summaryrefslogtreecommitdiff
path: root/kernel/fork.c
blob: 89ceb4a68af25027ca7166938e7bd4174d9c29d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  linux/kernel/fork.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'fork.c' contains the help-routines for the 'fork' system call
 * (see also entry.S and others).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 */

#include <linux/anon_inodes.h>
#include <linux/slab.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/user.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/stat.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
#include <linux/sched/ext.h>
#include <linux/seq_file.h>
#include <linux/rtmutex.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/iocontext.h>
#include <linux/key.h>
#include <linux/kmsan.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/mmu_notifier.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/memblock.h>
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cgroup.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/seccomp.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/syscall_user_dispatch.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
#include <linux/compat.h>
#include <linux/kthread.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/memcontrol.h>
#include <linux/ftrace.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/ksm.h>
#include <linux/acct.h>
#include <linux/userfaultfd_k.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/freezer.h>
#include <linux/delayacct.h>
#include <linux/taskstats_kern.h>
#include <linux/tty.h>
#include <linux/fs_struct.h>
#include <linux/magic.h>
#include <linux/perf_event.h>
#include <linux/posix-timers.h>
#include <linux/user-return-notifier.h>
#include <linux/oom.h>
#include <linux/khugepaged.h>
#include <linux/signalfd.h>
#include <linux/uprobes.h>
#include <linux/aio.h>
#include <linux/compiler.h>
#include <linux/sysctl.h>
#include <linux/kcov.h>
#include <linux/livepatch.h>
#include <linux/thread_info.h>
#include <linux/stackleak.h>
#include <linux/kasan.h>
#include <linux/scs.h>
#include <linux/io_uring.h>
#include <linux/bpf.h>
#include <linux/stackprotector.h>
#include <linux/user_events.h>
#include <linux/iommu.h>
#include <linux/rseq.h>
#include <uapi/linux/pidfd.h>
#include <linux/pidfs.h>

#include <asm/pgalloc.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>

#include <trace/events/sched.h>

#define CREATE_TRACE_POINTS
#include <trace/events/task.h>

#include <kunit/visibility.h>

/*
 * Minimum number of threads to boot the kernel
 */
#define MIN_THREADS 20

/*
 * Maximum number of threads
 */
#define MAX_THREADS FUTEX_TID_MASK

/*
 * Protected counters by write_lock_irq(&tasklist_lock)
 */
unsigned long total_forks;	/* Handle normal Linux uptimes. */
int nr_threads;			/* The idle threads do not count.. */

static int max_threads;		/* tunable limit on nr_threads */

#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)

static const char * const resident_page_types[] = {
	NAMED_ARRAY_INDEX(MM_FILEPAGES),
	NAMED_ARRAY_INDEX(MM_ANONPAGES),
	NAMED_ARRAY_INDEX(MM_SWAPENTS),
	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
};

DEFINE_PER_CPU(unsigned long, process_counts) = 0;

__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */

#ifdef CONFIG_PROVE_RCU
int lockdep_tasklist_lock_is_held(void)
{
	return lockdep_is_held(&tasklist_lock);
}
EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
#endif /* #ifdef CONFIG_PROVE_RCU */

int nr_processes(void)
{
	int cpu;
	int total = 0;

	for_each_possible_cpu(cpu)
		total += per_cpu(process_counts, cpu);

	return total;
}

void __weak arch_release_task_struct(struct task_struct *tsk)
{
}

static struct kmem_cache *task_struct_cachep;

static inline struct task_struct *alloc_task_struct_node(int node)
{
	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
}

static inline void free_task_struct(struct task_struct *tsk)
{
	kmem_cache_free(task_struct_cachep, tsk);
}

/*
 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 * kmemcache based allocator.
 */
# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)

#  ifdef CONFIG_VMAP_STACK
/*
 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 * flush.  Try to minimize the number of calls by caching stacks.
 */
#define NR_CACHED_STACKS 2
static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);

struct vm_stack {
	struct rcu_head rcu;
	struct vm_struct *stack_vm_area;
};

static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
{
	unsigned int i;

	for (i = 0; i < NR_CACHED_STACKS; i++) {
		struct vm_struct *tmp = NULL;

		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
			return true;
	}
	return false;
}

static void thread_stack_free_rcu(struct rcu_head *rh)
{
	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);

	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
		return;

	vfree(vm_stack);
}

static void thread_stack_delayed_free(struct task_struct *tsk)
{
	struct vm_stack *vm_stack = tsk->stack;

	vm_stack->stack_vm_area = tsk->stack_vm_area;
	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
}

static int free_vm_stack_cache(unsigned int cpu)
{
	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
	int i;

	for (i = 0; i < NR_CACHED_STACKS; i++) {
		struct vm_struct *vm_stack = cached_vm_stacks[i];

		if (!vm_stack)
			continue;

		vfree(vm_stack->addr);
		cached_vm_stacks[i] = NULL;
	}

	return 0;
}

static int memcg_charge_kernel_stack(struct vm_struct *vm)
{
	int i;
	int ret;
	int nr_charged = 0;

	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);

	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
		if (ret)
			goto err;
		nr_charged++;
	}
	return 0;
err:
	for (i = 0; i < nr_charged; i++)
		memcg_kmem_uncharge_page(vm->pages[i], 0);
	return ret;
}

static int alloc_thread_stack_node(struct task_struct *tsk, int node)
{
	struct vm_struct *vm;
	void *stack;
	int i;

	for (i = 0; i < NR_CACHED_STACKS; i++) {
		struct vm_struct *s;

		s = this_cpu_xchg(cached_stacks[i], NULL);

		if (!s)
			continue;

		/* Reset stack metadata. */
		kasan_unpoison_range(s->addr, THREAD_SIZE);

		stack = kasan_reset_tag(s->addr);

		/* Clear stale pointers from reused stack. */
		memset(stack, 0, THREAD_SIZE);

		if (memcg_charge_kernel_stack(s)) {
			vfree(s->addr);
			return -ENOMEM;
		}

		tsk->stack_vm_area = s;
		tsk->stack = stack;
		return 0;
	}

	/*
	 * Allocated stacks are cached and later reused by new threads,
	 * so memcg accounting is performed manually on assigning/releasing
	 * stacks to tasks. Drop __GFP_ACCOUNT.
	 */
	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
				     VMALLOC_START, VMALLOC_END,
				     THREADINFO_GFP & ~__GFP_ACCOUNT,
				     PAGE_KERNEL,
				     0, node, __builtin_return_address(0));
	if (!stack)
		return -ENOMEM;

	vm = find_vm_area(stack);
	if (memcg_charge_kernel_stack(vm)) {
		vfree(stack);
		return -ENOMEM;
	}
	/*
	 * We can't call find_vm_area() in interrupt context, and
	 * free_thread_stack() can be called in interrupt context,
	 * so cache the vm_struct.
	 */
	tsk->stack_vm_area = vm;
	stack = kasan_reset_tag(stack);
	tsk->stack = stack;
	return 0;
}

static void free_thread_stack(struct task_struct *tsk)
{
	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
		thread_stack_delayed_free(tsk);

	tsk->stack = NULL;
	tsk->stack_vm_area = NULL;
}

#  else /* !CONFIG_VMAP_STACK */

static void thread_stack_free_rcu(struct rcu_head *rh)
{
	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
}

static void thread_stack_delayed_free(struct task_struct *tsk)
{
	struct rcu_head *rh = tsk->stack;

	call_rcu(rh, thread_stack_free_rcu);
}

static int alloc_thread_stack_node(struct task_struct *tsk, int node)
{
	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
					     THREAD_SIZE_ORDER);

	if (likely(page)) {
		tsk->stack = kasan_reset_tag(page_address(page));
		return 0;
	}
	return -ENOMEM;
}

static void free_thread_stack(struct task_struct *tsk)
{
	thread_stack_delayed_free(tsk);
	tsk->stack = NULL;
}

#  endif /* CONFIG_VMAP_STACK */
# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */

static struct kmem_cache *thread_stack_cache;

static void thread_stack_free_rcu(struct rcu_head *rh)
{
	kmem_cache_free(thread_stack_cache, rh);
}

static void thread_stack_delayed_free(struct task_struct *tsk)
{
	struct rcu_head *rh = tsk->stack;

	call_rcu(rh, thread_stack_free_rcu);
}

static int alloc_thread_stack_node(struct task_struct *tsk, int node)
{
	unsigned long *stack;
	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
	stack = kasan_reset_tag(stack);
	tsk->stack = stack;
	return stack ? 0 : -ENOMEM;
}

static void free_thread_stack(struct task_struct *tsk)
{
	thread_stack_delayed_free(tsk);
	tsk->stack = NULL;
}

void thread_stack_cache_init(void)
{
	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
					THREAD_SIZE, THREAD_SIZE, 0, 0,
					THREAD_SIZE, NULL);
	BUG_ON(thread_stack_cache == NULL);
}

# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */

/* SLAB cache for signal_struct structures (tsk->signal) */
static struct kmem_cache *signal_cachep;

/* SLAB cache for sighand_struct structures (tsk->sighand) */
struct kmem_cache *sighand_cachep;

/* SLAB cache for files_struct structures (tsk->files) */
struct kmem_cache *files_cachep;

/* SLAB cache for fs_struct structures (tsk->fs) */
struct kmem_cache *fs_cachep;

/* SLAB cache for vm_area_struct structures */
static struct kmem_cache *vm_area_cachep;

/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;

#ifdef CONFIG_PER_VMA_LOCK

/* SLAB cache for vm_area_struct.lock */
static struct kmem_cache *vma_lock_cachep;

static bool vma_lock_alloc(struct vm_area_struct *vma)
{
	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
	if (!vma->vm_lock)
		return false;

	init_rwsem(&vma->vm_lock->lock);
	vma->vm_lock_seq = -1;

	return true;
}

static inline void vma_lock_free(struct vm_area_struct *vma)
{
	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
}

#else /* CONFIG_PER_VMA_LOCK */

static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
static inline void vma_lock_free(struct vm_area_struct *vma) {}

#endif /* CONFIG_PER_VMA_LOCK */

struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
	if (!vma)
		return NULL;

	vma_init(vma, mm);
	if (!vma_lock_alloc(vma)) {
		kmem_cache_free(vm_area_cachep, vma);
		return NULL;
	}

	return vma;
}

struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
{
	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);

	if (!new)
		return NULL;

	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
	/*
	 * orig->shared.rb may be modified concurrently, but the clone
	 * will be reinitialized.
	 */
	data_race(memcpy(new, orig, sizeof(*new)));
	if (!vma_lock_alloc(new)) {
		kmem_cache_free(vm_area_cachep, new);
		return NULL;
	}
	INIT_LIST_HEAD(&new->anon_vma_chain);
	vma_numab_state_init(new);
	dup_anon_vma_name(orig, new);

	return new;
}

void __vm_area_free(struct vm_area_struct *vma)
{
	vma_numab_state_free(vma);
	free_anon_vma_name(vma);
	vma_lock_free(vma);
	kmem_cache_free(vm_area_cachep, vma);
}

#ifdef CONFIG_PER_VMA_LOCK
static void vm_area_free_rcu_cb(struct rcu_head *head)
{
	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
						  vm_rcu);

	/* The vma should not be locked while being destroyed. */
	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
	__vm_area_free(vma);
}
#endif

void vm_area_free(struct vm_area_struct *vma)
{
#ifdef CONFIG_PER_VMA_LOCK
	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
#else
	__vm_area_free(vma);
#endif
}

static void account_kernel_stack(struct task_struct *tsk, int account)
{
	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
		struct vm_struct *vm = task_stack_vm_area(tsk);
		int i;

		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
					      account * (PAGE_SIZE / 1024));
	} else {
		void *stack = task_stack_page(tsk);

		/* All stack pages are in the same node. */
		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
				      account * (THREAD_SIZE / 1024));
	}
}

void exit_task_stack_account(struct task_struct *tsk)
{
	account_kernel_stack(tsk, -1);

	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
		struct vm_struct *vm;
		int i;

		vm = task_stack_vm_area(tsk);
		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
			memcg_kmem_uncharge_page(vm->pages[i], 0);
	}
}

static void release_task_stack(struct task_struct *tsk)
{
	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
		return;  /* Better to leak the stack than to free prematurely */

	free_thread_stack(tsk);
}

#ifdef CONFIG_THREAD_INFO_IN_TASK
void put_task_stack(struct task_struct *tsk)
{
	if (refcount_dec_and_test(&tsk->stack_refcount))
		release_task_stack(tsk);
}
#endif

void free_task(struct task_struct *tsk)
{
#ifdef CONFIG_SECCOMP
	WARN_ON_ONCE(tsk->seccomp.filter);
#endif
	release_user_cpus_ptr(tsk);
	scs_release(tsk);

#ifndef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * The task is finally done with both the stack and thread_info,
	 * so free both.
	 */
	release_task_stack(tsk);
#else
	/*
	 * If the task had a separate stack allocation, it should be gone
	 * by now.
	 */
	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
#endif
	rt_mutex_debug_task_free(tsk);
	ftrace_graph_exit_task(tsk);
	arch_release_task_struct(tsk);
	if (tsk->flags & PF_KTHREAD)
		free_kthread_struct(tsk);
	bpf_task_storage_free(tsk);
	free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);

static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
{
	struct file *exe_file;

	exe_file = get_mm_exe_file(oldmm);
	RCU_INIT_POINTER(mm->exe_file, exe_file);
}

#ifdef CONFIG_MMU
static __latent_entropy int dup_mmap(struct mm_struct *mm,
					struct mm_struct *oldmm)
{
	struct vm_area_struct *mpnt, *tmp;
	int retval;
	unsigned long charge = 0;
	LIST_HEAD(uf);
	VMA_ITERATOR(vmi, mm, 0);

	uprobe_start_dup_mmap();
	if (mmap_write_lock_killable(oldmm)) {
		retval = -EINTR;
		goto fail_uprobe_end;
	}
	flush_cache_dup_mm(oldmm);
	uprobe_dup_mmap(oldmm, mm);
	/*
	 * Not linked in yet - no deadlock potential:
	 */
	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);

	/* No ordering required: file already has been exposed. */
	dup_mm_exe_file(mm, oldmm);

	mm->total_vm = oldmm->total_vm;
	mm->data_vm = oldmm->data_vm;
	mm->exec_vm = oldmm->exec_vm;
	mm->stack_vm = oldmm->stack_vm;

	retval = ksm_fork(mm, oldmm);
	if (retval)
		goto out;
	khugepaged_fork(mm, oldmm);

	/* Use __mt_dup() to efficiently build an identical maple tree. */
	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
	if (unlikely(retval))
		goto out;

	mt_clear_in_rcu(vmi.mas.tree);
	for_each_vma(vmi, mpnt) {
		struct file *file;

		vma_start_write(mpnt);
		if (mpnt->vm_flags & VM_DONTCOPY) {
			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
						    mpnt->vm_end, GFP_KERNEL);
			if (retval)
				goto loop_out;

			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
			continue;
		}
		charge = 0;
		/*
		 * Don't duplicate many vmas if we've been oom-killed (for
		 * example)
		 */
		if (fatal_signal_pending(current)) {
			retval = -EINTR;
			goto loop_out;
		}
		if (mpnt->vm_flags & VM_ACCOUNT) {
			unsigned long len = vma_pages(mpnt);

			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
				goto fail_nomem;
			charge = len;
		}
		tmp = vm_area_dup(mpnt);
		if (!tmp)
			goto fail_nomem;
		retval = vma_dup_policy(mpnt, tmp);
		if (retval)
			goto fail_nomem_policy;
		tmp->vm_mm = mm;
		retval = dup_userfaultfd(tmp, &uf);
		if (retval)
			goto fail_nomem_anon_vma_fork;
		if (tmp->vm_flags & VM_WIPEONFORK) {
			/*
			 * VM_WIPEONFORK gets a clean slate in the child.
			 * Don't prepare anon_vma until fault since we don't
			 * copy page for current vma.
			 */
			tmp->anon_vma = NULL;
		} else if (anon_vma_fork(tmp, mpnt))
			goto fail_nomem_anon_vma_fork;
		vm_flags_clear(tmp, VM_LOCKED_MASK);
		/*
		 * Copy/update hugetlb private vma information.
		 */
		if (is_vm_hugetlb_page(tmp))
			hugetlb_dup_vma_private(tmp);

		/*
		 * Link the vma into the MT. After using __mt_dup(), memory
		 * allocation is not necessary here, so it cannot fail.
		 */
		vma_iter_bulk_store(&vmi, tmp);

		mm->map_count++;

		if (tmp->vm_ops && tmp->vm_ops->open)
			tmp->vm_ops->open(tmp);

		file = tmp->vm_file;
		if (file) {
			struct address_space *mapping = file->f_mapping;

			get_file(file);
			i_mmap_lock_write(mapping);
			if (vma_is_shared_maywrite(tmp))
				mapping_allow_writable(mapping);
			flush_dcache_mmap_lock(mapping);
			/* insert tmp into the share list, just after mpnt */
			vma_interval_tree_insert_after(tmp, mpnt,
					&mapping->i_mmap);
			flush_dcache_mmap_unlock(mapping);
			i_mmap_unlock_write(mapping);
		}

		if (!(tmp->vm_flags & VM_WIPEONFORK))
			retval = copy_page_range(tmp, mpnt);

		if (retval) {
			mpnt = vma_next(&vmi);
			goto loop_out;
		}
	}
	/* a new mm has just been created */
	retval = arch_dup_mmap(oldmm, mm);
loop_out:
	vma_iter_free(&vmi);
	if (!retval) {
		mt_set_in_rcu(vmi.mas.tree);
	} else if (mpnt) {
		/*
		 * The entire maple tree has already been duplicated. If the
		 * mmap duplication fails, mark the failure point with
		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
		 * stop releasing VMAs that have not been duplicated after this
		 * point.
		 */
		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
		mas_store(&vmi.mas, XA_ZERO_ENTRY);
	}
out:
	mmap_write_unlock(mm);
	flush_tlb_mm(oldmm);
	mmap_write_unlock(oldmm);
	dup_userfaultfd_complete(&uf);
fail_uprobe_end:
	uprobe_end_dup_mmap();
	return retval;

fail_nomem_anon_vma_fork:
	mpol_put(vma_policy(tmp));
fail_nomem_policy:
	vm_area_free(tmp);
fail_nomem:
	retval = -ENOMEM;
	vm_unacct_memory(charge);
	goto loop_out;
}

static inline int mm_alloc_pgd(struct mm_struct *mm)
{
	mm->pgd = pgd_alloc(mm);
	if (unlikely(!mm->pgd))
		return -ENOMEM;
	return 0;
}

static inline void mm_free_pgd(struct mm_struct *mm)
{
	pgd_free(mm, mm->pgd);
}
#else
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
	mmap_write_lock(oldmm);
	dup_mm_exe_file(mm, oldmm);
	mmap_write_unlock(oldmm);
	return 0;
}
#define mm_alloc_pgd(mm)	(0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */

static void check_mm(struct mm_struct *mm)
{
	int i;

	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
			 "Please make sure 'struct resident_page_types[]' is updated as well");

	for (i = 0; i < NR_MM_COUNTERS; i++) {
		long x = percpu_counter_sum(&mm->rss_stat[i]);

		if (unlikely(x))
			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
				 mm, resident_page_types[i], x);
	}

	if (mm_pgtables_bytes(mm))
		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
				mm_pgtables_bytes(mm));

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
#endif
}

#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))

static void do_check_lazy_tlb(void *arg)
{
	struct mm_struct *mm = arg;

	WARN_ON_ONCE(current->active_mm == mm);
}

static void do_shoot_lazy_tlb(void *arg)
{
	struct mm_struct *mm = arg;

	if (current->active_mm == mm) {
		WARN_ON_ONCE(current->mm);
		current->active_mm = &init_mm;
		switch_mm(mm, &init_mm, current);
	}
}

static void cleanup_lazy_tlbs(struct mm_struct *mm)
{
	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
		/*
		 * In this case, lazy tlb mms are refounted and would not reach
		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
		 */
		return;
	}

	/*
	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
	 * requires lazy mm users to switch to another mm when the refcount
	 * drops to zero, before the mm is freed. This requires IPIs here to
	 * switch kernel threads to init_mm.
	 *
	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
	 * switch with the final userspace teardown TLB flush which leaves the
	 * mm lazy on this CPU but no others, reducing the need for additional
	 * IPIs here. There are cases where a final IPI is still required here,
	 * such as the final mmdrop being performed on a different CPU than the
	 * one exiting, or kernel threads using the mm when userspace exits.
	 *
	 * IPI overheads have not found to be expensive, but they could be
	 * reduced in a number of possible ways, for example (roughly
	 * increasing order of complexity):
	 * - The last lazy reference created by exit_mm() could instead switch
	 *   to init_mm, however it's probable this will run on the same CPU
	 *   immediately afterwards, so this may not reduce IPIs much.
	 * - A batch of mms requiring IPIs could be gathered and freed at once.
	 * - CPUs store active_mm where it can be remotely checked without a
	 *   lock, to filter out false-positives in the cpumask.
	 * - After mm_users or mm_count reaches zero, switching away from the
	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
	 *   with some batching or delaying of the final IPIs.
	 * - A delayed freeing and RCU-like quiescing sequence based on mm
	 *   switching to avoid IPIs completely.
	 */
	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
}

/*
 * Called when the last reference to the mm
 * is dropped: either by a lazy thread or by
 * mmput. Free the page directory and the mm.
 */
void __mmdrop(struct mm_struct *mm)
{
	BUG_ON(mm == &init_mm);
	WARN_ON_ONCE(mm == current->mm);

	/* Ensure no CPUs are using this as their lazy tlb mm */
	cleanup_lazy_tlbs(mm);

	WARN_ON_ONCE(mm == current->active_mm);
	mm_free_pgd(mm);
	destroy_context(mm);
	mmu_notifier_subscriptions_destroy(mm);
	check_mm(mm);
	put_user_ns(mm->user_ns);
	mm_pasid_drop(mm);
	mm_destroy_cid(mm);
	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);

	free_mm(mm);
}
EXPORT_SYMBOL_GPL(__mmdrop);

static void mmdrop_async_fn(struct work_struct *work)
{
	struct mm_struct *mm;

	mm = container_of(work, struct mm_struct, async_put_work);
	__mmdrop(mm);
}

static void mmdrop_async(struct mm_struct *mm)
{
	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
		schedule_work(&mm->async_put_work);
	}
}

static inline void free_signal_struct(struct signal_struct *sig)
{
	taskstats_tgid_free(sig);
	sched_autogroup_exit(sig);
	/*
	 * __mmdrop is not safe to call from softirq context on x86 due to
	 * pgd_dtor so postpone it to the async context
	 */
	if (sig->oom_mm)
		mmdrop_async(sig->oom_mm);
	kmem_cache_free(signal_cachep, sig);
}

static inline void put_signal_struct(struct signal_struct *sig)
{
	if (refcount_dec_and_test(&sig->sigcnt))
		free_signal_struct(sig);
}

void __put_task_struct(struct task_struct *tsk)
{
	WARN_ON(!tsk->exit_state);
	WARN_ON(refcount_read(&tsk->usage));
	WARN_ON(tsk == current);

	sched_ext_free(tsk);
	io_uring_free(tsk);
	cgroup_free(tsk);
	task_numa_free(tsk, true);
	security_task_free(tsk);
	exit_creds(tsk);
	delayacct_tsk_free(tsk);
	put_signal_struct(tsk->signal);
	sched_core_free(tsk);
	free_task(tsk);
}
EXPORT_SYMBOL_GPL(__put_task_struct);

void __put_task_struct_rcu_cb(struct rcu_head *rhp)
{
	struct task_struct *task = container_of(rhp, struct task_struct, rcu);

	__put_task_struct(task);
}
EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);

void __init __weak arch_task_cache_init(void) { }

/*
 * set_max_threads
 */
static void __init set_max_threads(unsigned int max_threads_suggested)
{
	u64 threads;
	unsigned long nr_pages = memblock_estimated_nr_free_pages();

	/*
	 * The number of threads shall be limited such that the thread
	 * structures may only consume a small part of the available memory.
	 */
	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
		threads = MAX_THREADS;
	else
		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
				    (u64) THREAD_SIZE * 8UL);

	if (threads > max_threads_suggested)
		threads = max_threads_suggested;

	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
}

#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
/* Initialized by the architecture: */
int arch_task_struct_size __read_mostly;
#endif

static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
{
	/* Fetch thread_struct whitelist for the architecture. */
	arch_thread_struct_whitelist(offset, size);

	/*
	 * Handle zero-sized whitelist or empty thread_struct, otherwise
	 * adjust offset to position of thread_struct in task_struct.
	 */
	if (unlikely(*size == 0))
		*offset = 0;
	else
		*offset += offsetof(struct task_struct, thread);
}

void __init fork_init(void)
{
	int i;
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN	0
#endif
	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
	unsigned long useroffset, usersize;

	/* create a slab on which task_structs can be allocated */
	task_struct_whitelist(&useroffset, &usersize);
	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
			arch_task_struct_size, align,
			SLAB_PANIC|SLAB_ACCOUNT,
			useroffset, usersize, NULL);

	/* do the arch specific task caches init */
	arch_task_cache_init();

	set_max_threads(MAX_THREADS);

	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
	init_task.signal->rlim[RLIMIT_SIGPENDING] =
		init_task.signal->rlim[RLIMIT_NPROC];

	for (i = 0; i < UCOUNT_COUNTS; i++)
		init_user_ns.ucount_max[i] = max_threads/2;

	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);

#ifdef CONFIG_VMAP_STACK
	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
			  NULL, free_vm_stack_cache);
#endif

	scs_init();

	lockdep_init_task(&init_task);
	uprobes_init();
}

int __weak arch_dup_task_struct(struct task_struct *dst,
					       struct task_struct *src)
{
	*dst = *src;
	return 0;
}

void set_task_stack_end_magic(struct task_struct *tsk)
{
	unsigned long *stackend;

	stackend = end_of_stack(tsk);
	*stackend = STACK_END_MAGIC;	/* for overflow detection */
}

static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
{
	struct task_struct *tsk;
	int err;

	if (node == NUMA_NO_NODE)
		node = tsk_fork_get_node(orig);
	tsk = alloc_task_struct_node(node);
	if (!tsk)
		return NULL;

	err = arch_dup_task_struct(tsk, orig);
	if (err)
		goto free_tsk;

	err = alloc_thread_stack_node(tsk, node);
	if (err)
		goto free_tsk;

#ifdef CONFIG_THREAD_INFO_IN_TASK
	refcount_set(&tsk->stack_refcount, 1);
#endif
	account_kernel_stack(tsk, 1);

	err = scs_prepare(tsk, node);
	if (err)
		goto free_stack;

#ifdef CONFIG_SECCOMP
	/*
	 * We must handle setting up seccomp filters once we're under
	 * the sighand lock in case orig has changed between now and
	 * then. Until then, filter must be NULL to avoid messing up
	 * the usage counts on the error path calling free_task.
	 */
	tsk->seccomp.filter = NULL;
#endif

	setup_thread_stack(tsk, orig);
	clear_user_return_notifier(tsk);
	clear_tsk_need_resched(tsk);
	set_task_stack_end_magic(tsk);
	clear_syscall_work_syscall_user_dispatch(tsk);

#ifdef CONFIG_STACKPROTECTOR
	tsk->stack_canary = get_random_canary();
#endif
	if (orig->cpus_ptr == &orig->cpus_mask)
		tsk->cpus_ptr = &tsk->cpus_mask;
	dup_user_cpus_ptr(tsk, orig, node);

	/*
	 * One for the user space visible state that goes away when reaped.
	 * One for the scheduler.
	 */
	refcount_set(&tsk->rcu_users, 2);
	/* One for the rcu users */
	refcount_set(&tsk->usage, 1);
#ifdef CONFIG_BLK_DEV_IO_TRACE
	tsk->btrace_seq = 0;
#endif
	tsk->splice_pipe = NULL;
	tsk->task_frag.page = NULL;
	tsk->wake_q.next = NULL;
	tsk->worker_private = NULL;

	kcov_task_init(tsk);
	kmsan_task_create(tsk);
	kmap_local_fork(tsk);

#ifdef CONFIG_FAULT_INJECTION
	tsk->fail_nth = 0;
#endif

#ifdef CONFIG_BLK_CGROUP
	tsk->throttle_disk = NULL;
	tsk->use_memdelay = 0;
#endif

#ifdef CONFIG_ARCH_HAS_CPU_PASID
	tsk->pasid_activated = 0;
#endif

#ifdef CONFIG_MEMCG
	tsk->active_memcg = NULL;
#endif

#ifdef CONFIG_CPU_SUP_INTEL
	tsk->reported_split_lock = 0;
#endif

#ifdef CONFIG_SCHED_MM_CID
	tsk->mm_cid = -1;
	tsk->last_mm_cid = -1;
	tsk->mm_cid_active = 0;
	tsk->migrate_from_cpu = -1;
#endif
	return tsk;

free_stack:
	exit_task_stack_account(tsk);
	free_thread_stack(tsk);
free_tsk:
	free_task_struct(tsk);
	return NULL;
}

__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);

static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;

static int __init coredump_filter_setup(char *s)
{
	default_dump_filter =
		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
		MMF_DUMP_FILTER_MASK;
	return 1;
}

__setup("coredump_filter=", coredump_filter_setup);

#include <linux/init_task.h>

static void mm_init_aio(struct mm_struct *mm)
{
#ifdef CONFIG_AIO
	spin_lock_init(&mm->ioctx_lock);
	mm->ioctx_table = NULL;
#endif
}

static __always_inline void mm_clear_owner(struct mm_struct *mm,
					   struct task_struct *p)
{
#ifdef CONFIG_MEMCG
	if (mm->owner == p)
		WRITE_ONCE(mm->owner, NULL);
#endif
}

static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
#ifdef CONFIG_MEMCG
	mm->owner = p;
#endif
}

static void mm_init_uprobes_state(struct mm_struct *mm)
{
#ifdef CONFIG_UPROBES
	mm->uprobes_state.xol_area = NULL;
#endif
}

static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
	struct user_namespace *user_ns)
{
	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
	atomic_set(&mm->mm_users, 1);
	atomic_set(&mm->mm_count, 1);
	seqcount_init(&mm->write_protect_seq);
	mmap_init_lock(mm);
	INIT_LIST_HEAD(&mm->mmlist);
#ifdef CONFIG_PER_VMA_LOCK
	mm->mm_lock_seq = 0;
#endif
	mm_pgtables_bytes_init(mm);
	mm->map_count = 0;
	mm->locked_vm = 0;
	atomic64_set(&mm->pinned_vm, 0);
	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
	spin_lock_init(&mm->page_table_lock);
	spin_lock_init(&mm->arg_lock);
	mm_init_cpumask(mm);
	mm_init_aio(mm);
	mm_init_owner(mm, p);
	mm_pasid_init(mm);
	RCU_INIT_POINTER(mm->exe_file, NULL);
	mmu_notifier_subscriptions_init(mm);
	init_tlb_flush_pending(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
	mm->pmd_huge_pte = NULL;
#endif
	mm_init_uprobes_state(mm);
	hugetlb_count_init(mm);

	if (current->mm) {
		mm->flags = mmf_init_flags(current->mm->flags);
		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
	} else {
		mm->flags = default_dump_filter;
		mm->def_flags = 0;
	}

	if (mm_alloc_pgd(mm))
		goto fail_nopgd;

	if (init_new_context(p, mm))
		goto fail_nocontext;

	if (mm_alloc_cid(mm))
		goto fail_cid;

	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
				     NR_MM_COUNTERS))
		goto fail_pcpu;

	mm->user_ns = get_user_ns(user_ns);
	lru_gen_init_mm(mm);
	return mm;

fail_pcpu:
	mm_destroy_cid(mm);
fail_cid:
	destroy_context(mm);
fail_nocontext:
	mm_free_pgd(mm);
fail_nopgd:
	free_mm(mm);
	return NULL;
}

/*
 * Allocate and initialize an mm_struct.
 */
struct mm_struct *mm_alloc(void)
{
	struct mm_struct *mm;

	mm = allocate_mm();
	if (!mm)
		return NULL;

	memset(mm, 0, sizeof(*mm));
	return mm_init(mm, current, current_user_ns());
}
EXPORT_SYMBOL_IF_KUNIT(mm_alloc);

static inline void __mmput(struct mm_struct *mm)
{
	VM_BUG_ON(atomic_read(&mm->mm_users));

	uprobe_clear_state(mm);
	exit_aio(mm);
	ksm_exit(mm);
	khugepaged_exit(mm); /* must run before exit_mmap */
	exit_mmap(mm);
	mm_put_huge_zero_folio(mm);
	set_mm_exe_file(mm, NULL);
	if (!list_empty(&mm->mmlist)) {
		spin_lock(&mmlist_lock);
		list_del(&mm->mmlist);
		spin_unlock(&mmlist_lock);
	}
	if (mm->binfmt)
		module_put(mm->binfmt->module);
	lru_gen_del_mm(mm);
	mmdrop(mm);
}

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
	might_sleep();

	if (atomic_dec_and_test(&mm->mm_users))
		__mmput(mm);
}
EXPORT_SYMBOL_GPL(mmput);

#ifdef CONFIG_MMU
static void mmput_async_fn(struct work_struct *work)
{
	struct mm_struct *mm = container_of(work, struct mm_struct,
					    async_put_work);

	__mmput(mm);
}

void mmput_async(struct mm_struct *mm)
{
	if (atomic_dec_and_test(&mm->mm_users)) {
		INIT_WORK(&mm->async_put_work, mmput_async_fn);
		schedule_work(&mm->async_put_work);
	}
}
EXPORT_SYMBOL_GPL(mmput_async);
#endif

/**
 * set_mm_exe_file - change a reference to the mm's executable file
 * @mm: The mm to change.
 * @new_exe_file: The new file to use.
 *
 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 *
 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 * invocations: in mmput() nobody alive left, in execve it happens before
 * the new mm is made visible to anyone.
 *
 * Can only fail if new_exe_file != NULL.
 */
int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
{
	struct file *old_exe_file;

	/*
	 * It is safe to dereference the exe_file without RCU as
	 * this function is only called if nobody else can access
	 * this mm -- see comment above for justification.
	 */
	old_exe_file = rcu_dereference_raw(mm->exe_file);

	if (new_exe_file)
		get_file(new_exe_file);
	rcu_assign_pointer(mm->exe_file, new_exe_file);
	if (old_exe_file)
		fput(old_exe_file);
	return 0;
}

/**
 * replace_mm_exe_file - replace a reference to the mm's executable file
 * @mm: The mm to change.
 * @new_exe_file: The new file to use.
 *
 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 *
 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
 */
int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
{
	struct vm_area_struct *vma;
	struct file *old_exe_file;
	int ret = 0;

	/* Forbid mm->exe_file change if old file still mapped. */
	old_exe_file = get_mm_exe_file(mm);
	if (old_exe_file) {
		VMA_ITERATOR(vmi, mm, 0);
		mmap_read_lock(mm);
		for_each_vma(vmi, vma) {
			if (!vma->vm_file)
				continue;
			if (path_equal(&vma->vm_file->f_path,
				       &old_exe_file->f_path)) {
				ret = -EBUSY;
				break;
			}
		}
		mmap_read_unlock(mm);
		fput(old_exe_file);
		if (ret)
			return ret;
	}

	get_file(new_exe_file);

	/* set the new file */
	mmap_write_lock(mm);
	old_exe_file = rcu_dereference_raw(mm->exe_file);
	rcu_assign_pointer(mm->exe_file, new_exe_file);
	mmap_write_unlock(mm);

	if (old_exe_file)
		fput(old_exe_file);
	return 0;
}

/**
 * get_mm_exe_file - acquire a reference to the mm's executable file
 * @mm: The mm of interest.
 *
 * Returns %NULL if mm has no associated executable file.
 * User must release file via fput().
 */
struct file *get_mm_exe_file(struct mm_struct *mm)
{
	struct file *exe_file;

	rcu_read_lock();
	exe_file = get_file_rcu(&mm->exe_file);
	rcu_read_unlock();
	return exe_file;
}

/**
 * get_task_exe_file - acquire a reference to the task's executable file
 * @task: The task.
 *
 * Returns %NULL if task's mm (if any) has no associated executable file or
 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 * User must release file via fput().
 */
struct file *get_task_exe_file(struct task_struct *task)
{
	struct file *exe_file = NULL;
	struct mm_struct *mm;

	task_lock(task);
	mm = task->mm;
	if (mm) {
		if (!(task->flags & PF_KTHREAD))
			exe_file = get_mm_exe_file(mm);
	}
	task_unlock(task);
	return exe_file;
}

/**
 * get_task_mm - acquire a reference to the task's mm
 * @task: The task.
 *
 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 * this kernel workthread has transiently adopted a user mm with use_mm,
 * to do its AIO) is not set and if so returns a reference to it, after
 * bumping up the use count.  User must release the mm via mmput()
 * after use.  Typically used by /proc and ptrace.
 */
struct mm_struct *get_task_mm(struct task_struct *task)
{
	struct mm_struct *mm;

	if (task->flags & PF_KTHREAD)
		return NULL;

	task_lock(task);
	mm = task->mm;
	if (mm)
		mmget(mm);
	task_unlock(task);
	return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);

struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
{
	struct mm_struct *mm;
	int err;

	err =  down_read_killable(&task->signal->exec_update_lock);
	if (err)
		return ERR_PTR(err);

	mm = get_task_mm(task);
	if (mm && mm != current->mm &&
			!ptrace_may_access(task, mode)) {
		mmput(mm);
		mm = ERR_PTR(-EACCES);
	}
	up_read(&task->signal->exec_update_lock);

	return mm;
}

static void complete_vfork_done(struct task_struct *tsk)
{
	struct completion *vfork;

	task_lock(tsk);
	vfork = tsk->vfork_done;
	if (likely(vfork)) {
		tsk->vfork_done = NULL;
		complete(vfork);
	}
	task_unlock(tsk);
}

static int wait_for_vfork_done(struct task_struct *child,
				struct completion *vfork)
{
	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
	int killed;

	cgroup_enter_frozen();
	killed = wait_for_completion_state(vfork, state);
	cgroup_leave_frozen(false);

	if (killed) {
		task_lock(child);
		child->vfork_done = NULL;
		task_unlock(child);
	}

	put_task_struct(child);
	return killed;
}

/* Please note the differences between mmput and mm_release.
 * mmput is called whenever we stop holding onto a mm_struct,
 * error success whatever.
 *
 * mm_release is called after a mm_struct has been removed
 * from the current process.
 *
 * This difference is important for error handling, when we
 * only half set up a mm_struct for a new process and need to restore
 * the old one.  Because we mmput the new mm_struct before
 * restoring the old one. . .
 * Eric Biederman 10 January 1998
 */
static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	uprobe_free_utask(tsk);

	/* Get rid of any cached register state */
	deactivate_mm(tsk, mm);

	/*
	 * Signal userspace if we're not exiting with a core dump
	 * because we want to leave the value intact for debugging
	 * purposes.
	 */
	if (tsk->clear_child_tid) {
		if (atomic_read(&mm->mm_users) > 1) {
			/*
			 * We don't check the error code - if userspace has
			 * not set up a proper pointer then tough luck.
			 */
			put_user(0, tsk->clear_child_tid);
			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
					1, NULL, NULL, 0, 0);
		}
		tsk->clear_child_tid = NULL;
	}

	/*
	 * All done, finally we can wake up parent and return this mm to him.
	 * Also kthread_stop() uses this completion for synchronization.
	 */
	if (tsk->vfork_done)
		complete_vfork_done(tsk);
}

void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	futex_exit_release(tsk);
	mm_release(tsk, mm);
}

void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	futex_exec_release(tsk);
	mm_release(tsk, mm);
}

/**
 * dup_mm() - duplicates an existing mm structure
 * @tsk: the task_struct with which the new mm will be associated.
 * @oldmm: the mm to duplicate.
 *
 * Allocates a new mm structure and duplicates the provided @oldmm structure
 * content into it.
 *
 * Return: the duplicated mm or NULL on failure.
 */
static struct mm_struct *dup_mm(struct task_struct *tsk,
				struct mm_struct *oldmm)
{
	struct mm_struct *mm;
	int err;

	mm = allocate_mm();
	if (!mm)
		goto fail_nomem;

	memcpy(mm, oldmm, sizeof(*mm));

	if (!mm_init(mm, tsk, mm->user_ns))
		goto fail_nomem;

	err = dup_mmap(mm, oldmm);
	if (err)
		goto free_pt;

	mm->hiwater_rss = get_mm_rss(mm);
	mm->hiwater_vm = mm->total_vm;

	if (mm->binfmt && !try_module_get(mm->binfmt->module))
		goto free_pt;

	return mm;

free_pt:
	/* don't put binfmt in mmput, we haven't got module yet */
	mm->binfmt = NULL;
	mm_init_owner(mm, NULL);
	mmput(mm);

fail_nomem:
	return NULL;
}

static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
{
	struct mm_struct *mm, *oldmm;

	tsk->min_flt = tsk->maj_flt = 0;
	tsk->nvcsw = tsk->nivcsw = 0;
#ifdef CONFIG_DETECT_HUNG_TASK
	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
	tsk->last_switch_time = 0;
#endif

	tsk->mm = NULL;
	tsk->active_mm = NULL;

	/*
	 * Are we cloning a kernel thread?
	 *
	 * We need to steal a active VM for that..
	 */
	oldmm = current->mm;
	if (!oldmm)
		return 0;

	if (clone_flags & CLONE_VM) {
		mmget(oldmm);
		mm = oldmm;
	} else {
		mm = dup_mm(tsk, current->mm);
		if (!mm)
			return -ENOMEM;
	}

	tsk->mm = mm;
	tsk->active_mm = mm;
	sched_mm_cid_fork(tsk);
	return 0;
}

static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
{
	struct fs_struct *fs = current->fs;
	if (clone_flags & CLONE_FS) {
		/* tsk->fs is already what we want */
		spin_lock(&fs->lock);
		/* "users" and "in_exec" locked for check_unsafe_exec() */
		if (fs->in_exec) {
			spin_unlock(&fs->lock);
			return -EAGAIN;
		}
		fs->users++;
		spin_unlock(&fs->lock);
		return 0;
	}
	tsk->fs = copy_fs_struct(fs);
	if (!tsk->fs)
		return -ENOMEM;
	return 0;
}

static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
		      int no_files)
{
	struct files_struct *oldf, *newf;

	/*
	 * A background process may not have any files ...
	 */
	oldf = current->files;
	if (!oldf)
		return 0;

	if (no_files) {
		tsk->files = NULL;
		return 0;
	}

	if (clone_flags & CLONE_FILES) {
		atomic_inc(&oldf->count);
		return 0;
	}

	newf = dup_fd(oldf, NULL);
	if (IS_ERR(newf))
		return PTR_ERR(newf);

	tsk->files = newf;
	return 0;
}

static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
{
	struct sighand_struct *sig;

	if (clone_flags & CLONE_SIGHAND) {
		refcount_inc(&current->sighand->count);
		return 0;
	}
	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
	RCU_INIT_POINTER(tsk->sighand, sig);
	if (!sig)
		return -ENOMEM;

	refcount_set(&sig->count, 1);
	spin_lock_irq(&current->sighand->siglock);
	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
	spin_unlock_irq(&current->sighand->siglock);

	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
	if (clone_flags & CLONE_CLEAR_SIGHAND)
		flush_signal_handlers(tsk, 0);

	return 0;
}

void __cleanup_sighand(struct sighand_struct *sighand)
{
	if (refcount_dec_and_test(&sighand->count)) {
		signalfd_cleanup(sighand);
		/*
		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
		 * without an RCU grace period, see __lock_task_sighand().
		 */
		kmem_cache_free(sighand_cachep, sighand);
	}
}

/*
 * Initialize POSIX timer handling for a thread group.
 */
static void posix_cpu_timers_init_group(struct signal_struct *sig)
{
	struct posix_cputimers *pct = &sig->posix_cputimers;
	unsigned long cpu_limit;

	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
	posix_cputimers_group_init(pct, cpu_limit);
}

static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{
	struct signal_struct *sig;

	if (clone_flags & CLONE_THREAD)
		return 0;

	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
	tsk->signal = sig;
	if (!sig)
		return -ENOMEM;

	sig->nr_threads = 1;
	sig->quick_threads = 1;
	atomic_set(&sig->live, 1);
	refcount_set(&sig->sigcnt, 1);

	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);

	init_waitqueue_head(&sig->wait_chldexit);
	sig->curr_target = tsk;
	init_sigpending(&sig->shared_pending);
	INIT_HLIST_HEAD(&sig->multiprocess);
	seqlock_init(&sig->stats_lock);
	prev_cputime_init(&sig->prev_cputime);

#ifdef CONFIG_POSIX_TIMERS
	INIT_HLIST_HEAD(&sig->posix_timers);
	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	sig->real_timer.function = it_real_fn;
#endif

	task_lock(current->group_leader);
	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
	task_unlock(current->group_leader);

	posix_cpu_timers_init_group(sig);

	tty_audit_fork(sig);
	sched_autogroup_fork(sig);

	sig->oom_score_adj = current->signal->oom_score_adj;
	sig->oom_score_adj_min = current->signal->oom_score_adj_min;

	mutex_init(&sig->cred_guard_mutex);
	init_rwsem(&sig->exec_update_lock);

	return 0;
}

static void copy_seccomp(struct task_struct *p)
{
#ifdef CONFIG_SECCOMP
	/*
	 * Must be called with sighand->lock held, which is common to
	 * all threads in the group. Holding cred_guard_mutex is not
	 * needed because this new task is not yet running and cannot
	 * be racing exec.
	 */
	assert_spin_locked(&current->sighand->siglock);

	/* Ref-count the new filter user, and assign it. */
	get_seccomp_filter(current);
	p->seccomp = current->seccomp;

	/*
	 * Explicitly enable no_new_privs here in case it got set
	 * between the task_struct being duplicated and holding the
	 * sighand lock. The seccomp state and nnp must be in sync.
	 */
	if (task_no_new_privs(current))
		task_set_no_new_privs(p);

	/*
	 * If the parent gained a seccomp mode after copying thread
	 * flags and between before we held the sighand lock, we have
	 * to manually enable the seccomp thread flag here.
	 */
	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
		set_task_syscall_work(p, SECCOMP);
#endif
}

SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
{
	current->clear_child_tid = tidptr;

	return task_pid_vnr(current);
}

static void rt_mutex_init_task(struct task_struct *p)
{
	raw_spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
	p->pi_waiters = RB_ROOT_CACHED;
	p->pi_top_task = NULL;
	p->pi_blocked_on = NULL;
#endif
}

static inline void init_task_pid_links(struct task_struct *task)
{
	enum pid_type type;

	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
		INIT_HLIST_NODE(&task->pid_links[type]);
}

static inline void
init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
{
	if (type == PIDTYPE_PID)
		task->thread_pid = pid;
	else
		task->signal->pids[type] = pid;
}

static inline void rcu_copy_process(struct task_struct *p)
{
#ifdef CONFIG_PREEMPT_RCU
	p->rcu_read_lock_nesting = 0;
	p->rcu_read_unlock_special.s = 0;
	p->rcu_blocked_node = NULL;
	INIT_LIST_HEAD(&p->rcu_node_entry);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
	p->rcu_tasks_holdout = false;
	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
	p->rcu_tasks_idle_cpu = -1;
	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
	p->trc_reader_nesting = 0;
	p->trc_reader_special.s = 0;
	INIT_LIST_HEAD(&p->trc_holdout_list);
	INIT_LIST_HEAD(&p->trc_blkd_node);
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}

/**
 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
 * @pid:   the struct pid for which to create a pidfd
 * @flags: flags of the new @pidfd
 * @ret: Where to return the file for the pidfd.
 *
 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
 * caller's file descriptor table. The pidfd is reserved but not installed yet.
 *
 * The helper doesn't perform checks on @pid which makes it useful for pidfds
 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
 * pidfd file are prepared.
 *
 * If this function returns successfully the caller is responsible to either
 * call fd_install() passing the returned pidfd and pidfd file as arguments in
 * order to install the pidfd into its file descriptor table or they must use
 * put_unused_fd() and fput() on the returned pidfd and pidfd file
 * respectively.
 *
 * This function is useful when a pidfd must already be reserved but there
 * might still be points of failure afterwards and the caller wants to ensure
 * that no pidfd is leaked into its file descriptor table.
 *
 * Return: On success, a reserved pidfd is returned from the function and a new
 *         pidfd file is returned in the last argument to the function. On
 *         error, a negative error code is returned from the function and the
 *         last argument remains unchanged.
 */
static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
{
	int pidfd;
	struct file *pidfd_file;

	pidfd = get_unused_fd_flags(O_CLOEXEC);
	if (pidfd < 0)
		return pidfd;

	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
	if (IS_ERR(pidfd_file)) {
		put_unused_fd(pidfd);
		return PTR_ERR(pidfd_file);
	}
	/*
	 * anon_inode_getfile() ignores everything outside of the
	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
	 */
	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
	*ret = pidfd_file;
	return pidfd;
}

/**
 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
 * @pid:   the struct pid for which to create a pidfd
 * @flags: flags of the new @pidfd
 * @ret: Where to return the pidfd.
 *
 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
 * caller's file descriptor table. The pidfd is reserved but not installed yet.
 *
 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
 * task identified by @pid must be a thread-group leader.
 *
 * If this function returns successfully the caller is responsible to either
 * call fd_install() passing the returned pidfd and pidfd file as arguments in
 * order to install the pidfd into its file descriptor table or they must use
 * put_unused_fd() and fput() on the returned pidfd and pidfd file
 * respectively.
 *
 * This function is useful when a pidfd must already be reserved but there
 * might still be points of failure afterwards and the caller wants to ensure
 * that no pidfd is leaked into its file descriptor table.
 *
 * Return: On success, a reserved pidfd is returned from the function and a new
 *         pidfd file is returned in the last argument to the function. On
 *         error, a negative error code is returned from the function and the
 *         last argument remains unchanged.
 */
int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
{
	bool thread = flags & PIDFD_THREAD;

	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
		return -EINVAL;

	return __pidfd_prepare(pid, flags, ret);
}

static void __delayed_free_task(struct rcu_head *rhp)
{
	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);

	free_task(tsk);
}

static __always_inline void delayed_free_task(struct task_struct *tsk)
{
	if (IS_ENABLED(CONFIG_MEMCG))
		call_rcu(&tsk->rcu, __delayed_free_task);
	else
		free_task(tsk);
}

static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
{
	/* Skip if kernel thread */
	if (!tsk->mm)
		return;

	/* Skip if spawning a thread or using vfork */
	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
		return;

	/* We need to synchronize with __set_oom_adj */
	mutex_lock(&oom_adj_mutex);
	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
	/* Update the values in case they were changed after copy_signal */
	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
	mutex_unlock(&oom_adj_mutex);
}

#ifdef CONFIG_RV
static void rv_task_fork(struct task_struct *p)
{
	int i;

	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
		p->rv[i].da_mon.monitoring = false;
}
#else
#define rv_task_fork(p) do {} while (0)
#endif

/*
 * This creates a new process as a copy of the old one,
 * but does not actually start it yet.
 *
 * It copies the registers, and all the appropriate
 * parts of the process environment (as per the clone
 * flags). The actual kick-off is left to the caller.
 */
__latent_entropy struct task_struct *copy_process(
					struct pid *pid,
					int trace,
					int node,
					struct kernel_clone_args *args)
{
	int pidfd = -1, retval;
	struct task_struct *p;
	struct multiprocess_signals delayed;
	struct file *pidfile = NULL;
	const u64 clone_flags = args->flags;
	struct nsproxy *nsp = current->nsproxy;

	/*
	 * Don't allow sharing the root directory with processes in a different
	 * namespace
	 */
	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
		return ERR_PTR(-EINVAL);

	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
		return ERR_PTR(-EINVAL);

	/*
	 * Thread groups must share signals as well, and detached threads
	 * can only be started up within the thread group.
	 */
	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
		return ERR_PTR(-EINVAL);

	/*
	 * Shared signal handlers imply shared VM. By way of the above,
	 * thread groups also imply shared VM. Blocking this case allows
	 * for various simplifications in other code.
	 */
	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
		return ERR_PTR(-EINVAL);

	/*
	 * Siblings of global init remain as zombies on exit since they are
	 * not reaped by their parent (swapper). To solve this and to avoid
	 * multi-rooted process trees, prevent global and container-inits
	 * from creating siblings.
	 */
	if ((clone_flags & CLONE_PARENT) &&
				current->signal->flags & SIGNAL_UNKILLABLE)
		return ERR_PTR(-EINVAL);

	/*
	 * If the new process will be in a different pid or user namespace
	 * do not allow it to share a thread group with the forking task.
	 */
	if (clone_flags & CLONE_THREAD) {
		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
			return ERR_PTR(-EINVAL);
	}

	if (clone_flags & CLONE_PIDFD) {
		/*
		 * - CLONE_DETACHED is blocked so that we can potentially
		 *   reuse it later for CLONE_PIDFD.
		 */
		if (clone_flags & CLONE_DETACHED)
			return ERR_PTR(-EINVAL);
	}

	/*
	 * Force any signals received before this point to be delivered
	 * before the fork happens.  Collect up signals sent to multiple
	 * processes that happen during the fork and delay them so that
	 * they appear to happen after the fork.
	 */
	sigemptyset(&delayed.signal);
	INIT_HLIST_NODE(&delayed.node);

	spin_lock_irq(&current->sighand->siglock);
	if (!(clone_flags & CLONE_THREAD))
		hlist_add_head(&delayed.node, &current->signal->multiprocess);
	recalc_sigpending();
	spin_unlock_irq(&current->sighand->siglock);
	retval = -ERESTARTNOINTR;
	if (task_sigpending(current))
		goto fork_out;

	retval = -ENOMEM;
	p = dup_task_struct(current, node);
	if (!p)
		goto fork_out;
	p->flags &= ~PF_KTHREAD;
	if (args->kthread)
		p->flags |= PF_KTHREAD;
	if (args->user_worker) {
		/*
		 * Mark us a user worker, and block any signal that isn't
		 * fatal or STOP
		 */
		p->flags |= PF_USER_WORKER;
		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
	}
	if (args->io_thread)
		p->flags |= PF_IO_WORKER;

	if (args->name)
		strscpy_pad(p->comm, args->name, sizeof(p->comm));

	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
	/*
	 * Clear TID on mm_release()?
	 */
	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;

	ftrace_graph_init_task(p);

	rt_mutex_init_task(p);

	lockdep_assert_irqs_enabled();
#ifdef CONFIG_PROVE_LOCKING
	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
	retval = copy_creds(p, clone_flags);
	if (retval < 0)
		goto bad_fork_free;

	retval = -EAGAIN;
	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
		if (p->real_cred->user != INIT_USER &&
		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
			goto bad_fork_cleanup_count;
	}
	current->flags &= ~PF_NPROC_EXCEEDED;

	/*
	 * If multiple threads are within copy_process(), then this check
	 * triggers too late. This doesn't hurt, the check is only there
	 * to stop root fork bombs.
	 */
	retval = -EAGAIN;
	if (data_race(nr_threads >= max_threads))
		goto bad_fork_cleanup_count;

	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
	p->flags |= PF_FORKNOEXEC;
	INIT_LIST_HEAD(&p->children);
	INIT_LIST_HEAD(&p->sibling);
	rcu_copy_process(p);
	p->vfork_done = NULL;
	spin_lock_init(&p->alloc_lock);

	init_sigpending(&p->pending);

	p->utime = p->stime = p->gtime = 0;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
	p->utimescaled = p->stimescaled = 0;
#endif
	prev_cputime_init(&p->prev_cputime);

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	seqcount_init(&p->vtime.seqcount);
	p->vtime.starttime = 0;
	p->vtime.state = VTIME_INACTIVE;
#endif

#ifdef CONFIG_IO_URING
	p->io_uring = NULL;
#endif

	p->default_timer_slack_ns = current->timer_slack_ns;

#ifdef CONFIG_PSI
	p->psi_flags = 0;
#endif

	task_io_accounting_init(&p->ioac);
	acct_clear_integrals(p);

	posix_cputimers_init(&p->posix_cputimers);

	p->io_context = NULL;
	audit_set_context(p, NULL);
	cgroup_fork(p);
	if (args->kthread) {
		if (!set_kthread_struct(p))
			goto bad_fork_cleanup_delayacct;
	}
#ifdef CONFIG_NUMA
	p->mempolicy = mpol_dup(p->mempolicy);
	if (IS_ERR(p->mempolicy)) {
		retval = PTR_ERR(p->mempolicy);
		p->mempolicy = NULL;
		goto bad_fork_cleanup_delayacct;
	}
#endif
#ifdef CONFIG_CPUSETS
	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
	p->softirqs_enabled		= 1;
	p->softirq_context		= 0;
#endif

	p->pagefault_disabled = 0;

#ifdef CONFIG_LOCKDEP
	lockdep_init_task(p);
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	p->blocked_on = NULL; /* not blocked yet */
#endif
#ifdef CONFIG_BCACHE
	p->sequential_io	= 0;
	p->sequential_io_avg	= 0;
#endif
#ifdef CONFIG_BPF_SYSCALL
	RCU_INIT_POINTER(p->bpf_storage, NULL);
	p->bpf_ctx = NULL;
#endif

	/* Perform scheduler related setup. Assign this task to a CPU. */
	retval = sched_fork(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_policy;

	retval = perf_event_init_task(p, clone_flags);
	if (retval)
		goto bad_fork_sched_cancel_fork;
	retval = audit_alloc(p);
	if (retval)
		goto bad_fork_cleanup_perf;
	/* copy all the process information */
	shm_init_task(p);
	retval = security_task_alloc(p, clone_flags);
	if (retval)
		goto bad_fork_cleanup_audit;
	retval = copy_semundo(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_security;
	retval = copy_files(clone_flags, p, args->no_files);
	if (retval)
		goto bad_fork_cleanup_semundo;
	retval = copy_fs(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_files;
	retval = copy_sighand(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_fs;
	retval = copy_signal(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_sighand;
	retval = copy_mm(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_signal;
	retval = copy_namespaces(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_mm;
	retval = copy_io(clone_flags, p);
	if (retval)
		goto bad_fork_cleanup_namespaces;
	retval = copy_thread(p, args);
	if (retval)
		goto bad_fork_cleanup_io;

	stackleak_task_init(p);

	if (pid != &init_struct_pid) {
		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
				args->set_tid_size);
		if (IS_ERR(pid)) {
			retval = PTR_ERR(pid);
			goto bad_fork_cleanup_thread;
		}
	}

	/*
	 * This has to happen after we've potentially unshared the file
	 * descriptor table (so that the pidfd doesn't leak into the child
	 * if the fd table isn't shared).
	 */
	if (clone_flags & CLONE_PIDFD) {
		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;

		/* Note that no task has been attached to @pid yet. */
		retval = __pidfd_prepare(pid, flags, &pidfile);
		if (retval < 0)
			goto bad_fork_free_pid;
		pidfd = retval;

		retval = put_user(pidfd, args->pidfd);
		if (retval)
			goto bad_fork_put_pidfd;
	}

#ifdef CONFIG_BLOCK
	p->plug = NULL;
#endif
	futex_init_task(p);

	/*
	 * sigaltstack should be cleared when sharing the same VM
	 */
	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
		sas_ss_reset(p);

	/*
	 * Syscall tracing and stepping should be turned off in the
	 * child regardless of CLONE_PTRACE.
	 */
	user_disable_single_step(p);
	clear_task_syscall_work(p, SYSCALL_TRACE);
#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
	clear_task_syscall_work(p, SYSCALL_EMU);
#endif
	clear_tsk_latency_tracing(p);

	/* ok, now we should be set up.. */
	p->pid = pid_nr(pid);
	if (clone_flags & CLONE_THREAD) {
		p->group_leader = current->group_leader;
		p->tgid = current->tgid;
	} else {
		p->group_leader = p;
		p->tgid = p->pid;
	}

	p->nr_dirtied = 0;
	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
	p->dirty_paused_when = 0;

	p->pdeath_signal = 0;
	p->task_works = NULL;
	clear_posix_cputimers_work(p);

#ifdef CONFIG_KRETPROBES
	p->kretprobe_instances.first = NULL;
#endif
#ifdef CONFIG_RETHOOK
	p->rethooks.first = NULL;
#endif

	/*
	 * Ensure that the cgroup subsystem policies allow the new process to be
	 * forked. It should be noted that the new process's css_set can be changed
	 * between here and cgroup_post_fork() if an organisation operation is in
	 * progress.
	 */
	retval = cgroup_can_fork(p, args);
	if (retval)
		goto bad_fork_put_pidfd;

	/*
	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
	 * the new task on the correct runqueue. All this *before* the task
	 * becomes visible.
	 *
	 * This isn't part of ->can_fork() because while the re-cloning is
	 * cgroup specific, it unconditionally needs to place the task on a
	 * runqueue.
	 */
	retval = sched_cgroup_fork(p, args);
	if (retval)
		goto bad_fork_cancel_cgroup;

	/*
	 * From this point on we must avoid any synchronous user-space
	 * communication until we take the tasklist-lock. In particular, we do
	 * not want user-space to be able to predict the process start-time by
	 * stalling fork(2) after we recorded the start_time but before it is
	 * visible to the system.
	 */

	p->start_time = ktime_get_ns();
	p->start_boottime = ktime_get_boottime_ns();

	/*
	 * Make it visible to the rest of the system, but dont wake it up yet.
	 * Need tasklist lock for parent etc handling!
	 */
	write_lock_irq(&tasklist_lock);

	/* CLONE_PARENT re-uses the old parent */
	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
		p->real_parent = current->real_parent;
		p->parent_exec_id = current->parent_exec_id;
		if (clone_flags & CLONE_THREAD)
			p->exit_signal = -1;
		else
			p->exit_signal = current->group_leader->exit_signal;
	} else {
		p->real_parent = current;
		p->parent_exec_id = current->self_exec_id;
		p->exit_signal = args->exit_signal;
	}

	klp_copy_process(p);

	sched_core_fork(p);

	spin_lock(&current->sighand->siglock);

	rv_task_fork(p);

	rseq_fork(p, clone_flags);

	/* Don't start children in a dying pid namespace */
	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
		retval = -ENOMEM;
		goto bad_fork_core_free;
	}

	/* Let kill terminate clone/fork in the middle */
	if (fatal_signal_pending(current)) {
		retval = -EINTR;
		goto bad_fork_core_free;
	}

	/* No more failure paths after this point. */

	/*
	 * Copy seccomp details explicitly here, in case they were changed
	 * before holding sighand lock.
	 */
	copy_seccomp(p);

	init_task_pid_links(p);
	if (likely(p->pid)) {
		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);

		init_task_pid(p, PIDTYPE_PID, pid);
		if (thread_group_leader(p)) {
			init_task_pid(p, PIDTYPE_TGID, pid);
			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
			init_task_pid(p, PIDTYPE_SID, task_session(current));

			if (is_child_reaper(pid)) {
				ns_of_pid(pid)->child_reaper = p;
				p->signal->flags |= SIGNAL_UNKILLABLE;
			}
			p->signal->shared_pending.signal = delayed.signal;
			p->signal->tty = tty_kref_get(current->signal->tty);
			/*
			 * Inherit has_child_subreaper flag under the same
			 * tasklist_lock with adding child to the process tree
			 * for propagate_has_child_subreaper optimization.
			 */
			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
							 p->real_parent->signal->is_child_subreaper;
			list_add_tail(&p->sibling, &p->real_parent->children);
			list_add_tail_rcu(&p->tasks, &init_task.tasks);
			attach_pid(p, PIDTYPE_TGID);
			attach_pid(p, PIDTYPE_PGID);
			attach_pid(p, PIDTYPE_SID);
			__this_cpu_inc(process_counts);
		} else {
			current->signal->nr_threads++;
			current->signal->quick_threads++;
			atomic_inc(&current->signal->live);
			refcount_inc(&current->signal->sigcnt);
			task_join_group_stop(p);
			list_add_tail_rcu(&p->thread_node,
					  &p->signal->thread_head);
		}
		attach_pid(p, PIDTYPE_PID);
		nr_threads++;
	}
	total_forks++;
	hlist_del_init(&delayed.node);
	spin_unlock(&current->sighand->siglock);
	syscall_tracepoint_update(p);
	write_unlock_irq(&tasklist_lock);

	if (pidfile)
		fd_install(pidfd, pidfile);

	proc_fork_connector(p);
	sched_post_fork(p);
	cgroup_post_fork(p, args);
	perf_event_fork(p);

	trace_task_newtask(p, clone_flags);
	uprobe_copy_process(p, clone_flags);
	user_events_fork(p, clone_flags);

	copy_oom_score_adj(clone_flags, p);

	return p;

bad_fork_core_free:
	sched_core_free(p);
	spin_unlock(&current->sighand->siglock);
	write_unlock_irq(&tasklist_lock);
bad_fork_cancel_cgroup:
	cgroup_cancel_fork(p, args);
bad_fork_put_pidfd:
	if (clone_flags & CLONE_PIDFD) {
		fput(pidfile);
		put_unused_fd(pidfd);
	}
bad_fork_free_pid:
	if (pid != &init_struct_pid)
		free_pid(pid);
bad_fork_cleanup_thread:
	exit_thread(p);
bad_fork_cleanup_io:
	if (p->io_context)
		exit_io_context(p);
bad_fork_cleanup_namespaces:
	exit_task_namespaces(p);
bad_fork_cleanup_mm:
	if (p->mm) {
		mm_clear_owner(p->mm, p);
		mmput(p->mm);
	}
bad_fork_cleanup_signal:
	if (!(clone_flags & CLONE_THREAD))
		free_signal_struct(p->signal);
bad_fork_cleanup_sighand:
	__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
	exit_fs(p); /* blocking */
bad_fork_cleanup_files:
	exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
	exit_sem(p);
bad_fork_cleanup_security:
	security_task_free(p);
bad_fork_cleanup_audit:
	audit_free(p);
bad_fork_cleanup_perf:
	perf_event_free_task(p);
bad_fork_sched_cancel_fork:
	sched_cancel_fork(p);
bad_fork_cleanup_policy:
	lockdep_free_task(p);
#ifdef CONFIG_NUMA
	mpol_put(p->mempolicy);
#endif
bad_fork_cleanup_delayacct:
	delayacct_tsk_free(p);
bad_fork_cleanup_count:
	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
	exit_creds(p);
bad_fork_free:
	WRITE_ONCE(p->__state, TASK_DEAD);
	exit_task_stack_account(p);
	put_task_stack(p);
	delayed_free_task(p);
fork_out:
	spin_lock_irq(&current->sighand->siglock);
	hlist_del_init(&delayed.node);
	spin_unlock_irq(&current->sighand->siglock);
	return ERR_PTR(retval);
}

static inline void init_idle_pids(struct task_struct *idle)
{
	enum pid_type type;

	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
		init_task_pid(idle, type, &init_struct_pid);
	}
}

static int idle_dummy(void *dummy)
{
	/* This function is never called */
	return 0;
}

struct task_struct * __init fork_idle(int cpu)
{
	struct task_struct *task;
	struct kernel_clone_args args = {
		.flags		= CLONE_VM,
		.fn		= &idle_dummy,
		.fn_arg		= NULL,
		.kthread	= 1,
		.idle		= 1,
	};

	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
	if (!IS_ERR(task)) {
		init_idle_pids(task);
		init_idle(task, cpu);
	}

	return task;
}

/*
 * This is like kernel_clone(), but shaved down and tailored to just
 * creating io_uring workers. It returns a created task, or an error pointer.
 * The returned task is inactive, and the caller must fire it up through
 * wake_up_new_task(p). All signals are blocked in the created task.
 */
struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
{
	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
				CLONE_IO;
	struct kernel_clone_args args = {
		.flags		= ((lower_32_bits(flags) | CLONE_VM |
				    CLONE_UNTRACED) & ~CSIGNAL),
		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
		.fn		= fn,
		.fn_arg		= arg,
		.io_thread	= 1,
		.user_worker	= 1,
	};

	return copy_process(NULL, 0, node, &args);
}

/*
 *  Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 *
 * args->exit_signal is expected to be checked for sanity by the caller.
 */
pid_t kernel_clone(struct kernel_clone_args *args)
{
	u64 clone_flags = args->flags;
	struct completion vfork;
	struct pid *pid;
	struct task_struct *p;
	int trace = 0;
	pid_t nr;

	/*
	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
	 * field in struct clone_args and it still doesn't make sense to have
	 * them both point at the same memory location. Performing this check
	 * here has the advantage that we don't need to have a separate helper
	 * to check for legacy clone().
	 */
	if ((clone_flags & CLONE_PIDFD) &&
	    (clone_flags & CLONE_PARENT_SETTID) &&
	    (args->pidfd == args->parent_tid))
		return -EINVAL;

	/*
	 * Determine whether and which event to report to ptracer.  When
	 * called from kernel_thread or CLONE_UNTRACED is explicitly
	 * requested, no event is reported; otherwise, report if the event
	 * for the type of forking is enabled.
	 */
	if (!(clone_flags & CLONE_UNTRACED)) {
		if (clone_flags & CLONE_VFORK)
			trace = PTRACE_EVENT_VFORK;
		else if (args->exit_signal != SIGCHLD)
			trace = PTRACE_EVENT_CLONE;
		else
			trace = PTRACE_EVENT_FORK;

		if (likely(!ptrace_event_enabled(current, trace)))
			trace = 0;
	}

	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
	add_latent_entropy();

	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * Do this prior waking up the new thread - the thread pointer
	 * might get invalid after that point, if the thread exits quickly.
	 */
	trace_sched_process_fork(current, p);

	pid = get_task_pid(p, PIDTYPE_PID);
	nr = pid_vnr(pid);

	if (clone_flags & CLONE_PARENT_SETTID)
		put_user(nr, args->parent_tid);

	if (clone_flags & CLONE_VFORK) {
		p->vfork_done = &vfork;
		init_completion(&vfork);
		get_task_struct(p);
	}

	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
		/* lock the task to synchronize with memcg migration */
		task_lock(p);
		lru_gen_add_mm(p->mm);
		task_unlock(p);
	}

	wake_up_new_task(p);

	/* forking complete and child started to run, tell ptracer */
	if (unlikely(trace))
		ptrace_event_pid(trace, pid);

	if (clone_flags & CLONE_VFORK) {
		if (!wait_for_vfork_done(p, &vfork))
			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
	}

	put_pid(pid);
	return nr;
}

/*
 * Create a kernel thread.
 */
pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
		    unsigned long flags)
{
	struct kernel_clone_args args = {
		.flags		= ((lower_32_bits(flags) | CLONE_VM |
				    CLONE_UNTRACED) & ~CSIGNAL),
		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
		.fn		= fn,
		.fn_arg		= arg,
		.name		= name,
		.kthread	= 1,
	};

	return kernel_clone(&args);
}

/*
 * Create a user mode thread.
 */
pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
	struct kernel_clone_args args = {
		.flags		= ((lower_32_bits(flags) | CLONE_VM |
				    CLONE_UNTRACED) & ~CSIGNAL),
		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
		.fn		= fn,
		.fn_arg		= arg,
	};

	return kernel_clone(&args);
}

#ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)
{
#ifdef CONFIG_MMU
	struct kernel_clone_args args = {
		.exit_signal = SIGCHLD,
	};

	return kernel_clone(&args);
#else
	/* can not support in nommu mode */
	return -EINVAL;
#endif
}
#endif

#ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)
{
	struct kernel_clone_args args = {
		.flags		= CLONE_VFORK | CLONE_VM,
		.exit_signal	= SIGCHLD,
	};

	return kernel_clone(&args);
}
#endif

#ifdef __ARCH_WANT_SYS_CLONE
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
		 int __user *, parent_tidptr,
		 unsigned long, tls,
		 int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
		 int __user *, parent_tidptr,
		 int __user *, child_tidptr,
		 unsigned long, tls)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
		int, stack_size,
		int __user *, parent_tidptr,
		int __user *, child_tidptr,
		unsigned long, tls)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
		 int __user *, parent_tidptr,
		 int __user *, child_tidptr,
		 unsigned long, tls)
#endif
{
	struct kernel_clone_args args = {
		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
		.pidfd		= parent_tidptr,
		.child_tid	= child_tidptr,
		.parent_tid	= parent_tidptr,
		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
		.stack		= newsp,
		.tls		= tls,
	};

	return kernel_clone(&args);
}
#endif

noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
					      struct clone_args __user *uargs,
					      size_t usize)
{
	int err;
	struct clone_args args;
	pid_t *kset_tid = kargs->set_tid;

	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
		     CLONE_ARGS_SIZE_VER0);
	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
		     CLONE_ARGS_SIZE_VER1);
	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
		     CLONE_ARGS_SIZE_VER2);
	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);

	if (unlikely(usize > PAGE_SIZE))
		return -E2BIG;
	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
		return -EINVAL;

	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
	if (err)
		return err;

	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
		return -EINVAL;

	if (unlikely(!args.set_tid && args.set_tid_size > 0))
		return -EINVAL;

	if (unlikely(args.set_tid && args.set_tid_size == 0))
		return -EINVAL;

	/*
	 * Verify that higher 32bits of exit_signal are unset and that
	 * it is a valid signal
	 */
	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
		     !valid_signal(args.exit_signal)))
		return -EINVAL;

	if ((args.flags & CLONE_INTO_CGROUP) &&
	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
		return -EINVAL;

	*kargs = (struct kernel_clone_args){
		.flags		= args.flags,
		.pidfd		= u64_to_user_ptr(args.pidfd),
		.child_tid	= u64_to_user_ptr(args.child_tid),
		.parent_tid	= u64_to_user_ptr(args.parent_tid),
		.exit_signal	= args.exit_signal,
		.stack		= args.stack,
		.stack_size	= args.stack_size,
		.tls		= args.tls,
		.set_tid_size	= args.set_tid_size,
		.cgroup		= args.cgroup,
	};

	if (args.set_tid &&
		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
			(kargs->set_tid_size * sizeof(pid_t))))
		return -EFAULT;

	kargs->set_tid = kset_tid;

	return 0;
}

/**
 * clone3_stack_valid - check and prepare stack
 * @kargs: kernel clone args
 *
 * Verify that the stack arguments userspace gave us are sane.
 * In addition, set the stack direction for userspace since it's easy for us to
 * determine.
 */
static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
{
	if (kargs->stack == 0) {
		if (kargs->stack_size > 0)
			return false;
	} else {
		if (kargs->stack_size == 0)
			return false;

		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
			return false;

#if !defined(CONFIG_STACK_GROWSUP)
		kargs->stack += kargs->stack_size;
#endif
	}

	return true;
}

static bool clone3_args_valid(struct kernel_clone_args *kargs)
{
	/* Verify that no unknown flags are passed along. */
	if (kargs->flags &
	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
		return false;

	/*
	 * - make the CLONE_DETACHED bit reusable for clone3
	 * - make the CSIGNAL bits reusable for clone3
	 */
	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
		return false;

	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
		return false;

	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
	    kargs->exit_signal)
		return false;

	if (!clone3_stack_valid(kargs))
		return false;

	return true;
}

/**
 * sys_clone3 - create a new process with specific properties
 * @uargs: argument structure
 * @size:  size of @uargs
 *
 * clone3() is the extensible successor to clone()/clone2().
 * It takes a struct as argument that is versioned by its size.
 *
 * Return: On success, a positive PID for the child process.
 *         On error, a negative errno number.
 */
SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
{
	int err;

	struct kernel_clone_args kargs;
	pid_t set_tid[MAX_PID_NS_LEVEL];

#ifdef __ARCH_BROKEN_SYS_CLONE3
#warning clone3() entry point is missing, please fix
	return -ENOSYS;
#endif

	kargs.set_tid = set_tid;

	err = copy_clone_args_from_user(&kargs, uargs, size);
	if (err)
		return err;

	if (!clone3_args_valid(&kargs))
		return -EINVAL;

	return kernel_clone(&kargs);
}

void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
{
	struct task_struct *leader, *parent, *child;
	int res;

	read_lock(&tasklist_lock);
	leader = top = top->group_leader;
down:
	for_each_thread(leader, parent) {
		list_for_each_entry(child, &parent->children, sibling) {
			res = visitor(child, data);
			if (res) {
				if (res < 0)
					goto out;
				leader = child;
				goto down;
			}
up:
			;
		}
	}

	if (leader != top) {
		child = leader;
		parent = child->real_parent;
		leader = parent->group_leader;
		goto up;
	}
out:
	read_unlock(&tasklist_lock);
}

#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif

static void sighand_ctor(void *data)
{
	struct sighand_struct *sighand = data;

	spin_lock_init(&sighand->siglock);
	init_waitqueue_head(&sighand->signalfd_wqh);
}

void __init mm_cache_init(void)
{
	unsigned int mm_size;

	/*
	 * The mm_cpumask is located at the end of mm_struct, and is
	 * dynamically sized based on the maximum CPU number this system
	 * can have, taking hotplug into account (nr_cpu_ids).
	 */
	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();

	mm_cachep = kmem_cache_create_usercopy("mm_struct",
			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			offsetof(struct mm_struct, saved_auxv),
			sizeof_field(struct mm_struct, saved_auxv),
			NULL);
}

void __init proc_caches_init(void)
{
	sighand_cachep = kmem_cache_create("sighand_cache",
			sizeof(struct sighand_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
			SLAB_ACCOUNT, sighand_ctor);
	signal_cachep = kmem_cache_create("signal_cache",
			sizeof(struct signal_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);
	files_cachep = kmem_cache_create("files_cache",
			sizeof(struct files_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);
	fs_cachep = kmem_cache_create("fs_cache",
			sizeof(struct fs_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
			NULL);

	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
#ifdef CONFIG_PER_VMA_LOCK
	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
#endif
	mmap_init();
	nsproxy_cache_init();
}

/*
 * Check constraints on flags passed to the unshare system call.
 */
static int check_unshare_flags(unsigned long unshare_flags)
{
	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
				CLONE_NEWTIME))
		return -EINVAL;
	/*
	 * Not implemented, but pretend it works if there is nothing
	 * to unshare.  Note that unsharing the address space or the
	 * signal handlers also need to unshare the signal queues (aka
	 * CLONE_THREAD).
	 */
	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
		if (!thread_group_empty(current))
			return -EINVAL;
	}
	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
		if (refcount_read(&current->sighand->count) > 1)
			return -EINVAL;
	}
	if (unshare_flags & CLONE_VM) {
		if (!current_is_single_threaded())
			return -EINVAL;
	}

	return 0;
}

/*
 * Unshare the filesystem structure if it is being shared
 */
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
{
	struct fs_struct *fs = current->fs;

	if (!(unshare_flags & CLONE_FS) || !fs)
		return 0;

	/* don't need lock here; in the worst case we'll do useless copy */
	if (fs->users == 1)
		return 0;

	*new_fsp = copy_fs_struct(fs);
	if (!*new_fsp)
		return -ENOMEM;

	return 0;
}

/*
 * Unshare file descriptor table if it is being shared
 */
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
{
	struct files_struct *fd = current->files;

	if ((unshare_flags & CLONE_FILES) &&
	    (fd && atomic_read(&fd->count) > 1)) {
		fd = dup_fd(fd, NULL);
		if (IS_ERR(fd))
			return PTR_ERR(fd);
		*new_fdp = fd;
	}

	return 0;
}

/*
 * unshare allows a process to 'unshare' part of the process
 * context which was originally shared using clone.  copy_*
 * functions used by kernel_clone() cannot be used here directly
 * because they modify an inactive task_struct that is being
 * constructed. Here we are modifying the current, active,
 * task_struct.
 */
int ksys_unshare(unsigned long unshare_flags)
{
	struct fs_struct *fs, *new_fs = NULL;
	struct files_struct *new_fd = NULL;
	struct cred *new_cred = NULL;
	struct nsproxy *new_nsproxy = NULL;
	int do_sysvsem = 0;
	int err;

	/*
	 * If unsharing a user namespace must also unshare the thread group
	 * and unshare the filesystem root and working directories.
	 */
	if (unshare_flags & CLONE_NEWUSER)
		unshare_flags |= CLONE_THREAD | CLONE_FS;
	/*
	 * If unsharing vm, must also unshare signal handlers.
	 */
	if (unshare_flags & CLONE_VM)
		unshare_flags |= CLONE_SIGHAND;
	/*
	 * If unsharing a signal handlers, must also unshare the signal queues.
	 */
	if (unshare_flags & CLONE_SIGHAND)
		unshare_flags |= CLONE_THREAD;
	/*
	 * If unsharing namespace, must also unshare filesystem information.
	 */
	if (unshare_flags & CLONE_NEWNS)
		unshare_flags |= CLONE_FS;

	err = check_unshare_flags(unshare_flags);
	if (err)
		goto bad_unshare_out;
	/*
	 * CLONE_NEWIPC must also detach from the undolist: after switching
	 * to a new ipc namespace, the semaphore arrays from the old
	 * namespace are unreachable.
	 */
	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
		do_sysvsem = 1;
	err = unshare_fs(unshare_flags, &new_fs);
	if (err)
		goto bad_unshare_out;
	err = unshare_fd(unshare_flags, &new_fd);
	if (err)
		goto bad_unshare_cleanup_fs;
	err = unshare_userns(unshare_flags, &new_cred);
	if (err)
		goto bad_unshare_cleanup_fd;
	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
					 new_cred, new_fs);
	if (err)
		goto bad_unshare_cleanup_cred;

	if (new_cred) {
		err = set_cred_ucounts(new_cred);
		if (err)
			goto bad_unshare_cleanup_cred;
	}

	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
		if (do_sysvsem) {
			/*
			 * CLONE_SYSVSEM is equivalent to sys_exit().
			 */
			exit_sem(current);
		}
		if (unshare_flags & CLONE_NEWIPC) {
			/* Orphan segments in old ns (see sem above). */
			exit_shm(current);
			shm_init_task(current);
		}

		if (new_nsproxy)
			switch_task_namespaces(current, new_nsproxy);

		task_lock(current);

		if (new_fs) {
			fs = current->fs;
			spin_lock(&fs->lock);
			current->fs = new_fs;
			if (--fs->users)
				new_fs = NULL;
			else
				new_fs = fs;
			spin_unlock(&fs->lock);
		}

		if (new_fd)
			swap(current->files, new_fd);

		task_unlock(current);

		if (new_cred) {
			/* Install the new user namespace */
			commit_creds(new_cred);
			new_cred = NULL;
		}
	}

	perf_event_namespaces(current);

bad_unshare_cleanup_cred:
	if (new_cred)
		put_cred(new_cred);
bad_unshare_cleanup_fd:
	if (new_fd)
		put_files_struct(new_fd);

bad_unshare_cleanup_fs:
	if (new_fs)
		free_fs_struct(new_fs);

bad_unshare_out:
	return err;
}

SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
{
	return ksys_unshare(unshare_flags);
}

/*
 *	Helper to unshare the files of the current task.
 *	We don't want to expose copy_files internals to
 *	the exec layer of the kernel.
 */

int unshare_files(void)
{
	struct task_struct *task = current;
	struct files_struct *old, *copy = NULL;
	int error;

	error = unshare_fd(CLONE_FILES, &copy);
	if (error || !copy)
		return error;

	old = task->files;
	task_lock(task);
	task->files = copy;
	task_unlock(task);
	put_files_struct(old);
	return 0;
}

int sysctl_max_threads(const struct ctl_table *table, int write,
		       void *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int ret;
	int threads = max_threads;
	int min = 1;
	int max = MAX_THREADS;

	t = *table;
	t.data = &threads;
	t.extra1 = &min;
	t.extra2 = &max;

	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (ret || !write)
		return ret;

	max_threads = threads;

	return 0;
}