ALL	BIT(0)
};

struct scmi_msg_set_sensor_trip_point {
	__le32 id;
	__le32 event_control;
#define SENSOR_TP_EVENT_MASK	(0x3)
#define SENSOR_TP_DISABLED	0x0
#define SENSOR_TP_POSITIVE	0x1
#define SENSOR_TP_NEGATIVE	0x2
#define SENSOR_TP_BOTH		0x3
#define SENSOR_TP_ID(x)		(((x) & 0xff) << 4)
	__le32 value_low;
	__le32 value_high;
};

struct scmi_msg_sensor_config_set {
	__le32 id;
	__le32 sensor_config;
};

struct scmi_msg_sensor_reading_get {
	__le32 id;
	__le32 flags;
#define SENSOR_READ_ASYNC	BIT(0)
};

struct scmi_resp_sensor_reading_complete {
	__le32 id;
	__le64 readings;
};

struct scmi_sensor_reading_resp {
	__le32 sensor_value_low;
	__le32 sensor_value_high;
	__le32 timestamp_low;
	__le32 timestamp_high;
};

struct scmi_resp_sensor_reading_complete_v3 {
	__le32 id;
	struct scmi_sensor_reading_resp readings[];
};

struct scmi_sensor_trip_notify_payld {
	__le32 agent_id;
	__le32 sensor_id;
	__le32 trip_point_desc;
};

struct scmi_sensor_update_notify_payld {
	__le32 agent_id;
	__le32 sensor_id;
	struct scmi_sensor_reading_resp readings[];
};

struct sensors_info {
	u32 version;
	int num_sensors;
	int max_requests;
	u64 reg_addr;
	u32 reg_size;
	struct scmi_sensor_info *sensors;
};

static int scmi_sensor_attributes_get(const struct scmi_handle *handle,
				      struct sensors_info *si)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_resp_sensor_attributes *attr;

	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
				 SCMI_PROTOCOL_SENSOR, 0, sizeof(*attr), &t);
	if (ret)
		return ret;

	attr = t->rx.buf;

	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		si->num_sensors = le16_to_cpu(attr->num_sensors);
		si->max_requests = attr->max_requests;
		si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
				(u64)le32_to_cpu(attr->reg_addr_high) << 32;
		si->reg_size = le32_to_cpu(attr->reg_size);
	}

	scmi_xfer_put(handle, t);
	return ret;
}

static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
					  struct scmi_msg_resp_attrs *in)
{
	out->min_range = get_unaligned_le64((void *)&in->min_range_low);
	out->max_range = get_unaligned_le64((void *)&in->max_range_low);
}

static int scmi_sensor_update_intervals(const struct scmi_handle *handle,
					struct scmi_sensor_info *s)
{
	int ret, cnt;
	u32 desc_index = 0;
	u16 num_returned, num_remaining;
	struct scmi_xfer *ti;
	struct scmi_msg_resp_sensor_list_update_intervals *buf;
	struct scmi_msg_sensor_list_update_intervals *msg;

	ret = scmi_xfer_get_init(handle, SENSOR_LIST_UPDATE_INTERVALS,
				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &ti);
	if (ret)
		return ret;

	buf = ti->rx.buf;
	do {
		u32 flags;

		msg = ti->tx.buf;
		/* Set the number of sensors to be skipped/already read */
		msg->id = cpu_to_le32(s->id);
		msg->index = cpu_to_le32(desc_index);

		ret = scmi_do_xfer(handle, ti);
		if (ret)
			break;

		flags = le32_to_cpu(buf->num_intervals_flags);
		num_returned = NUM_INTERVALS_RETURNED(flags);
		num_remaining = NUM_INTERVALS_REMAINING(flags);

		/*
		 * Max intervals is not declared previously anywhere so we
		 * assume it's returned+remaining.
		 */
		if (!s->intervals.count) {
			s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
			s->intervals.count = num_returned + num_remaining;
			/* segmented intervals are reported in one triplet */
			if (s->intervals.segmented &&
			    (num_remaining || num_returned != 3)) {
				dev_err(handle->dev,
					"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
					s->id, s->intervals.count);
				s->intervals.segmented = false;
				s->intervals.count = 0;
				ret = -EINVAL;
				break;
			}
			/* Direct allocation when exceeding pre-allocated */
			if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
				s->intervals.desc =
					devm_kcalloc(handle->dev,
						     s->intervals.count,
						     sizeof(*s->intervals.desc),
						     GFP_KERNEL);
				if (!s->intervals.desc) {
					s->intervals.segmented = false;
					s->intervals.count = 0;
					ret = -ENOMEM;
					break;
				}
			}
		} else if (desc_index + num_returned > s->intervals.count) {
			dev_err(handle->dev,
				"No. of update intervals can't exceed %d\n",
				s->intervals.count);
			ret = -EINVAL;
			break;
		}

		for (cnt = 0; cnt < num_returned; cnt++)
			s->intervals.desc[desc_index + cnt] =
					le32_to_cpu(buf->intervals[cnt]);

		desc_index += num_returned;

		scmi_reset_rx_to_maxsz(handle, ti);
		/*
		 * check for both returned and remaining to avoid infinite
		 * loop due to buggy firmware
		 */
	} while (num_returned && num_remaining);

	scmi_xfer_put(handle, ti);
	return ret;
}

static int scmi_sensor_axis_description(const struct scmi_handle *handle,
					struct scmi_sensor_info *s)
{
	int ret, cnt;
	u32 desc_index = 0;
	u16 num_returned, num_remaining;
	struct scmi_xfer *te;
	struct scmi_msg_resp_sensor_axis_description *buf;
	struct scmi_msg_sensor_axis_description_get *msg;

	s->axis = devm_kcalloc(handle->dev, s->num_axis,
			       sizeof(*s->axis), GFP_KERNEL);
	if (!s->axis)
		return -ENOMEM;

	ret = scmi_xfer_get_init(handle, SENSOR_AXIS_DESCRIPTION_GET,
				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &te);
	if (ret)
		return ret;

	buf = te->rx.buf;
	do {
		u32 flags;
		struct scmi_axis_descriptor *adesc;

		msg = te->tx.buf;
		/* Set the number of sensors to be skipped/already read */
		msg->id = cpu_to_le32(s->id);
		msg->axis_desc_index = cpu_to_le32(desc_index);

		ret = scmi_do_xfer(handle, te);
		if (ret)
			break;

		flags = le32_to_cpu(buf->num_axis_flags);
		num_returned = NUM_AXIS_RETURNED(flags);
		num_remaining = NUM_AXIS_REMAINING(flags);

		if (desc_index + num_returned > s->num_axis) {
			dev_err(handle->dev, "No. of axis can't exceed %d\n",
				s->num_axis);
			break;
		}

		adesc = &buf->desc[0];
		for (cnt = 0; cnt < num_returned; cnt++) {
			u32 attrh, attrl;
			struct scmi_sensor_axis_info *a;
			size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;

			attrl = le32_to_cpu(adesc->attributes_low);

			a = &s->axis[desc_index + cnt];

			a->id = le32_to_cpu(adesc->id);
			a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);

			attrh = le32_to_cpu(adesc->attributes_high);
			a->scale = S32_EXT(SENSOR_SCALE(attrh));
			a->type = SENSOR_TYPE(attrh);
			strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);

			if (a->extended_attrs) {
				unsigned int ares =
					le32_to_cpu(adesc->resolution);

				a->resolution = SENSOR_RES(ares);
				a->exponent =
					S32_EXT(SENSOR_RES_EXP(ares));
				dsize += sizeof(adesc->resolution);

				scmi_parse_range_attrs(&a->attrs,
						       &adesc->attrs);
				dsize += sizeof(adesc->attrs);
			}

			adesc = (typeof(adesc))((u8 *)adesc + dsize);
		}

		desc_index += num_returned;

		scmi_reset_rx_to_maxsz(handle, te);
		/*
		 * check for both returned and remaining to avoid infinite
		 * loop due to buggy firmware
		 */
	} while (num_returned && num_remaining);

	scmi_xfer_put(handle, te);
	return ret;
}

static int scmi_sensor_description_get(const struct scmi_handle *handle,
				       struct sensors_info *si)
{
	int ret, cnt;
	u32 desc_index = 0;
	u16 num_returned, num_remaining;
	struct scmi_xfer *t;
	struct scmi_msg_resp_sensor_description *buf;

	ret = scmi_xfer_get_init(handle, SENSOR_DESCRIPTION_GET,
				 SCMI_PROTOCOL_SENSOR, sizeof(__le32), 0, &t);
	if (ret)
		return ret;

	buf = t->rx.buf;

	do {
		struct scmi_sensor_descriptor *sdesc;

		/* Set the number of sensors to be skipped/already read */
		put_unaligned_le32(desc_index, t->tx.buf);
		ret = scmi_do_xfer(handle, t);
		if (ret)
			break;

		num_returned = le16_to_cpu(buf->num_returned);
		num_remaining = le16_to_cpu(buf->num_remaining);

		if (desc_index + num_returned > si->num_sensors) {
			dev_err(handle->dev, "No. of sensors can't exceed %d",
				si->num_sensors);
			break;
		}

		sdesc = &buf->desc[0];
		for (cnt = 0; cnt < num_returned; cnt++) {
			u32 attrh, attrl;
			struct scmi_sensor_info *s;
			size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;

			s = &si->sensors[desc_index + cnt];
			s->id = le32_to_cpu(sdesc->id);

			attrl = le32_to_cpu(sdesc->attributes_low);
			/* common bitfields parsing */
			s->async = SUPPORTS_ASYNC_READ(attrl);
			s->num_trip_points = NUM_TRIP_POINTS(attrl);
			/**
			 * only SCMIv3.0 specific bitfield below.
			 * Such bitfields are assumed to be zeroed on non
			 * relevant fw versions...assuming fw not buggy !
			 */
			s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
			s->timestamped = SUPPORTS_TIMESTAMP(attrl);
			if (s->timestamped)
				s->tstamp_scale =
					S32_EXT(SENSOR_TSTAMP_EXP(attrl));
			s->extended_scalar_attrs =
				SUPPORTS_EXTEND_ATTRS(attrl);

			attrh = le32_to_cpu(sdesc->attributes_high);
			/* common bitfields parsing */
			s->scale = S32_EXT(SENSOR_SCALE(attrh));
			s->type = SENSOR_TYPE(attrh);
			/* Use pre-allocated pool wherever possible */
			s->intervals.desc = s->intervals.prealloc_pool;
			if (si->version == SCMIv2_SENSOR_PROTOCOL) {
				s->intervals.segmented = false;
				s->intervals.count = 1;
				/*
				 * Convert SCMIv2.0 update interval format to
				 * SCMIv3.0 to be used as the common exposed
				 * descriptor, accessible via common macros.
				 */
				s->intervals.desc[0] =
					(SENSOR_UPDATE_BASE(attrh) << 5) |
					 SENSOR_UPDATE_SCALE(attrh);
			} else {
				/*
				 * From SCMIv3.0 update intervals are retrieved
				 * via a dedicated (optional) command.
				 * Since the command is optional, on error carry
				 * on without any update interval.
				 */
				if (scmi_sensor_update_intervals(handle, s))
					dev_dbg(handle->dev,
						"Update Intervals not available for sensor ID:%d\n",
						s->id);
			}
			/**
			 * only > SCMIv2.0 specific bitfield below.
			 * Such bitfields are assumed to be zeroed on non
			 * relevant fw versions...assuming fw not buggy !
			 */
			s->num_axis = min_t(unsigned int,
					    SUPPORTS_AXIS(attrh) ?
					    SENSOR_AXIS_NUMBER(attrh) : 0,
					    SCMI_MAX_NUM_SENSOR_AXIS);
			strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);

			if (s->extended_scalar_attrs) {
				s->sensor_power = le32_to_cpu(sdesc->power);
				dsize += sizeof(sdesc->power);
				/* Only for sensors reporting scalar values */
				if (s->num_axis == 0) {
					unsigned int sres =
						le32_to_cpu(sdesc->resolution);

					s->resolution = SENSOR_RES(sres);
					s->exponent =
						S32_EXT(SENSOR_RES_EXP(sres));
					dsize += sizeof(sdesc->resolution);

					scmi_parse_range_attrs(&s->scalar_attrs,
							       &sdesc->scalar_attrs);
					dsize += sizeof(sdesc->scalar_attrs);
				}
			}
			if (s->num_axis > 0) {
				ret = scmi_sensor_axis_description(handle, s);
				if (ret)
					goto out;
			}

			sdesc = (typeof(sdesc))((u8 *)sdesc + dsize);
		}

		desc_index += num_returned;

		scmi_reset_rx_to_maxsz(handle, t);
		/*
		 * check for both returned and remaining to avoid infinite
		 * loop due to buggy firmware
		 */
	} while (num_returned && num_remaining);

out:
	scmi_xfer_put(handle, t);
	return ret;
}

static inline int
scmi_sensor_request_notify(const struct scmi_handle *handle, u32 sensor_id,
			   u8 message_id, bool enable)
{
	int ret;
	u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
	struct scmi_xfer *t;
	struct scmi_msg_sensor_request_notify *cfg;

	ret = scmi_xfer_get_init(handle, message_id,
				 SCMI_PROTOCOL_SENSOR, sizeof(*cfg), 0, &t);
	if (ret)
		return ret;

	cfg = t->tx.buf;
	cfg->id = cpu_to_le32(sensor_id);
	cfg->event_control = cpu_to_le32(evt_cntl);

	ret = scmi_do_xfer(handle, t);

	scmi_xfer_put(handle, t);
	return ret;
}

static int scmi_sensor_trip_point_notify(const struct scmi_handle *handle,
					 u32 sensor_id, bool enable)
{
	return scmi_sensor_request_notify(handle, sensor_id,
					  SENSOR_TRIP_POINT_NOTIFY,
					  enable);
}

static int
scmi_sensor_continuous_update_notify(const struct scmi_handle *handle,
				     u32 sensor_id, bool enable)
{
	return scmi_sensor_request_notify(handle, sensor_id,
					  SENSOR_CONTINUOUS_UPDATE_NOTIFY,
					  enable);
}

static int
scmi_sensor_trip_point_config(const struct scmi_handle *handle, u32 sensor_id,
			      u8 trip_id, u64 trip_value)
{
	int ret;
	u32 evt_cntl = SENSOR_TP_BOTH;
	struct scmi_xfer *t;
	struct scmi_msg_set_sensor_trip_point *trip;

	ret = scmi_xfer_get_init(handle, SENSOR_TRIP_POINT_CONFIG,
				 SCMI_PROTOCOL_SENSOR, sizeof(*trip), 0, &t);
	if (ret)
		return ret;

	trip = t->tx.buf;
	trip->id = cpu_to_le32(sensor_id);
	trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
	trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
	trip->value_high = cpu_to_le32(trip_value >> 32);

	ret = scmi_do_xfer(handle, t);

	scmi_xfer_put(handle, t);
	return ret;
}

static int scmi_sensor_config_get(const struct scmi_handle *handle,
				  u32 sensor_id, u32 *sensor_config)
{
	int ret;
	struct scmi_xfer *t;

	ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_GET,
				 SCMI_PROTOCOL_SENSOR, sizeof(__le32),
				 sizeof(__le32), &t);
	if (ret)
		return ret;

	put_unaligned_le32(cpu_to_le32(sensor_id), t->tx.buf);
	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		struct sensors_info *si = handle->sensor_priv;
		struct scmi_sensor_info *s = si->sensors + sensor_id;

		*sensor_config = get_unaligned_le64(t->rx.buf);
		s->sensor_config = *sensor_config;
	}

	scmi_xfer_put(handle, t);
	return ret;
}

static int scmi_sensor_config_set(const struct scmi_handle *handle,
				  u32 sensor_id, u32 sensor_config)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_sensor_config_set *msg;

	ret = scmi_xfer_get_init(handle, SENSOR_CONFIG_SET,
				 SCMI_PROTOCOL_SENSOR, sizeof(*msg), 0, &t);
	if (ret)
		return ret;

	msg = t->tx.buf;
	msg->id = cpu_to_le32(sensor_id);
	msg->sensor_config = cpu_to_le32(sensor_config);

	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		struct sensors_info *si = handle->sensor_priv;
		struct scmi_sensor_info *s = si->sensors + sensor_id;

		s->sensor_config = sensor_config;
	}

	scmi_xfer_put(handle, t);
	return ret;
}

/**
 * scmi_sensor_reading_get  - Read scalar sensor value
 * @handle: Platform handle
 * @sensor_id: Sensor ID
 * @value: The 64bit value sensor reading
 *
 * This function returns a single 64 bit reading value representing the sensor
 * value; if the platform SCMI Protocol implementation and the sensor support
 * multiple axis and timestamped-reads, this just returns the first axis while
 * dropping the timestamp value.
 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
 * timestamped multi-axis values.
 *
 * Return: 0 on Success
 */
static int scmi_sensor_reading_get(const struct scmi_handle *handle,
				   u32 sensor_id, u64 *value)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_sensor_reading_get *sensor;
	struct sensors_info *si = handle->sensor_priv;
	struct scmi_sensor_info *s = si->sensors + sensor_id;

	ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
				 SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
	if (ret)
		return ret;

	sensor = t->tx.buf;
	sensor->id = cpu_to_le32(sensor_id);
	if (s->async) {
		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
		ret = scmi_do_xfer_with_response(handle, t);
		if (!ret) {
			struct scmi_resp_sensor_reading_complete *resp;

			resp = t->rx.buf;
			if (le32_to_cpu(resp->id) == sensor_id)
				*value = get_unaligned_le64(&resp->readings);
			else
				ret = -EPROTO;
		}
	} else {
		sensor->flags = cpu_to_le32(0);
		ret = scmi_do_xfer(handle, t);
		if (!ret)
			*value = get_unaligned_le64(t->rx.buf);
	}

	scmi_xfer_put(handle, t);
	return ret;
}

static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
			   const struct scmi_sensor_reading_resp *in)
{
	out->value = get_unaligned_le64((void *)&in->sensor_value_low);
	out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
}

/**
 * scmi_sensor_reading_get_timestamped  - Read multiple-axis timestamped values
 * @handle: Platform handle
 * @sensor_id: Sensor ID
 * @count: The length of the provided @readings array
 * @readings: An array of elements each representing a timestamped per-axis
 *	      reading of type @struct scmi_sensor_reading.
 *	      Returned readings are ordered as the @axis descriptors array
 *	      included in @struct scmi_sensor_info and the max number of
 *	      returned elements is min(@count, @num_axis); ideally the provided
 *	      array should be of length @count equal to @num_axis.
 *
 * Return: 0 on Success
 */
static int
scmi_sensor_reading_get_timestamped(const struct scmi_handle *handle,
				    u32 sensor_id, u8 count,
				    struct scmi_sensor_reading *readings)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_sensor_reading_get *sensor;
	struct sensors_info *si = handle->sensor_priv;
	struct scmi_sensor_info *s = si->sensors + sensor_id;

	if (!count || !readings ||
	    (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
		return -EINVAL;

	ret = scmi_xfer_get_init(handle, SENSOR_READING_GET,
				 SCMI_PROTOCOL_SENSOR, sizeof(*sensor), 0, &t);
	if (ret)
		return ret;

	sensor = t->tx.buf;
	sensor->id = cpu_to_le32(sensor_id);
	if (s->async) {
		sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
		ret = scmi_do_xfer_with_response(handle, t);
		if (!ret) {
			int i;
			struct scmi_resp_sensor_reading_complete_v3 *resp;

			resp = t->rx.buf;
			/* Retrieve only the number of requested axis anyway */
			if (le32_to_cpu(resp->id) == sensor_id)
				for (i = 0; i < count; i++)
					scmi_parse_sensor_readings(&readings[i],
								   &resp->readings[i]);
			else
				ret = -EPROTO;
		}
	} else {
		sensor->flags = cpu_to_le32(0);
		ret = scmi_do_xfer(handle, t);
		if (!ret) {
			int i;
			struct scmi_sensor_reading_resp *resp_readings;

			resp_readings = t->rx.buf;
			for (i = 0; i < count; i++)
				scmi_parse_sensor_readings(&readings[i],
							   &resp_readings[i]);
		}
	}

	scmi_xfer_put(handle, t);
	return ret;
}

static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_handle *handle, u32 sensor_id)
{
	struct sensors_info *si = handle->sensor_priv;

	return si->sensors + sensor_id;
}

static int scmi_sensor_count_get(const struct scmi_handle *handle)
{
	struct sensors_info *si = handle->sensor_priv;

	return si->num_sensors;
}

static const struct scmi_sensor_ops sensor_ops = {
	.count_get = scmi_sensor_count_get,
	.info_get = scmi_sensor_info_get,
	.trip_point_config = scmi_sensor_trip_point_config,
	.reading_get = scmi_sensor_reading_get,
	.reading_get_timestamped = scmi_sensor_reading_get_timestamped,
	.config_get = scmi_sensor_config_get,
	.config_set = scmi_sensor_config_set,
};

static int scmi_sensor_set_notify_enabled(const struct scmi_handle *handle,
					  u8 evt_id, u32 src_id, bool enable)
{
	int ret;

	switch (evt_id) {
	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
		ret = scmi_sensor_trip_point_notify(handle, src_id, enable);
		break;
	case SCMI_EVENT_SENSOR_UPDATE:
		ret = scmi_sensor_continuous_update_notify(handle, src_id,
							   enable);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
			 evt_id, src_id, ret);

	return ret;
}

static void *scmi_sensor_fill_custom_report(const struct scmi_handle *handle,
					    u8 evt_id, ktime_t timestamp,
					    const void *payld, size_t payld_sz,
					    void *report, u32 *src_id)
{
	void *rep = NULL;

	switch (evt_id) {
	case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
	{
		const struct scmi_sensor_trip_notify_payld *p = payld;
		struct scmi_sensor_trip_point_report *r = report;

		if (sizeof(*p) != payld_sz)
			break;

		r->timestamp = timestamp;
		r->agent_id = le32_to_cpu(p->agent_id);
		r->sensor_id = le32_to_cpu(p->sensor_id);
		r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
		*src_id = r->sensor_id;
		rep = r;
		break;
	}
	case SCMI_EVENT_SENSOR_UPDATE:
	{
		int i;
		struct scmi_sensor_info *s;
		const struct scmi_sensor_update_notify_payld *p = payld;
		struct scmi_sensor_update_report *r = report;
		struct sensors_info *sinfo = handle->sensor_priv;

		/* payld_sz is variable for this event */
		r->sensor_id = le32_to_cpu(p->sensor_id);
		if (r->sensor_id >= sinfo->num_sensors)
			break;
		r->timestamp = timestamp;
		r->agent_id = le32_to_cpu(p->agent_id);
		s = &sinfo->sensors[r->sensor_id];
		/*
		 * The generated report r (@struct scmi_sensor_update_report)
		 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
		 * readings: here it is filled with the effective @num_axis
		 * readings defined for this sensor or 1 for scalar sensors.
		 */
		r->readings_count = s->num_axis ?: 1;
		for (i = 0; i < r->readings_count; i++)
			scmi_parse_sensor_readings(&r->readings[i],
						   &p->readings[i]);
		*src_id = r->sensor_id;
		rep = r;
		break;
	}
	default:
		break;
	}

	return rep;
}

static const struct scmi_event sensor_events[] = {
	{
		.id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
		.max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
		.max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
	},
	{
		.id = SCMI_EVENT_SENSOR_UPDATE,
		.max_payld_sz =
			sizeof(struct scmi_sensor_update_notify_payld) +
			 SCMI_MAX_NUM_SENSOR_AXIS *
			 sizeof(struct scmi_sensor_reading_resp),
		.max_report_sz = sizeof(struct scmi_sensor_update_report) +
				  SCMI_MAX_NUM_SENSOR_AXIS *
				  sizeof(struct scmi_sensor_reading),
	},
};

static const struct scmi_event_ops sensor_event_ops = {
	.set_notify_enabled = scmi_sensor_set_notify_enabled,
	.fill_custom_report = scmi_sensor_fill_custom_report,
};

static int scmi_sensors_protocol_init(struct scmi_handle *handle)
{
	u32 version;
	int ret;
	struct sensors_info *sinfo;

	scmi_version_get(handle, SCMI_PROTOCOL_SENSOR, &version);

	dev_dbg(handle->dev, "Sensor Version %d.%d\n",
		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));

	sinfo = devm_kzalloc(handle->dev, sizeof(*sinfo), GFP_KERNEL);
	if (!sinfo)
		return -ENOMEM;
	sinfo->version = version;

	ret = scmi_sensor_attributes_get(handle, sinfo);
	if (ret)
		return ret;
	sinfo->sensors = devm_kcalloc(handle->dev, sinfo->num_sensors,
				      sizeof(*sinfo->sensors), GFP_KERNEL);
	if (!sinfo->sensors)
		return -ENOMEM;

	ret = scmi_sensor_description_get(handle, sinfo);
	if (ret)
		return ret;

	scmi_register_protocol_events(handle,
				      SCMI_PROTOCOL_SENSOR, SCMI_PROTO_QUEUE_SZ,
				      &sensor_event_ops, sensor_events,
				      ARRAY_SIZE(sensor_events),
				      sinfo->num_sensors);

	handle->sensor_priv = sinfo;
	handle->sensor_ops = &sensor_ops;

	return 0;
}

DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_SENSOR, sensors)