1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
|
// SPDX-License-Identifier: GPL-2.0
/*
* KCSAN core runtime.
*
* Copyright (C) 2019, Google LLC.
*/
#define pr_fmt(fmt) "kcsan: " fmt
#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/minmax.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include "encoding.h"
#include "kcsan.h"
#include "permissive.h"
static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "kcsan."
module_param_named(early_enable, kcsan_early_enable, bool, 0);
module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
#ifdef CONFIG_KCSAN_WEAK_MEMORY
static bool kcsan_weak_memory = true;
module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
#else
#define kcsan_weak_memory false
#endif
bool kcsan_enabled;
/* Per-CPU kcsan_ctx for interrupts */
static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
.scoped_accesses = {LIST_POISON1, NULL},
};
/*
* Helper macros to index into adjacent slots, starting from address slot
* itself, followed by the right and left slots.
*
* The purpose is 2-fold:
*
* 1. if during insertion the address slot is already occupied, check if
* any adjacent slots are free;
* 2. accesses that straddle a slot boundary due to size that exceeds a
* slot's range may check adjacent slots if any watchpoint matches.
*
* Note that accesses with very large size may still miss a watchpoint; however,
* given this should be rare, this is a reasonable trade-off to make, since this
* will avoid:
*
* 1. excessive contention between watchpoint checks and setup;
* 2. larger number of simultaneous watchpoints without sacrificing
* performance.
*
* Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
*
* slot=0: [ 1, 2, 0]
* slot=9: [10, 11, 9]
* slot=63: [64, 65, 63]
*/
#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
/*
* SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
* slot (middle) is fine if we assume that races occur rarely. The set of
* indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
* {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
*/
#define SLOT_IDX_FAST(slot, i) (slot + i)
/*
* Watchpoints, with each entry encoded as defined in encoding.h: in order to be
* able to safely update and access a watchpoint without introducing locking
* overhead, we encode each watchpoint as a single atomic long. The initial
* zero-initialized state matches INVALID_WATCHPOINT.
*
* Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
* use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
*/
static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
/*
* Instructions to skip watching counter, used in should_watch(). We use a
* per-CPU counter to avoid excessive contention.
*/
static DEFINE_PER_CPU(long, kcsan_skip);
/* For kcsan_prandom_u32_max(). */
static DEFINE_PER_CPU(u32, kcsan_rand_state);
static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
size_t size,
bool expect_write,
long *encoded_watchpoint)
{
const int slot = watchpoint_slot(addr);
const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
atomic_long_t *watchpoint;
unsigned long wp_addr_masked;
size_t wp_size;
bool is_write;
int i;
BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
for (i = 0; i < NUM_SLOTS; ++i) {
watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
*encoded_watchpoint = atomic_long_read(watchpoint);
if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
&wp_size, &is_write))
continue;
if (expect_write && !is_write)
continue;
/* Check if the watchpoint matches the access. */
if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
return watchpoint;
}
return NULL;
}
static inline atomic_long_t *
insert_watchpoint(unsigned long addr, size_t size, bool is_write)
{
const int slot = watchpoint_slot(addr);
const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
atomic_long_t *watchpoint;
int i;
/* Check slot index logic, ensuring we stay within array bounds. */
BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
for (i = 0; i < NUM_SLOTS; ++i) {
long expect_val = INVALID_WATCHPOINT;
/* Try to acquire this slot. */
watchpoint = &watchpoints[SLOT_IDX(slot, i)];
if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
return watchpoint;
}
return NULL;
}
/*
* Return true if watchpoint was successfully consumed, false otherwise.
*
* This may return false if:
*
* 1. another thread already consumed the watchpoint;
* 2. the thread that set up the watchpoint already removed it;
* 3. the watchpoint was removed and then re-used.
*/
static __always_inline bool
try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
{
return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
}
/* Return true if watchpoint was not touched, false if already consumed. */
static inline bool consume_watchpoint(atomic_long_t *watchpoint)
{
return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
}
/* Remove the watchpoint -- its slot may be reused after. */
static inline void remove_watchpoint(atomic_long_t *watchpoint)
{
atomic_long_set(watchpoint, INVALID_WATCHPOINT);
}
static __always_inline struct kcsan_ctx *get_ctx(void)
{
/*
* In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
* also result in calls that generate warnings in uaccess regions.
*/
return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
}
static __always_inline void
check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
/* Check scoped accesses; never inline because this is a slow-path! */
static noinline void kcsan_check_scoped_accesses(void)
{
struct kcsan_ctx *ctx = get_ctx();
struct kcsan_scoped_access *scoped_access;
if (ctx->disable_scoped)
return;
ctx->disable_scoped++;
list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
check_access(scoped_access->ptr, scoped_access->size,
scoped_access->type, scoped_access->ip);
}
ctx->disable_scoped--;
}
/* Rules for generic atomic accesses. Called from fast-path. */
static __always_inline bool
is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
{
if (type & KCSAN_ACCESS_ATOMIC)
return true;
/*
* Unless explicitly declared atomic, never consider an assertion access
* as atomic. This allows using them also in atomic regions, such as
* seqlocks, without implicitly changing their semantics.
*/
if (type & KCSAN_ACCESS_ASSERT)
return false;
if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
(type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
!(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
return true; /* Assume aligned writes up to word size are atomic. */
if (ctx->atomic_next > 0) {
/*
* Because we do not have separate contexts for nested
* interrupts, in case atomic_next is set, we simply assume that
* the outer interrupt set atomic_next. In the worst case, we
* will conservatively consider operations as atomic. This is a
* reasonable trade-off to make, since this case should be
* extremely rare; however, even if extremely rare, it could
* lead to false positives otherwise.
*/
if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
--ctx->atomic_next; /* in task, or outer interrupt */
return true;
}
return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
}
static __always_inline bool
should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
{
/*
* Never set up watchpoints when memory operations are atomic.
*
* Need to check this first, before kcsan_skip check below: (1) atomics
* should not count towards skipped instructions, and (2) to actually
* decrement kcsan_atomic_next for consecutive instruction stream.
*/
if (is_atomic(ctx, ptr, size, type))
return false;
if (this_cpu_dec_return(kcsan_skip) >= 0)
return false;
/*
* NOTE: If we get here, kcsan_skip must always be reset in slow path
* via reset_kcsan_skip() to avoid underflow.
*/
/* this operation should be watched */
return true;
}
/*
* Returns a pseudo-random number in interval [0, ep_ro). Simple linear
* congruential generator, using constants from "Numerical Recipes".
*/
static u32 kcsan_prandom_u32_max(u32 ep_ro)
{
u32 state = this_cpu_read(kcsan_rand_state);
state = 1664525 * state + 1013904223;
this_cpu_write(kcsan_rand_state, state);
return state % ep_ro;
}
static inline void reset_kcsan_skip(void)
{
long skip_count = kcsan_skip_watch -
(IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
kcsan_prandom_u32_max(kcsan_skip_watch) :
0);
this_cpu_write(kcsan_skip, skip_count);
}
static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
{
return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
}
/* Introduce delay depending on context and configuration. */
static void delay_access(int type)
{
unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
/* For certain access types, skew the random delay to be longer. */
unsigned int skew_delay_order =
(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
kcsan_prandom_u32_max(delay >> skew_delay_order) :
0;
udelay(delay);
}
/*
* Reads the instrumented memory for value change detection; value change
* detection is currently done for accesses up to a size of 8 bytes.
*/
static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
{
/*
* In the below we don't necessarily need the read of the location to
* be atomic, and we don't use READ_ONCE(), since all we need for race
* detection is to observe 2 different values.
*
* Furthermore, on certain architectures (such as arm64), READ_ONCE()
* may turn into more complex instructions than a plain load that cannot
* do unaligned accesses.
*/
switch (size) {
case 1: return *(const volatile u8 *)ptr;
case 2: return *(const volatile u16 *)ptr;
case 4: return *(const volatile u32 *)ptr;
case 8: return *(const volatile u64 *)ptr;
default: return 0; /* Ignore; we do not diff the values. */
}
}
void kcsan_save_irqtrace(struct task_struct *task)
{
#ifdef CONFIG_TRACE_IRQFLAGS
task->kcsan_save_irqtrace = task->irqtrace;
#endif
}
void kcsan_restore_irqtrace(struct task_struct *task)
{
#ifdef CONFIG_TRACE_IRQFLAGS
task->irqtrace = task->kcsan_save_irqtrace;
#endif
}
static __always_inline int get_kcsan_stack_depth(void)
{
#ifdef CONFIG_KCSAN_WEAK_MEMORY
return current->kcsan_stack_depth;
#else
BUILD_BUG();
return 0;
#endif
}
static __always_inline void add_kcsan_stack_depth(int val)
{
#ifdef CONFIG_KCSAN_WEAK_MEMORY
current->kcsan_stack_depth += val;
#else
BUILD_BUG();
#endif
}
static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
{
#ifdef CONFIG_KCSAN_WEAK_MEMORY
return ctx->disable_scoped ? NULL : &ctx->reorder_access;
#else
return NULL;
#endif
}
static __always_inline bool
find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
int type, unsigned long ip)
{
struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
if (!reorder_access)
return false;
/*
* Note: If accesses are repeated while reorder_access is identical,
* never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
*/
return reorder_access->ptr == ptr && reorder_access->size == size &&
reorder_access->type == type && reorder_access->ip == ip;
}
static inline void
set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
int type, unsigned long ip)
{
struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
if (!reorder_access || !kcsan_weak_memory)
return;
/*
* To avoid nested interrupts or scheduler (which share kcsan_ctx)
* reading an inconsistent reorder_access, ensure that the below has
* exclusive access to reorder_access by disallowing concurrent use.
*/
ctx->disable_scoped++;
barrier();
reorder_access->ptr = ptr;
reorder_access->size = size;
reorder_access->type = type | KCSAN_ACCESS_SCOPED;
reorder_access->ip = ip;
reorder_access->stack_depth = get_kcsan_stack_depth();
barrier();
ctx->disable_scoped--;
}
/*
* Pull everything together: check_access() below contains the performance
* critical operations; the fast-path (including check_access) functions should
* all be inlinable by the instrumentation functions.
*
* The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
* non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
* be filtered from the stacktrace, as well as give them unique names for the
* UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
* since they do not access any user memory, but instrumentation is still
* emitted in UACCESS regions.
*/
static noinline void kcsan_found_watchpoint(const volatile void *ptr,
size_t size,
int type,
unsigned long ip,
atomic_long_t *watchpoint,
long encoded_watchpoint)
{
const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
struct kcsan_ctx *ctx = get_ctx();
unsigned long flags;
bool consumed;
/*
* We know a watchpoint exists. Let's try to keep the race-window
* between here and finally consuming the watchpoint below as small as
* possible -- avoid unneccessarily complex code until consumed.
*/
if (!kcsan_is_enabled(ctx))
return;
/*
* The access_mask check relies on value-change comparison. To avoid
* reporting a race where e.g. the writer set up the watchpoint, but the
* reader has access_mask!=0, we have to ignore the found watchpoint.
*
* reorder_access is never created from an access with access_mask set.
*/
if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
return;
/*
* If the other thread does not want to ignore the access, and there was
* a value change as a result of this thread's operation, we will still
* generate a report of unknown origin.
*
* Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
*/
if (!is_assert && kcsan_ignore_address(ptr))
return;
/*
* Consuming the watchpoint must be guarded by kcsan_is_enabled() to
* avoid erroneously triggering reports if the context is disabled.
*/
consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
/* keep this after try_consume_watchpoint */
flags = user_access_save();
if (consumed) {
kcsan_save_irqtrace(current);
kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
kcsan_restore_irqtrace(current);
} else {
/*
* The other thread may not print any diagnostics, as it has
* already removed the watchpoint, or another thread consumed
* the watchpoint before this thread.
*/
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
}
if (is_assert)
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
else
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
user_access_restore(flags);
}
static noinline void
kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
{
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
atomic_long_t *watchpoint;
u64 old, new, diff;
enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
bool interrupt_watcher = kcsan_interrupt_watcher;
unsigned long ua_flags = user_access_save();
struct kcsan_ctx *ctx = get_ctx();
unsigned long access_mask = ctx->access_mask;
unsigned long irq_flags = 0;
bool is_reorder_access;
/*
* Always reset kcsan_skip counter in slow-path to avoid underflow; see
* should_watch().
*/
reset_kcsan_skip();
if (!kcsan_is_enabled(ctx))
goto out;
/*
* Check to-ignore addresses after kcsan_is_enabled(), as we may access
* memory that is not yet initialized during early boot.
*/
if (!is_assert && kcsan_ignore_address(ptr))
goto out;
if (!check_encodable((unsigned long)ptr, size)) {
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
goto out;
}
/*
* The local CPU cannot observe reordering of its own accesses, and
* therefore we need to take care of 2 cases to avoid false positives:
*
* 1. Races of the reordered access with interrupts. To avoid, if
* the current access is reorder_access, disable interrupts.
* 2. Avoid races of scoped accesses from nested interrupts (below).
*/
is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
if (is_reorder_access)
interrupt_watcher = false;
/*
* Avoid races of scoped accesses from nested interrupts (or scheduler).
* Assume setting up a watchpoint for a non-scoped (normal) access that
* also conflicts with a current scoped access. In a nested interrupt,
* which shares the context, it would check a conflicting scoped access.
* To avoid, disable scoped access checking.
*/
ctx->disable_scoped++;
/*
* Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
* runtime is entered for every memory access, and potentially useful
* information is lost if dirtied by KCSAN.
*/
kcsan_save_irqtrace(current);
if (!interrupt_watcher)
local_irq_save(irq_flags);
watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
if (watchpoint == NULL) {
/*
* Out of capacity: the size of 'watchpoints', and the frequency
* with which should_watch() returns true should be tweaked so
* that this case happens very rarely.
*/
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
goto out_unlock;
}
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
/*
* Read the current value, to later check and infer a race if the data
* was modified via a non-instrumented access, e.g. from a device.
*/
old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
/*
* Delay this thread, to increase probability of observing a racy
* conflicting access.
*/
delay_access(type);
/*
* Re-read value, and check if it is as expected; if not, we infer a
* racy access.
*/
if (!is_reorder_access) {
new = read_instrumented_memory(ptr, size);
} else {
/*
* Reordered accesses cannot be used for value change detection,
* because the memory location may no longer be accessible and
* could result in a fault.
*/
new = 0;
access_mask = 0;
}
diff = old ^ new;
if (access_mask)
diff &= access_mask;
/*
* Check if we observed a value change.
*
* Also check if the data race should be ignored (the rules depend on
* non-zero diff); if it is to be ignored, the below rules for
* KCSAN_VALUE_CHANGE_MAYBE apply.
*/
if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
value_change = KCSAN_VALUE_CHANGE_TRUE;
/* Check if this access raced with another. */
if (!consume_watchpoint(watchpoint)) {
/*
* Depending on the access type, map a value_change of MAYBE to
* TRUE (always report) or FALSE (never report).
*/
if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
if (access_mask != 0) {
/*
* For access with access_mask, we require a
* value-change, as it is likely that races on
* ~access_mask bits are expected.
*/
value_change = KCSAN_VALUE_CHANGE_FALSE;
} else if (size > 8 || is_assert) {
/* Always assume a value-change. */
value_change = KCSAN_VALUE_CHANGE_TRUE;
}
}
/*
* No need to increment 'data_races' counter, as the racing
* thread already did.
*
* Count 'assert_failures' for each failed ASSERT access,
* therefore both this thread and the racing thread may
* increment this counter.
*/
if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
kcsan_report_known_origin(ptr, size, type, ip,
value_change, watchpoint - watchpoints,
old, new, access_mask);
} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
/* Inferring a race, since the value should not have changed. */
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
if (is_assert)
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
kcsan_report_unknown_origin(ptr, size, type, ip,
old, new, access_mask);
}
}
/*
* Remove watchpoint; must be after reporting, since the slot may be
* reused after this point.
*/
remove_watchpoint(watchpoint);
atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
out_unlock:
if (!interrupt_watcher)
local_irq_restore(irq_flags);
kcsan_restore_irqtrace(current);
ctx->disable_scoped--;
/*
* Reordered accesses cannot be used for value change detection,
* therefore never consider for reordering if access_mask is set.
* ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
*/
if (!access_mask && !is_assert)
set_reorder_access(ctx, ptr, size, type, ip);
out:
user_access_restore(ua_flags);
}
static __always_inline void
check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
{
atomic_long_t *watchpoint;
long encoded_watchpoint;
/*
* Do nothing for 0 sized check; this comparison will be optimized out
* for constant sized instrumentation (__tsan_{read,write}N).
*/
if (unlikely(size == 0))
return;
again:
/*
* Avoid user_access_save in fast-path: find_watchpoint is safe without
* user_access_save, as the address that ptr points to is only used to
* check if a watchpoint exists; ptr is never dereferenced.
*/
watchpoint = find_watchpoint((unsigned long)ptr, size,
!(type & KCSAN_ACCESS_WRITE),
&encoded_watchpoint);
/*
* It is safe to check kcsan_is_enabled() after find_watchpoint in the
* slow-path, as long as no state changes that cause a race to be
* detected and reported have occurred until kcsan_is_enabled() is
* checked.
*/
if (unlikely(watchpoint != NULL))
kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
else {
struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
if (unlikely(should_watch(ctx, ptr, size, type))) {
kcsan_setup_watchpoint(ptr, size, type, ip);
return;
}
if (!(type & KCSAN_ACCESS_SCOPED)) {
struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
if (reorder_access) {
/*
* reorder_access check: simulates reordering of
* the access after subsequent operations.
*/
ptr = reorder_access->ptr;
type = reorder_access->type;
ip = reorder_access->ip;
/*
* Upon a nested interrupt, this context's
* reorder_access can be modified (shared ctx).
* We know that upon return, reorder_access is
* always invalidated by setting size to 0 via
* __tsan_func_exit(). Therefore we must read
* and check size after the other fields.
*/
barrier();
size = READ_ONCE(reorder_access->size);
if (size)
goto again;
}
}
/*
* Always checked last, right before returning from runtime;
* if reorder_access is valid, checked after it was checked.
*/
if (unlikely(ctx->scoped_accesses.prev))
kcsan_check_scoped_accesses();
}
}
/* === Public interface ===================================================== */
void __init kcsan_init(void)
{
int cpu;
BUG_ON(!in_task());
for_each_possible_cpu(cpu)
per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
/*
* We are in the init task, and no other tasks should be running;
* WRITE_ONCE without memory barrier is sufficient.
*/
if (kcsan_early_enable) {
pr_info("enabled early\n");
WRITE_ONCE(kcsan_enabled, true);
}
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
} else {
pr_info("strict mode configured\n");
}
}
/* === Exported interface =================================================== */
void kcsan_disable_current(void)
{
++get_ctx()->disable_count;
}
EXPORT_SYMBOL(kcsan_disable_current);
void kcsan_enable_current(void)
{
if (get_ctx()->disable_count-- == 0) {
/*
* Warn if kcsan_enable_current() calls are unbalanced with
* kcsan_disable_current() calls, which causes disable_count to
* become negative and should not happen.
*/
kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
kcsan_disable_current(); /* disable to generate warning */
WARN(1, "Unbalanced %s()", __func__);
kcsan_enable_current();
}
}
EXPORT_SYMBOL(kcsan_enable_current);
void kcsan_enable_current_nowarn(void)
{
if (get_ctx()->disable_count-- == 0)
kcsan_disable_current();
}
EXPORT_SYMBOL(kcsan_enable_current_nowarn);
void kcsan_nestable_atomic_begin(void)
{
/*
* Do *not* check and warn if we are in a flat atomic region: nestable
* and flat atomic regions are independent from each other.
* See include/linux/kcsan.h: struct kcsan_ctx comments for more
* comments.
*/
++get_ctx()->atomic_nest_count;
}
EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
void kcsan_nestable_atomic_end(void)
{
if (get_ctx()->atomic_nest_count-- == 0) {
/*
* Warn if kcsan_nestable_atomic_end() calls are unbalanced with
* kcsan_nestable_atomic_begin() calls, which causes
* atomic_nest_count to become negative and should not happen.
*/
kcsan_nestable_atomic_begin(); /* restore to 0 */
kcsan_disable_current(); /* disable to generate warning */
WARN(1, "Unbalanced %s()", __func__);
kcsan_enable_current();
}
}
EXPORT_SYMBOL(kcsan_nestable_atomic_end);
void kcsan_flat_atomic_begin(void)
{
get_ctx()->in_flat_atomic = true;
}
EXPORT_SYMBOL(kcsan_flat_atomic_begin);
void kcsan_flat_atomic_end(void)
{
get_ctx()->in_flat_atomic = false;
}
EXPORT_SYMBOL(kcsan_flat_atomic_end);
void kcsan_atomic_next(int n)
{
get_ctx()->atomic_next = n;
}
EXPORT_SYMBOL(kcsan_atomic_next);
void kcsan_set_access_mask(unsigned long mask)
{
get_ctx()->access_mask = mask;
}
EXPORT_SYMBOL(kcsan_set_access_mask);
struct kcsan_scoped_access *
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
struct kcsan_scoped_access *sa)
{
struct kcsan_ctx *ctx = get_ctx();
check_access(ptr, size, type, _RET_IP_);
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
INIT_LIST_HEAD(&sa->list);
sa->ptr = ptr;
sa->size = size;
sa->type = type;
sa->ip = _RET_IP_;
if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
INIT_LIST_HEAD(&ctx->scoped_accesses);
list_add(&sa->list, &ctx->scoped_accesses);
ctx->disable_count--;
return sa;
}
EXPORT_SYMBOL(kcsan_begin_scoped_access);
void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
{
struct kcsan_ctx *ctx = get_ctx();
if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
return;
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
list_del(&sa->list);
if (list_empty(&ctx->scoped_accesses))
/*
* Ensure we do not enter kcsan_check_scoped_accesses()
* slow-path if unnecessary, and avoids requiring list_empty()
* in the fast-path (to avoid a READ_ONCE() and potential
* uaccess warning).
*/
ctx->scoped_accesses.prev = NULL;
ctx->disable_count--;
check_access(sa->ptr, sa->size, sa->type, sa->ip);
}
EXPORT_SYMBOL(kcsan_end_scoped_access);
void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
{
check_access(ptr, size, type, _RET_IP_);
}
EXPORT_SYMBOL(__kcsan_check_access);
#define DEFINE_MEMORY_BARRIER(name, order_before_cond) \
void __kcsan_##name(void) \
{ \
struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \
if (!sa) \
return; \
if (order_before_cond) \
sa->size = 0; \
} \
EXPORT_SYMBOL(__kcsan_##name)
DEFINE_MEMORY_BARRIER(mb, true);
DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
DEFINE_MEMORY_BARRIER(release, true);
/*
* KCSAN uses the same instrumentation that is emitted by supported compilers
* for ThreadSanitizer (TSAN).
*
* When enabled, the compiler emits instrumentation calls (the functions
* prefixed with "__tsan" below) for all loads and stores that it generated;
* inline asm is not instrumented.
*
* Note that, not all supported compiler versions distinguish aligned/unaligned
* accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
* version to the generic version, which can handle both.
*/
#define DEFINE_TSAN_READ_WRITE(size) \
void __tsan_read##size(void *ptr); \
void __tsan_read##size(void *ptr) \
{ \
check_access(ptr, size, 0, _RET_IP_); \
} \
EXPORT_SYMBOL(__tsan_read##size); \
void __tsan_unaligned_read##size(void *ptr) \
__alias(__tsan_read##size); \
EXPORT_SYMBOL(__tsan_unaligned_read##size); \
void __tsan_write##size(void *ptr); \
void __tsan_write##size(void *ptr) \
{ \
check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_); \
} \
EXPORT_SYMBOL(__tsan_write##size); \
void __tsan_unaligned_write##size(void *ptr) \
__alias(__tsan_write##size); \
EXPORT_SYMBOL(__tsan_unaligned_write##size); \
void __tsan_read_write##size(void *ptr); \
void __tsan_read_write##size(void *ptr) \
{ \
check_access(ptr, size, \
KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE, \
_RET_IP_); \
} \
EXPORT_SYMBOL(__tsan_read_write##size); \
void __tsan_unaligned_read_write##size(void *ptr) \
__alias(__tsan_read_write##size); \
EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
DEFINE_TSAN_READ_WRITE(1);
DEFINE_TSAN_READ_WRITE(2);
DEFINE_TSAN_READ_WRITE(4);
DEFINE_TSAN_READ_WRITE(8);
DEFINE_TSAN_READ_WRITE(16);
void __tsan_read_range(void *ptr, size_t size);
void __tsan_read_range(void *ptr, size_t size)
{
check_access(ptr, size, 0, _RET_IP_);
}
EXPORT_SYMBOL(__tsan_read_range);
void __tsan_write_range(void *ptr, size_t size);
void __tsan_write_range(void *ptr, size_t size)
{
check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
}
EXPORT_SYMBOL(__tsan_write_range);
/*
* Use of explicit volatile is generally disallowed [1], however, volatile is
* still used in various concurrent context, whether in low-level
* synchronization primitives or for legacy reasons.
* [1] https://lwn.net/Articles/233479/
*
* We only consider volatile accesses atomic if they are aligned and would pass
* the size-check of compiletime_assert_rwonce_type().
*/
#define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \
void __tsan_volatile_read##size(void *ptr); \
void __tsan_volatile_read##size(void *ptr) \
{ \
const bool is_atomic = size <= sizeof(long long) && \
IS_ALIGNED((unsigned long)ptr, size); \
if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
return; \
check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0, \
_RET_IP_); \
} \
EXPORT_SYMBOL(__tsan_volatile_read##size); \
void __tsan_unaligned_volatile_read##size(void *ptr) \
__alias(__tsan_volatile_read##size); \
EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \
void __tsan_volatile_write##size(void *ptr); \
void __tsan_volatile_write##size(void *ptr) \
{ \
const bool is_atomic = size <= sizeof(long long) && \
IS_ALIGNED((unsigned long)ptr, size); \
if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
return; \
check_access(ptr, size, \
KCSAN_ACCESS_WRITE | \
(is_atomic ? KCSAN_ACCESS_ATOMIC : 0), \
_RET_IP_); \
} \
EXPORT_SYMBOL(__tsan_volatile_write##size); \
void __tsan_unaligned_volatile_write##size(void *ptr) \
__alias(__tsan_volatile_write##size); \
EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
DEFINE_TSAN_VOLATILE_READ_WRITE(1);
DEFINE_TSAN_VOLATILE_READ_WRITE(2);
DEFINE_TSAN_VOLATILE_READ_WRITE(4);
DEFINE_TSAN_VOLATILE_READ_WRITE(8);
DEFINE_TSAN_VOLATILE_READ_WRITE(16);
/*
* Function entry and exit are used to determine the validty of reorder_access.
* Reordering of the access ends at the end of the function scope where the
* access happened. This is done for two reasons:
*
* 1. Artificially limits the scope where missing barriers are detected.
* This minimizes false positives due to uninstrumented functions that
* contain the required barriers but were missed.
*
* 2. Simplifies generating the stack trace of the access.
*/
void __tsan_func_entry(void *call_pc);
noinline void __tsan_func_entry(void *call_pc)
{
if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
return;
add_kcsan_stack_depth(1);
}
EXPORT_SYMBOL(__tsan_func_entry);
void __tsan_func_exit(void);
noinline void __tsan_func_exit(void)
{
struct kcsan_scoped_access *reorder_access;
if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
return;
reorder_access = get_reorder_access(get_ctx());
if (!reorder_access)
goto out;
if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
/*
* Access check to catch cases where write without a barrier
* (supposed release) was last access in function: because
* instrumentation is inserted before the real access, a data
* race due to the write giving up a c-s would only be caught if
* we do the conflicting access after.
*/
check_access(reorder_access->ptr, reorder_access->size,
reorder_access->type, reorder_access->ip);
reorder_access->size = 0;
reorder_access->stack_depth = INT_MIN;
}
out:
add_kcsan_stack_depth(-1);
}
EXPORT_SYMBOL(__tsan_func_exit);
void __tsan_init(void);
void __tsan_init(void)
{
}
EXPORT_SYMBOL(__tsan_init);
/*
* Instrumentation for atomic builtins (__atomic_*, __sync_*).
*
* Normal kernel code _should not_ be using them directly, but some
* architectures may implement some or all atomics using the compilers'
* builtins.
*
* Note: If an architecture decides to fully implement atomics using the
* builtins, because they are implicitly instrumented by KCSAN (and KASAN,
* etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
* atomic-instrumented) is no longer necessary.
*
* TSAN instrumentation replaces atomic accesses with calls to any of the below
* functions, whose job is to also execute the operation itself.
*/
static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
{
if (memorder == __ATOMIC_RELEASE ||
memorder == __ATOMIC_SEQ_CST ||
memorder == __ATOMIC_ACQ_REL)
__kcsan_release();
}
#define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \
u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \
u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \
{ \
kcsan_atomic_builtin_memorder(memorder); \
if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_); \
} \
return __atomic_load_n(ptr, memorder); \
} \
EXPORT_SYMBOL(__tsan_atomic##bits##_load); \
void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \
void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \
{ \
kcsan_atomic_builtin_memorder(memorder); \
if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
check_access(ptr, bits / BITS_PER_BYTE, \
KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_); \
} \
__atomic_store_n(ptr, v, memorder); \
} \
EXPORT_SYMBOL(__tsan_atomic##bits##_store)
#define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \
u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \
u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \
{ \
kcsan_atomic_builtin_memorder(memorder); \
if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
check_access(ptr, bits / BITS_PER_BYTE, \
KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
KCSAN_ACCESS_ATOMIC, _RET_IP_); \
} \
return __atomic_##op##suffix(ptr, v, memorder); \
} \
EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
/*
* Note: CAS operations are always classified as write, even in case they
* fail. We cannot perform check_access() after a write, as it might lead to
* false positives, in cases such as:
*
* T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
*
* T1: if (__atomic_load_n(&p->flag, ...)) {
* modify *p;
* p->flag = 0;
* }
*
* The only downside is that, if there are 3 threads, with one CAS that
* succeeds, another CAS that fails, and an unmarked racing operation, we may
* point at the wrong CAS as the source of the race. However, if we assume that
* all CAS can succeed in some other execution, the data race is still valid.
*/
#define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \
int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \
u##bits val, int mo, int fail_mo); \
int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \
u##bits val, int mo, int fail_mo) \
{ \
kcsan_atomic_builtin_memorder(mo); \
if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
check_access(ptr, bits / BITS_PER_BYTE, \
KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
KCSAN_ACCESS_ATOMIC, _RET_IP_); \
} \
return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \
} \
EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
#define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \
u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
int mo, int fail_mo); \
u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
int mo, int fail_mo) \
{ \
kcsan_atomic_builtin_memorder(mo); \
if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
check_access(ptr, bits / BITS_PER_BYTE, \
KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
KCSAN_ACCESS_ATOMIC, _RET_IP_); \
} \
__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \
return exp; \
} \
EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
#define DEFINE_TSAN_ATOMIC_OPS(bits) \
DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \
DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \
DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \
DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \
DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \
DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \
DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \
DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \
DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \
DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \
DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
DEFINE_TSAN_ATOMIC_OPS(8);
DEFINE_TSAN_ATOMIC_OPS(16);
DEFINE_TSAN_ATOMIC_OPS(32);
DEFINE_TSAN_ATOMIC_OPS(64);
void __tsan_atomic_thread_fence(int memorder);
void __tsan_atomic_thread_fence(int memorder)
{
kcsan_atomic_builtin_memorder(memorder);
__atomic_thread_fence(memorder);
}
EXPORT_SYMBOL(__tsan_atomic_thread_fence);
/*
* In instrumented files, we emit instrumentation for barriers by mapping the
* kernel barriers to an __atomic_signal_fence(), which is interpreted specially
* and otherwise has no relation to a real __atomic_signal_fence(). No known
* kernel code uses __atomic_signal_fence().
*
* Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
* are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
* can be disabled via the __no_kcsan function attribute (vs. an explicit call
* which could not). When __no_kcsan is requested, __atomic_signal_fence()
* generates no code.
*
* Note: The result of using __atomic_signal_fence() with KCSAN enabled is
* potentially limiting the compiler's ability to reorder operations; however,
* if barriers were instrumented with explicit calls (without LTO), the compiler
* couldn't optimize much anyway. The result of a hypothetical architecture
* using __atomic_signal_fence() in normal code would be KCSAN false negatives.
*/
void __tsan_atomic_signal_fence(int memorder);
noinline void __tsan_atomic_signal_fence(int memorder)
{
switch (memorder) {
case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
__kcsan_mb();
break;
case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
__kcsan_wmb();
break;
case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
__kcsan_rmb();
break;
case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
__kcsan_release();
break;
default:
break;
}
}
EXPORT_SYMBOL(__tsan_atomic_signal_fence);
#ifdef __HAVE_ARCH_MEMSET
void *__tsan_memset(void *s, int c, size_t count);
noinline void *__tsan_memset(void *s, int c, size_t count)
{
/*
* Instead of not setting up watchpoints where accessed size is greater
* than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
*/
size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
return memset(s, c, count);
}
#else
void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
#endif
EXPORT_SYMBOL(__tsan_memset);
#ifdef __HAVE_ARCH_MEMMOVE
void *__tsan_memmove(void *dst, const void *src, size_t len);
noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
{
size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
check_access(src, check_len, 0, _RET_IP_);
return memmove(dst, src, len);
}
#else
void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
#endif
EXPORT_SYMBOL(__tsan_memmove);
#ifdef __HAVE_ARCH_MEMCPY
void *__tsan_memcpy(void *dst, const void *src, size_t len);
noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
{
size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
check_access(src, check_len, 0, _RET_IP_);
return memcpy(dst, src, len);
}
#else
void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
#endif
EXPORT_SYMBOL(__tsan_memcpy);
|