1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
// SPDX-License-Identifier: GPL-2.0
//! A kernel mutex.
//!
//! This module allows Rust code to use the kernel's `struct mutex`.
/// Creates a [`Mutex`] initialiser with the given name and a newly-created lock class.
///
/// It uses the name if one is given, otherwise it generates one based on the file name and line
/// number.
#[macro_export]
macro_rules! new_mutex {
($inner:expr $(, $name:literal)? $(,)?) => {
$crate::sync::Mutex::new(
$inner, $crate::optional_name!($($name)?), $crate::static_lock_class!())
};
}
pub use new_mutex;
/// A mutual exclusion primitive.
///
/// Exposes the kernel's [`struct mutex`]. When multiple threads attempt to lock the same mutex,
/// only one at a time is allowed to progress, the others will block (sleep) until the mutex is
/// unlocked, at which point another thread will be allowed to wake up and make progress.
///
/// Since it may block, [`Mutex`] needs to be used with care in atomic contexts.
///
/// Instances of [`Mutex`] need a lock class and to be pinned. The recommended way to create such
/// instances is with the [`pin_init`](crate::pin_init) and [`new_mutex`] macros.
///
/// # Examples
///
/// The following example shows how to declare, allocate and initialise a struct (`Example`) that
/// contains an inner struct (`Inner`) that is protected by a mutex.
///
/// ```
/// use kernel::sync::{new_mutex, Mutex};
///
/// struct Inner {
/// a: u32,
/// b: u32,
/// }
///
/// #[pin_data]
/// struct Example {
/// c: u32,
/// #[pin]
/// d: Mutex<Inner>,
/// }
///
/// impl Example {
/// fn new() -> impl PinInit<Self> {
/// pin_init!(Self {
/// c: 10,
/// d <- new_mutex!(Inner { a: 20, b: 30 }),
/// })
/// }
/// }
///
/// // Allocate a boxed `Example`.
/// let e = Box::pin_init(Example::new(), GFP_KERNEL)?;
/// assert_eq!(e.c, 10);
/// assert_eq!(e.d.lock().a, 20);
/// assert_eq!(e.d.lock().b, 30);
/// # Ok::<(), Error>(())
/// ```
///
/// The following example shows how to use interior mutability to modify the contents of a struct
/// protected by a mutex despite only having a shared reference:
///
/// ```
/// use kernel::sync::Mutex;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn example(m: &Mutex<Example>) {
/// let mut guard = m.lock();
/// guard.a += 10;
/// guard.b += 20;
/// }
/// ```
///
/// [`struct mutex`]: srctree/include/linux/mutex.h
pub type Mutex<T> = super::Lock<T, MutexBackend>;
/// A kernel `struct mutex` lock backend.
pub struct MutexBackend;
// SAFETY: The underlying kernel `struct mutex` object ensures mutual exclusion.
unsafe impl super::Backend for MutexBackend {
type State = bindings::mutex;
type GuardState = ();
unsafe fn init(
ptr: *mut Self::State,
name: *const core::ffi::c_char,
key: *mut bindings::lock_class_key,
) {
// SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and
// `key` are valid for read indefinitely.
unsafe { bindings::__mutex_init(ptr, name, key) }
}
unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState {
// SAFETY: The safety requirements of this function ensure that `ptr` points to valid
// memory, and that it has been initialised before.
unsafe { bindings::mutex_lock(ptr) };
}
unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) {
// SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the
// caller is the owner of the mutex.
unsafe { bindings::mutex_unlock(ptr) };
}
unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState> {
// SAFETY: The `ptr` pointer is guaranteed to be valid and initialized before use.
let result = unsafe { bindings::mutex_trylock(ptr) };
if result != 0 {
Some(())
} else {
None
}
}
}
|