summaryrefslogtreecommitdiff
path: root/kernel/crash_core.c
blob: c1048893f4b6821eeae2e82254f1dc5c6f3e972d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// SPDX-License-Identifier: GPL-2.0-only
/*
 * crash.c - kernel crash support code.
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/buildid.h>
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <linux/kexec.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/cpuhotplug.h>
#include <linux/memblock.h>
#include <linux/kmemleak.h>
#include <linux/crash_core.h>
#include <linux/reboot.h>
#include <linux/btf.h>
#include <linux/objtool.h>

#include <asm/page.h>
#include <asm/sections.h>

#include <crypto/sha1.h>

#include "kallsyms_internal.h"
#include "kexec_internal.h"

/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;

#ifdef CONFIG_CRASH_DUMP

int kimage_crash_copy_vmcoreinfo(struct kimage *image)
{
	struct page *vmcoreinfo_page;
	void *safecopy;

	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
		return 0;
	if (image->type != KEXEC_TYPE_CRASH)
		return 0;

	/*
	 * For kdump, allocate one vmcoreinfo safe copy from the
	 * crash memory. as we have arch_kexec_protect_crashkres()
	 * after kexec syscall, we naturally protect it from write
	 * (even read) access under kernel direct mapping. But on
	 * the other hand, we still need to operate it when crash
	 * happens to generate vmcoreinfo note, hereby we rely on
	 * vmap for this purpose.
	 */
	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
	if (!vmcoreinfo_page) {
		pr_warn("Could not allocate vmcoreinfo buffer\n");
		return -ENOMEM;
	}
	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
	if (!safecopy) {
		pr_warn("Could not vmap vmcoreinfo buffer\n");
		return -ENOMEM;
	}

	image->vmcoreinfo_data_copy = safecopy;
	crash_update_vmcoreinfo_safecopy(safecopy);

	return 0;
}



int kexec_should_crash(struct task_struct *p)
{
	/*
	 * If crash_kexec_post_notifiers is enabled, don't run
	 * crash_kexec() here yet, which must be run after panic
	 * notifiers in panic().
	 */
	if (crash_kexec_post_notifiers)
		return 0;
	/*
	 * There are 4 panic() calls in make_task_dead() path, each of which
	 * corresponds to each of these 4 conditions.
	 */
	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
		return 1;
	return 0;
}

int kexec_crash_loaded(void)
{
	return !!kexec_crash_image;
}
EXPORT_SYMBOL_GPL(kexec_crash_loaded);

/*
 * No panic_cpu check version of crash_kexec().  This function is called
 * only when panic_cpu holds the current CPU number; this is the only CPU
 * which processes crash_kexec routines.
 */
void __noclone __crash_kexec(struct pt_regs *regs)
{
	/* Take the kexec_lock here to prevent sys_kexec_load
	 * running on one cpu from replacing the crash kernel
	 * we are using after a panic on a different cpu.
	 *
	 * If the crash kernel was not located in a fixed area
	 * of memory the xchg(&kexec_crash_image) would be
	 * sufficient.  But since I reuse the memory...
	 */
	if (kexec_trylock()) {
		if (kexec_crash_image) {
			struct pt_regs fixed_regs;

			crash_setup_regs(&fixed_regs, regs);
			crash_save_vmcoreinfo();
			machine_crash_shutdown(&fixed_regs);
			machine_kexec(kexec_crash_image);
		}
		kexec_unlock();
	}
}
STACK_FRAME_NON_STANDARD(__crash_kexec);

__bpf_kfunc void crash_kexec(struct pt_regs *regs)
{
	int old_cpu, this_cpu;

	/*
	 * Only one CPU is allowed to execute the crash_kexec() code as with
	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
	 * may stop each other.  To exclude them, we use panic_cpu here too.
	 */
	old_cpu = PANIC_CPU_INVALID;
	this_cpu = raw_smp_processor_id();

	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
		/* This is the 1st CPU which comes here, so go ahead. */
		__crash_kexec(regs);

		/*
		 * Reset panic_cpu to allow another panic()/crash_kexec()
		 * call.
		 */
		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
	}
}

static inline resource_size_t crash_resource_size(const struct resource *res)
{
	return !res->end ? 0 : resource_size(res);
}




int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
			  void **addr, unsigned long *sz)
{
	Elf64_Ehdr *ehdr;
	Elf64_Phdr *phdr;
	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
	unsigned char *buf;
	unsigned int cpu, i;
	unsigned long long notes_addr;
	unsigned long mstart, mend;

	/* extra phdr for vmcoreinfo ELF note */
	nr_phdr = nr_cpus + 1;
	nr_phdr += mem->nr_ranges;

	/*
	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
	 * I think this is required by tools like gdb. So same physical
	 * memory will be mapped in two ELF headers. One will contain kernel
	 * text virtual addresses and other will have __va(physical) addresses.
	 */

	nr_phdr++;
	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);

	buf = vzalloc(elf_sz);
	if (!buf)
		return -ENOMEM;

	ehdr = (Elf64_Ehdr *)buf;
	phdr = (Elf64_Phdr *)(ehdr + 1);
	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
	ehdr->e_type = ET_CORE;
	ehdr->e_machine = ELF_ARCH;
	ehdr->e_version = EV_CURRENT;
	ehdr->e_phoff = sizeof(Elf64_Ehdr);
	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
	ehdr->e_phentsize = sizeof(Elf64_Phdr);

	/* Prepare one phdr of type PT_NOTE for each possible CPU */
	for_each_possible_cpu(cpu) {
		phdr->p_type = PT_NOTE;
		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
		phdr->p_offset = phdr->p_paddr = notes_addr;
		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
		(ehdr->e_phnum)++;
		phdr++;
	}

	/* Prepare one PT_NOTE header for vmcoreinfo */
	phdr->p_type = PT_NOTE;
	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
	(ehdr->e_phnum)++;
	phdr++;

	/* Prepare PT_LOAD type program header for kernel text region */
	if (need_kernel_map) {
		phdr->p_type = PT_LOAD;
		phdr->p_flags = PF_R|PF_W|PF_X;
		phdr->p_vaddr = (unsigned long) _text;
		phdr->p_filesz = phdr->p_memsz = _end - _text;
		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
		ehdr->e_phnum++;
		phdr++;
	}

	/* Go through all the ranges in mem->ranges[] and prepare phdr */
	for (i = 0; i < mem->nr_ranges; i++) {
		mstart = mem->ranges[i].start;
		mend = mem->ranges[i].end;

		phdr->p_type = PT_LOAD;
		phdr->p_flags = PF_R|PF_W|PF_X;
		phdr->p_offset  = mstart;

		phdr->p_paddr = mstart;
		phdr->p_vaddr = (unsigned long) __va(mstart);
		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
		phdr->p_align = 0;
		ehdr->e_phnum++;
#ifdef CONFIG_KEXEC_FILE
		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
			      ehdr->e_phnum, phdr->p_offset);
#endif
		phdr++;
	}

	*addr = buf;
	*sz = elf_sz;
	return 0;
}

int crash_exclude_mem_range(struct crash_mem *mem,
			    unsigned long long mstart, unsigned long long mend)
{
	int i;
	unsigned long long start, end, p_start, p_end;

	for (i = 0; i < mem->nr_ranges; i++) {
		start = mem->ranges[i].start;
		end = mem->ranges[i].end;
		p_start = mstart;
		p_end = mend;

		if (p_start > end)
			continue;

		/*
		 * Because the memory ranges in mem->ranges are stored in
		 * ascending order, when we detect `p_end < start`, we can
		 * immediately exit the for loop, as the subsequent memory
		 * ranges will definitely be outside the range we are looking
		 * for.
		 */
		if (p_end < start)
			break;

		/* Truncate any area outside of range */
		if (p_start < start)
			p_start = start;
		if (p_end > end)
			p_end = end;

		/* Found completely overlapping range */
		if (p_start == start && p_end == end) {
			memmove(&mem->ranges[i], &mem->ranges[i + 1],
				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
			i--;
			mem->nr_ranges--;
		} else if (p_start > start && p_end < end) {
			/* Split original range */
			if (mem->nr_ranges >= mem->max_nr_ranges)
				return -ENOMEM;

			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));

			mem->ranges[i].end = p_start - 1;
			mem->ranges[i + 1].start = p_end + 1;
			mem->ranges[i + 1].end = end;

			i++;
			mem->nr_ranges++;
		} else if (p_start != start)
			mem->ranges[i].end = p_start - 1;
		else
			mem->ranges[i].start = p_end + 1;
	}

	return 0;
}

ssize_t crash_get_memory_size(void)
{
	ssize_t size = 0;

	if (!kexec_trylock())
		return -EBUSY;

	size += crash_resource_size(&crashk_res);
	size += crash_resource_size(&crashk_low_res);

	kexec_unlock();
	return size;
}

static int __crash_shrink_memory(struct resource *old_res,
				 unsigned long new_size)
{
	struct resource *ram_res;

	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
	if (!ram_res)
		return -ENOMEM;

	ram_res->start = old_res->start + new_size;
	ram_res->end   = old_res->end;
	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
	ram_res->name  = "System RAM";

	if (!new_size) {
		release_resource(old_res);
		old_res->start = 0;
		old_res->end   = 0;
	} else {
		crashk_res.end = ram_res->start - 1;
	}

	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
	insert_resource(&iomem_resource, ram_res);

	return 0;
}

int crash_shrink_memory(unsigned long new_size)
{
	int ret = 0;
	unsigned long old_size, low_size;

	if (!kexec_trylock())
		return -EBUSY;

	if (kexec_crash_image) {
		ret = -ENOENT;
		goto unlock;
	}

	low_size = crash_resource_size(&crashk_low_res);
	old_size = crash_resource_size(&crashk_res) + low_size;
	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
	if (new_size >= old_size) {
		ret = (new_size == old_size) ? 0 : -EINVAL;
		goto unlock;
	}

	/*
	 * (low_size > new_size) implies that low_size is greater than zero.
	 * This also means that if low_size is zero, the else branch is taken.
	 *
	 * If low_size is greater than 0, (low_size > new_size) indicates that
	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
	 * needs to be shrunken.
	 */
	if (low_size > new_size) {
		ret = __crash_shrink_memory(&crashk_res, 0);
		if (ret)
			goto unlock;

		ret = __crash_shrink_memory(&crashk_low_res, new_size);
	} else {
		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
	}

	/* Swap crashk_res and crashk_low_res if needed */
	if (!crashk_res.end && crashk_low_res.end) {
		crashk_res.start = crashk_low_res.start;
		crashk_res.end   = crashk_low_res.end;
		release_resource(&crashk_low_res);
		crashk_low_res.start = 0;
		crashk_low_res.end   = 0;
		insert_resource(&iomem_resource, &crashk_res);
	}

unlock:
	kexec_unlock();
	return ret;
}

void crash_save_cpu(struct pt_regs *regs, int cpu)
{
	struct elf_prstatus prstatus;
	u32 *buf;

	if ((cpu < 0) || (cpu >= nr_cpu_ids))
		return;

	/* Using ELF notes here is opportunistic.
	 * I need a well defined structure format
	 * for the data I pass, and I need tags
	 * on the data to indicate what information I have
	 * squirrelled away.  ELF notes happen to provide
	 * all of that, so there is no need to invent something new.
	 */
	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
	if (!buf)
		return;
	memset(&prstatus, 0, sizeof(prstatus));
	prstatus.common.pr_pid = current->pid;
	elf_core_copy_regs(&prstatus.pr_reg, regs);
	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
			      &prstatus, sizeof(prstatus));
	final_note(buf);
}



static int __init crash_notes_memory_init(void)
{
	/* Allocate memory for saving cpu registers. */
	size_t size, align;

	/*
	 * crash_notes could be allocated across 2 vmalloc pages when percpu
	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
	 * pages are also on 2 continuous physical pages. In this case the
	 * 2nd part of crash_notes in 2nd page could be lost since only the
	 * starting address and size of crash_notes are exported through sysfs.
	 * Here round up the size of crash_notes to the nearest power of two
	 * and pass it to __alloc_percpu as align value. This can make sure
	 * crash_notes is allocated inside one physical page.
	 */
	size = sizeof(note_buf_t);
	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);

	/*
	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
	 * definitely will be in 2 pages with that.
	 */
	BUILD_BUG_ON(size > PAGE_SIZE);

	crash_notes = __alloc_percpu(size, align);
	if (!crash_notes) {
		pr_warn("Memory allocation for saving cpu register states failed\n");
		return -ENOMEM;
	}
	return 0;
}
subsys_initcall(crash_notes_memory_init);

#endif /*CONFIG_CRASH_DUMP*/

#ifdef CONFIG_CRASH_HOTPLUG
#undef pr_fmt
#define pr_fmt(fmt) "crash hp: " fmt

/*
 * Different than kexec/kdump loading/unloading/jumping/shrinking which
 * usually rarely happen, there will be many crash hotplug events notified
 * during one short period, e.g one memory board is hot added and memory
 * regions are online. So mutex lock  __crash_hotplug_lock is used to
 * serialize the crash hotplug handling specifically.
 */
static DEFINE_MUTEX(__crash_hotplug_lock);
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)

/*
 * This routine utilized when the crash_hotplug sysfs node is read.
 * It reflects the kernel's ability/permission to update the kdump
 * image directly.
 */
int crash_check_hotplug_support(void)
{
	int rc = 0;

	crash_hotplug_lock();
	/* Obtain lock while reading crash information */
	if (!kexec_trylock()) {
		pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
		crash_hotplug_unlock();
		return 0;
	}
	if (kexec_crash_image) {
		rc = kexec_crash_image->hotplug_support;
	}
	/* Release lock now that update complete */
	kexec_unlock();
	crash_hotplug_unlock();

	return rc;
}

/*
 * To accurately reflect hot un/plug changes of CPU and Memory resources
 * (including onling and offlining of those resources), the relevant
 * kexec segments must be updated with latest CPU and Memory resources.
 *
 * Architectures must ensure two things for all segments that need
 * updating during hotplug events:
 *
 * 1. Segments must be large enough to accommodate a growing number of
 *    resources.
 * 2. Exclude the segments from SHA verification.
 *
 * For example, on most architectures, the elfcorehdr (which is passed
 * to the crash kernel via the elfcorehdr= parameter) must include the
 * new list of CPUs and memory. To make changes to the elfcorehdr, it
 * should be large enough to permit a growing number of CPU and Memory
 * resources. One can estimate the elfcorehdr memory size based on
 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
 * excluded from SHA verification by default if the architecture
 * supports crash hotplug.
 */
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
{
	struct kimage *image;

	crash_hotplug_lock();
	/* Obtain lock while changing crash information */
	if (!kexec_trylock()) {
		pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
		crash_hotplug_unlock();
		return;
	}

	/* Check kdump is not loaded */
	if (!kexec_crash_image)
		goto out;

	image = kexec_crash_image;

	/* Check that kexec segments update is permitted */
	if (!image->hotplug_support)
		goto out;

	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
	else
		pr_debug("hp_action %u\n", hp_action);

	/*
	 * The elfcorehdr_index is set to -1 when the struct kimage
	 * is allocated. Find the segment containing the elfcorehdr,
	 * if not already found.
	 */
	if (image->elfcorehdr_index < 0) {
		unsigned long mem;
		unsigned char *ptr;
		unsigned int n;

		for (n = 0; n < image->nr_segments; n++) {
			mem = image->segment[n].mem;
			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
			if (ptr) {
				/* The segment containing elfcorehdr */
				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
					image->elfcorehdr_index = (int)n;
				kunmap_local(ptr);
			}
		}
	}

	if (image->elfcorehdr_index < 0) {
		pr_err("unable to locate elfcorehdr segment");
		goto out;
	}

	/* Needed in order for the segments to be updated */
	arch_kexec_unprotect_crashkres();

	/* Differentiate between normal load and hotplug update */
	image->hp_action = hp_action;

	/* Now invoke arch-specific update handler */
	arch_crash_handle_hotplug_event(image, arg);

	/* No longer handling a hotplug event */
	image->hp_action = KEXEC_CRASH_HP_NONE;
	image->elfcorehdr_updated = true;

	/* Change back to read-only */
	arch_kexec_protect_crashkres();

	/* Errors in the callback is not a reason to rollback state */
out:
	/* Release lock now that update complete */
	kexec_unlock();
	crash_hotplug_unlock();
}

static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
{
	switch (val) {
	case MEM_ONLINE:
		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
			KEXEC_CRASH_HP_INVALID_CPU, arg);
		break;

	case MEM_OFFLINE:
		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
			KEXEC_CRASH_HP_INVALID_CPU, arg);
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block crash_memhp_nb = {
	.notifier_call = crash_memhp_notifier,
	.priority = 0
};

static int crash_cpuhp_online(unsigned int cpu)
{
	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
	return 0;
}

static int crash_cpuhp_offline(unsigned int cpu)
{
	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
	return 0;
}

static int __init crash_hotplug_init(void)
{
	int result = 0;

	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
		register_memory_notifier(&crash_memhp_nb);

	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
	}

	return result;
}

subsys_initcall(crash_hotplug_init);
#endif