summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/gt/intel_migrate.c
blob: 2b10b96b17b5bda2f31d259fdf8b64a77270bcf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 */

#include "i915_drv.h"
#include "intel_context.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gtt.h"
#include "intel_migrate.h"
#include "intel_ring.h"

struct insert_pte_data {
	u64 offset;
};

#define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */

#define GET_CCS_BYTES(i915, size)	(HAS_FLAT_CCS(i915) ? \
					 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
static bool engine_supports_migration(struct intel_engine_cs *engine)
{
	if (!engine)
		return false;

	/*
	 * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
	 * the ability to write PTE using inline data (MI_STORE_DATA)
	 * and of course the ability to do the block transfer (blits).
	 */
	GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);

	return true;
}

static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
				struct i915_page_table *pt,
				void *data)
{
	struct insert_pte_data *d = data;

	/*
	 * Insert a dummy PTE into every PT that will map to LMEM to ensure
	 * we have a correctly setup PDE structure for later use.
	 */
	vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM);
	GEM_BUG_ON(!pt->is_compact);
	d->offset += SZ_2M;
}

static void xehpsdv_insert_pte(struct i915_address_space *vm,
			       struct i915_page_table *pt,
			       void *data)
{
	struct insert_pte_data *d = data;

	/*
	 * We are playing tricks here, since the actual pt, from the hw
	 * pov, is only 256bytes with 32 entries, or 4096bytes with 512
	 * entries, but we are still guaranteed that the physical
	 * alignment is 64K underneath for the pt, and we are careful
	 * not to access the space in the void.
	 */
	vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM);
	d->offset += SZ_64K;
}

static void insert_pte(struct i915_address_space *vm,
		       struct i915_page_table *pt,
		       void *data)
{
	struct insert_pte_data *d = data;

	vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE,
			i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
	d->offset += PAGE_SIZE;
}

static struct i915_address_space *migrate_vm(struct intel_gt *gt)
{
	struct i915_vm_pt_stash stash = {};
	struct i915_ppgtt *vm;
	int err;
	int i;

	/*
	 * We construct a very special VM for use by all migration contexts,
	 * it is kept pinned so that it can be used at any time. As we need
	 * to pre-allocate the page directories for the migration VM, this
	 * limits us to only using a small number of prepared vma.
	 *
	 * To be able to pipeline and reschedule migration operations while
	 * avoiding unnecessary contention on the vm itself, the PTE updates
	 * are inline with the blits. All the blits use the same fixed
	 * addresses, with the backing store redirection being updated on the
	 * fly. Only 2 implicit vma are used for all migration operations.
	 *
	 * We lay the ppGTT out as:
	 *
	 *	[0, CHUNK_SZ) -> first object
	 *	[CHUNK_SZ, 2 * CHUNK_SZ) -> second object
	 *	[2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
	 *
	 * By exposing the dma addresses of the page directories themselves
	 * within the ppGTT, we are then able to rewrite the PTE prior to use.
	 * But the PTE update and subsequent migration operation must be atomic,
	 * i.e. within the same non-preemptible window so that we do not switch
	 * to another migration context that overwrites the PTE.
	 *
	 * This changes quite a bit on platforms with HAS_64K_PAGES support,
	 * where we instead have three windows, each CHUNK_SIZE in size. The
	 * first is reserved for mapping system-memory, and that just uses the
	 * 512 entry layout using 4K GTT pages. The other two windows just map
	 * lmem pages and must use the new compact 32 entry layout using 64K GTT
	 * pages, which ensures we can address any lmem object that the user
	 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
	 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
	 * compact layout for each of these page-tables, that fall within the
	 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
	 *
	 * We lay the ppGTT out as:
	 *
	 * [0, CHUNK_SZ) -> first window/object, maps smem
	 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
	 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
	 *
	 * For the PTE window it's also quite different, since each PTE must
	 * point to some 64K page, one for each PT(since it's in lmem), and yet
	 * each is only <= 4096bytes, but since the unused space within that PTE
	 * range is never touched, this should be fine.
	 *
	 * So basically each PT now needs 64K of virtual memory, instead of 4K,
	 * which looks like:
	 *
	 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
	 */

	vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
	if (IS_ERR(vm))
		return ERR_CAST(vm);

	if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
		err = -ENODEV;
		goto err_vm;
	}

	if (HAS_64K_PAGES(gt->i915))
		stash.pt_sz = I915_GTT_PAGE_SIZE_64K;

	/*
	 * Each engine instance is assigned its own chunk in the VM, so
	 * that we can run multiple instances concurrently
	 */
	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
		struct intel_engine_cs *engine;
		u64 base = (u64)i << 32;
		struct insert_pte_data d = {};
		struct i915_gem_ww_ctx ww;
		u64 sz;

		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
		if (!engine_supports_migration(engine))
			continue;

		/*
		 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
		 * 4x2 page directories for source/destination.
		 */
		if (HAS_64K_PAGES(gt->i915))
			sz = 3 * CHUNK_SZ;
		else
			sz = 2 * CHUNK_SZ;
		d.offset = base + sz;

		/*
		 * We need another page directory setup so that we can write
		 * the 8x512 PTE in each chunk.
		 */
		if (HAS_64K_PAGES(gt->i915))
			sz += (sz / SZ_2M) * SZ_64K;
		else
			sz += (sz >> 12) * sizeof(u64);

		err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
		if (err)
			goto err_vm;

		for_i915_gem_ww(&ww, err, true) {
			err = i915_vm_lock_objects(&vm->vm, &ww);
			if (err)
				continue;
			err = i915_vm_map_pt_stash(&vm->vm, &stash);
			if (err)
				continue;

			vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
		}
		i915_vm_free_pt_stash(&vm->vm, &stash);
		if (err)
			goto err_vm;

		/* Now allow the GPU to rewrite the PTE via its own ppGTT */
		if (HAS_64K_PAGES(gt->i915)) {
			vm->vm.foreach(&vm->vm, base, d.offset - base,
				       xehpsdv_insert_pte, &d);
			d.offset = base + CHUNK_SZ;
			vm->vm.foreach(&vm->vm,
				       d.offset,
				       2 * CHUNK_SZ,
				       xehpsdv_toggle_pdes, &d);
		} else {
			vm->vm.foreach(&vm->vm, base, d.offset - base,
				       insert_pte, &d);
		}
	}

	return &vm->vm;

err_vm:
	i915_vm_put(&vm->vm);
	return ERR_PTR(err);
}

static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	int i;

	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
		if (engine_supports_migration(engine))
			return engine;
	}

	return NULL;
}

static struct intel_context *pinned_context(struct intel_gt *gt)
{
	static struct lock_class_key key;
	struct intel_engine_cs *engine;
	struct i915_address_space *vm;
	struct intel_context *ce;

	engine = first_copy_engine(gt);
	if (!engine)
		return ERR_PTR(-ENODEV);

	vm = migrate_vm(gt);
	if (IS_ERR(vm))
		return ERR_CAST(vm);

	ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
						I915_GEM_HWS_MIGRATE,
						&key, "migrate");
	i915_vm_put(vm);
	return ce;
}

int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
{
	struct intel_context *ce;

	memset(m, 0, sizeof(*m));

	ce = pinned_context(gt);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	m->context = ce;
	return 0;
}

static int random_index(unsigned int max)
{
	return upper_32_bits(mul_u32_u32(get_random_u32(), max));
}

static struct intel_context *__migrate_engines(struct intel_gt *gt)
{
	struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
	struct intel_engine_cs *engine;
	unsigned int count, i;

	count = 0;
	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
		if (engine_supports_migration(engine))
			engines[count++] = engine;
	}

	return intel_context_create(engines[random_index(count)]);
}

struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
{
	struct intel_context *ce;

	/*
	 * We randomly distribute contexts across the engines upon constrction,
	 * as they all share the same pinned vm, and so in order to allow
	 * multiple blits to run in parallel, we must construct each blit
	 * to use a different range of the vm for its GTT. This has to be
	 * known at construction, so we can not use the late greedy load
	 * balancing of the virtual-engine.
	 */
	ce = __migrate_engines(m->context->engine->gt);
	if (IS_ERR(ce))
		return ce;

	ce->ring = NULL;
	ce->ring_size = SZ_256K;

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(m->context->vm);

	return ce;
}

static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
{
	dma_addr_t addr = sg_dma_address(sg);

	return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
}

static int emit_no_arbitration(struct i915_request *rq)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Explicitly disable preemption for this request. */
	*cs++ = MI_ARB_ON_OFF;
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_pte(struct i915_request *rq,
		    struct sgt_dma *it,
		    enum i915_cache_level cache_level,
		    bool is_lmem,
		    u64 offset,
		    int length)
{
	bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
	const u64 encode = rq->context->vm->pte_encode(0, cache_level,
						       is_lmem ? PTE_LM : 0);
	struct intel_ring *ring = rq->ring;
	int pkt, dword_length;
	u32 total = 0;
	u32 page_size;
	u32 *hdr, *cs;

	GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);

	page_size = I915_GTT_PAGE_SIZE;
	dword_length = 0x400;

	/* Compute the page directory offset for the target address range */
	if (has_64K_pages) {
		GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));

		offset /= SZ_2M;
		offset *= SZ_64K;
		offset += 3 * CHUNK_SZ;

		if (is_lmem) {
			page_size = I915_GTT_PAGE_SIZE_64K;
			dword_length = 0x40;
		}
	} else {
		offset >>= 12;
		offset *= sizeof(u64);
		offset += 2 * CHUNK_SZ;
	}

	offset += (u64)rq->engine->instance << 32;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Pack as many PTE updates as possible into a single MI command */
	pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5);
	pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);

	hdr = cs;
	*cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	do {
		if (cs - hdr >= pkt) {
			int dword_rem;

			*hdr += cs - hdr - 2;
			*cs++ = MI_NOOP;

			ring->emit = (void *)cs - ring->vaddr;
			intel_ring_advance(rq, cs);
			intel_ring_update_space(ring);

			cs = intel_ring_begin(rq, 6);
			if (IS_ERR(cs))
				return PTR_ERR(cs);

			dword_rem = dword_length;
			if (has_64K_pages) {
				if (IS_ALIGNED(total, SZ_2M)) {
					offset = round_up(offset, SZ_64K);
				} else {
					dword_rem = SZ_2M - (total & (SZ_2M - 1));
					dword_rem /= page_size;
					dword_rem *= 2;
				}
			}

			pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5);
			pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);

			hdr = cs;
			*cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
			*cs++ = lower_32_bits(offset);
			*cs++ = upper_32_bits(offset);
		}

		GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));

		*cs++ = lower_32_bits(encode | it->dma);
		*cs++ = upper_32_bits(encode | it->dma);

		offset += 8;
		total += page_size;

		it->dma += page_size;
		if (it->dma >= it->max) {
			it->sg = __sg_next(it->sg);
			if (!it->sg || sg_dma_len(it->sg) == 0)
				break;

			it->dma = sg_dma_address(it->sg);
			it->max = it->dma + sg_dma_len(it->sg);
		}
	} while (total < length);

	*hdr += cs - hdr - 2;
	*cs++ = MI_NOOP;

	ring->emit = (void *)cs - ring->vaddr;
	intel_ring_advance(rq, cs);
	intel_ring_update_space(ring);

	return total;
}

static bool wa_1209644611_applies(int ver, u32 size)
{
	u32 height = size >> PAGE_SHIFT;

	if (ver != 11)
		return false;

	return height % 4 == 3 && height <= 8;
}

/**
 * DOC: Flat-CCS - Memory compression for Local memory
 *
 * On Xe-HP and later devices, we use dedicated compression control state (CCS)
 * stored in local memory for each surface, to support the 3D and media
 * compression formats.
 *
 * The memory required for the CCS of the entire local memory is 1/256 of the
 * local memory size. So before the kernel boot, the required memory is reserved
 * for the CCS data and a secure register will be programmed with the CCS base
 * address.
 *
 * Flat CCS data needs to be cleared when a lmem object is allocated.
 * And CCS data can be copied in and out of CCS region through
 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
 *
 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
 * its preference list, on memory pressure, i915 needs to migrate the lmem
 * content into smem. If the lmem object is Flat-CCS compressed by userspace,
 * then i915 needs to decompress it. But I915 lack the required information
 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
 *
 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
 * be temporarily evicted to smem, along with the auxiliary CCS state, where
 * it can be potentially swapped-out at a later point, if required.
 * If userspace later touches the evicted pages, then we always move
 * the backing memory back to lmem, which includes restoring the saved CCS state,
 * and potentially performing any required swap-in.
 *
 * For the migration of the lmem objects with smem in placement list, such as
 * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
 */

static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
{
	*cmd++ = MI_FLUSH_DW | flags;
	*cmd++ = 0;
	*cmd++ = 0;

	return cmd;
}

static u32 calc_ctrl_surf_instr_size(struct drm_i915_private *i915, int size)
{
	u32 num_cmds, num_blks, total_size;

	if (!GET_CCS_BYTES(i915, size))
		return 0;

	/*
	 * XY_CTRL_SURF_COPY_BLT transfers CCS in 256 byte
	 * blocks. one XY_CTRL_SURF_COPY_BLT command can
	 * transfer upto 1024 blocks.
	 */
	num_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
				NUM_CCS_BYTES_PER_BLOCK);
	num_cmds = DIV_ROUND_UP(num_blks, NUM_CCS_BLKS_PER_XFER);
	total_size = XY_CTRL_SURF_INSTR_SIZE * num_cmds;

	/*
	 * Adding a flush before and after XY_CTRL_SURF_COPY_BLT
	 */
	total_size += 2 * MI_FLUSH_DW_SIZE;

	return total_size;
}

static int emit_copy_ccs(struct i915_request *rq,
			 u32 dst_offset, u8 dst_access,
			 u32 src_offset, u8 src_access, int size)
{
	struct drm_i915_private *i915 = rq->engine->i915;
	int mocs = rq->engine->gt->mocs.uc_index << 1;
	u32 num_ccs_blks, ccs_ring_size;
	u32 *cs;

	ccs_ring_size = calc_ctrl_surf_instr_size(i915, size);
	WARN_ON(!ccs_ring_size);

	cs = intel_ring_begin(rq, round_up(ccs_ring_size, 2));
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
				    NUM_CCS_BYTES_PER_BLOCK);
	GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
	cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);

	/*
	 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
	 * data in and out of the CCS region.
	 *
	 * We can copy at most 1024 blocks of 256 bytes using one
	 * XY_CTRL_SURF_COPY_BLT instruction.
	 *
	 * In case we need to copy more than 1024 blocks, we need to add
	 * another instruction to the same batch buffer.
	 *
	 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
	 *
	 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
	 */
	*cs++ = XY_CTRL_SURF_COPY_BLT |
		src_access << SRC_ACCESS_TYPE_SHIFT |
		dst_access << DST_ACCESS_TYPE_SHIFT |
		((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
	*cs++ = src_offset;
	*cs++ = rq->engine->instance |
		FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
	*cs++ = dst_offset;
	*cs++ = rq->engine->instance |
		FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);

	cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
	if (ccs_ring_size & 1)
		*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_copy(struct i915_request *rq,
		     u32 dst_offset, u32 src_offset, int size)
{
	const int ver = GRAPHICS_VER(rq->engine->i915);
	u32 instance = rq->engine->instance;
	u32 *cs;

	cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
		*cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
		*cs++ = BLT_DEPTH_32 | PAGE_SIZE;
		*cs++ = 0;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
		*cs++ = dst_offset;
		*cs++ = instance;
		*cs++ = 0;
		*cs++ = PAGE_SIZE;
		*cs++ = src_offset;
		*cs++ = instance;
	} else if (ver >= 8) {
		*cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
		*cs++ = 0;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
		*cs++ = dst_offset;
		*cs++ = instance;
		*cs++ = 0;
		*cs++ = PAGE_SIZE;
		*cs++ = src_offset;
		*cs++ = instance;
	} else {
		GEM_BUG_ON(instance);
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
		*cs++ = dst_offset;
		*cs++ = PAGE_SIZE;
		*cs++ = src_offset;
	}

	intel_ring_advance(rq, cs);
	return 0;
}

static int scatter_list_length(struct scatterlist *sg)
{
	int len = 0;

	while (sg && sg_dma_len(sg)) {
		len += sg_dma_len(sg);
		sg = sg_next(sg);
	};

	return len;
}

static void
calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
		   int *src_sz, u32 bytes_to_cpy, u32 ccs_bytes_to_cpy)
{
	if (ccs_bytes_to_cpy) {
		if (!src_is_lmem)
			/*
			 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
			 * will be taken for the blt. in Flat-ccs supported
			 * platform Smem obj will have more pages than required
			 * for main meory hence limit it to the required size
			 * for main memory
			 */
			*src_sz = min_t(int, bytes_to_cpy, CHUNK_SZ);
	} else { /* ccs handling is not required */
		*src_sz = CHUNK_SZ;
	}
}

static void get_ccs_sg_sgt(struct sgt_dma *it, u32 bytes_to_cpy)
{
	u32 len;

	do {
		GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
		len = it->max - it->dma;
		if (len > bytes_to_cpy) {
			it->dma += bytes_to_cpy;
			break;
		}

		bytes_to_cpy -= len;

		it->sg = __sg_next(it->sg);
		it->dma = sg_dma_address(it->sg);
		it->max = it->dma + sg_dma_len(it->sg);
	} while (bytes_to_cpy);
}

int
intel_context_migrate_copy(struct intel_context *ce,
			   const struct i915_deps *deps,
			   struct scatterlist *src,
			   enum i915_cache_level src_cache_level,
			   bool src_is_lmem,
			   struct scatterlist *dst,
			   enum i915_cache_level dst_cache_level,
			   bool dst_is_lmem,
			   struct i915_request **out)
{
	struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
	struct drm_i915_private *i915 = ce->engine->i915;
	u32 ccs_bytes_to_cpy = 0, bytes_to_cpy;
	enum i915_cache_level ccs_cache_level;
	u32 src_offset, dst_offset;
	u8 src_access, dst_access;
	struct i915_request *rq;
	int src_sz, dst_sz;
	bool ccs_is_src, overwrite_ccs;
	int err;

	GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
	GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
	*out = NULL;

	GEM_BUG_ON(ce->ring->size < SZ_64K);

	src_sz = scatter_list_length(src);
	bytes_to_cpy = src_sz;

	if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
		src_access = !src_is_lmem && dst_is_lmem;
		dst_access = !src_access;

		dst_sz = scatter_list_length(dst);
		if (src_is_lmem) {
			it_ccs = it_dst;
			ccs_cache_level = dst_cache_level;
			ccs_is_src = false;
		} else if (dst_is_lmem) {
			bytes_to_cpy = dst_sz;
			it_ccs = it_src;
			ccs_cache_level = src_cache_level;
			ccs_is_src = true;
		}

		/*
		 * When there is a eviction of ccs needed smem will have the
		 * extra pages for the ccs data
		 *
		 * TO-DO: Want to move the size mismatch check to a WARN_ON,
		 * but still we have some requests of smem->lmem with same size.
		 * Need to fix it.
		 */
		ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
		if (ccs_bytes_to_cpy)
			get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
	}

	overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;

	src_offset = 0;
	dst_offset = CHUNK_SZ;
	if (HAS_64K_PAGES(ce->engine->i915)) {
		src_offset = 0;
		dst_offset = 0;
		if (src_is_lmem)
			src_offset = CHUNK_SZ;
		if (dst_is_lmem)
			dst_offset = 2 * CHUNK_SZ;
	}

	do {
		int len;

		rq = i915_request_create(ce);
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ce;
		}

		if (deps) {
			err = i915_request_await_deps(rq, deps);
			if (err)
				goto out_rq;

			if (rq->engine->emit_init_breadcrumb) {
				err = rq->engine->emit_init_breadcrumb(rq);
				if (err)
					goto out_rq;
			}

			deps = NULL;
		}

		/* The PTE updates + copy must not be interrupted. */
		err = emit_no_arbitration(rq);
		if (err)
			goto out_rq;

		calculate_chunk_sz(i915, src_is_lmem, &src_sz,
				   bytes_to_cpy, ccs_bytes_to_cpy);

		len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem,
			       src_offset, src_sz);
		if (!len) {
			err = -EINVAL;
			goto out_rq;
		}
		if (len < 0) {
			err = len;
			goto out_rq;
		}

		err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem,
			       dst_offset, len);
		if (err < 0)
			goto out_rq;
		if (err < len) {
			err = -EINVAL;
			goto out_rq;
		}

		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			goto out_rq;

		err = emit_copy(rq, dst_offset,	src_offset, len);
		if (err)
			goto out_rq;

		bytes_to_cpy -= len;

		if (ccs_bytes_to_cpy) {
			int ccs_sz;

			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
			if (err)
				goto out_rq;

			ccs_sz = GET_CCS_BYTES(i915, len);
			err = emit_pte(rq, &it_ccs, ccs_cache_level, false,
				       ccs_is_src ? src_offset : dst_offset,
				       ccs_sz);
			if (err < 0)
				goto out_rq;
			if (err < ccs_sz) {
				err = -EINVAL;
				goto out_rq;
			}

			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
			if (err)
				goto out_rq;

			err = emit_copy_ccs(rq, dst_offset, dst_access,
					    src_offset, src_access, len);
			if (err)
				goto out_rq;

			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
			if (err)
				goto out_rq;
			ccs_bytes_to_cpy -= ccs_sz;
		} else if (overwrite_ccs) {
			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
			if (err)
				goto out_rq;

			/*
			 * While we can't always restore/manage the CCS state,
			 * we still need to ensure we don't leak the CCS state
			 * from the previous user, so make sure we overwrite it
			 * with something.
			 */
			err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS,
					    dst_offset, DIRECT_ACCESS, len);
			if (err)
				goto out_rq;

			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
			if (err)
				goto out_rq;
		}

		/* Arbitration is re-enabled between requests. */
out_rq:
		if (*out)
			i915_request_put(*out);
		*out = i915_request_get(rq);
		i915_request_add(rq);

		if (err)
			break;

		if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
			if (src_is_lmem)
				WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
			else
				WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
			break;
		}

		if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
			    !it_dst.sg || !sg_dma_len(it_dst.sg) ||
			    (ccs_bytes_to_cpy && (!it_ccs.sg ||
						  !sg_dma_len(it_ccs.sg))))) {
			err = -EINVAL;
			break;
		}

		cond_resched();
	} while (1);

out_ce:
	return err;
}

static int emit_clear(struct i915_request *rq, u32 offset, int size,
		      u32 value, bool is_lmem)
{
	struct drm_i915_private *i915 = rq->engine->i915;
	int mocs = rq->engine->gt->mocs.uc_index << 1;
	const int ver = GRAPHICS_VER(i915);
	int ring_sz;
	u32 *cs;

	GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);

	if (HAS_FLAT_CCS(i915) && ver >= 12)
		ring_sz = XY_FAST_COLOR_BLT_DW;
	else if (ver >= 8)
		ring_sz = 8;
	else
		ring_sz = 6;

	cs = intel_ring_begin(rq, ring_sz);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	if (HAS_FLAT_CCS(i915) && ver >= 12) {
		*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
			(XY_FAST_COLOR_BLT_DW - 2);
		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
			(PAGE_SIZE - 1);
		*cs++ = 0;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
		*cs++ = offset;
		*cs++ = rq->engine->instance;
		*cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
		/* BG7 */
		*cs++ = value;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		/* BG11 */
		*cs++ = 0;
		*cs++ = 0;
		/* BG13 */
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
	} else if (ver >= 8) {
		*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
		*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
		*cs++ = 0;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
		*cs++ = offset;
		*cs++ = rq->engine->instance;
		*cs++ = value;
		*cs++ = MI_NOOP;
	} else {
		*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
		*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
		*cs++ = 0;
		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
		*cs++ = offset;
		*cs++ = value;
	}

	intel_ring_advance(rq, cs);
	return 0;
}

int
intel_context_migrate_clear(struct intel_context *ce,
			    const struct i915_deps *deps,
			    struct scatterlist *sg,
			    enum i915_cache_level cache_level,
			    bool is_lmem,
			    u32 value,
			    struct i915_request **out)
{
	struct drm_i915_private *i915 = ce->engine->i915;
	struct sgt_dma it = sg_sgt(sg);
	struct i915_request *rq;
	u32 offset;
	int err;

	GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
	*out = NULL;

	GEM_BUG_ON(ce->ring->size < SZ_64K);

	offset = 0;
	if (HAS_64K_PAGES(i915) && is_lmem)
		offset = CHUNK_SZ;

	do {
		int len;

		rq = i915_request_create(ce);
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ce;
		}

		if (deps) {
			err = i915_request_await_deps(rq, deps);
			if (err)
				goto out_rq;

			if (rq->engine->emit_init_breadcrumb) {
				err = rq->engine->emit_init_breadcrumb(rq);
				if (err)
					goto out_rq;
			}

			deps = NULL;
		}

		/* The PTE updates + clear must not be interrupted. */
		err = emit_no_arbitration(rq);
		if (err)
			goto out_rq;

		len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ);
		if (len <= 0) {
			err = len;
			goto out_rq;
		}

		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			goto out_rq;

		err = emit_clear(rq, offset, len, value, is_lmem);
		if (err)
			goto out_rq;

		if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
			/*
			 * copy the content of memory into corresponding
			 * ccs surface
			 */
			err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
					    DIRECT_ACCESS, len);
			if (err)
				goto out_rq;
		}

		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);

		/* Arbitration is re-enabled between requests. */
out_rq:
		if (*out)
			i915_request_put(*out);
		*out = i915_request_get(rq);
		i915_request_add(rq);
		if (err || !it.sg || !sg_dma_len(it.sg))
			break;

		cond_resched();
	} while (1);

out_ce:
	return err;
}

int intel_migrate_copy(struct intel_migrate *m,
		       struct i915_gem_ww_ctx *ww,
		       const struct i915_deps *deps,
		       struct scatterlist *src,
		       enum i915_cache_level src_cache_level,
		       bool src_is_lmem,
		       struct scatterlist *dst,
		       enum i915_cache_level dst_cache_level,
		       bool dst_is_lmem,
		       struct i915_request **out)
{
	struct intel_context *ce;
	int err;

	*out = NULL;
	if (!m->context)
		return -ENODEV;

	ce = intel_migrate_create_context(m);
	if (IS_ERR(ce))
		ce = intel_context_get(m->context);
	GEM_BUG_ON(IS_ERR(ce));

	err = intel_context_pin_ww(ce, ww);
	if (err)
		goto out;

	err = intel_context_migrate_copy(ce, deps,
					 src, src_cache_level, src_is_lmem,
					 dst, dst_cache_level, dst_is_lmem,
					 out);

	intel_context_unpin(ce);
out:
	intel_context_put(ce);
	return err;
}

int
intel_migrate_clear(struct intel_migrate *m,
		    struct i915_gem_ww_ctx *ww,
		    const struct i915_deps *deps,
		    struct scatterlist *sg,
		    enum i915_cache_level cache_level,
		    bool is_lmem,
		    u32 value,
		    struct i915_request **out)
{
	struct intel_context *ce;
	int err;

	*out = NULL;
	if (!m->context)
		return -ENODEV;

	ce = intel_migrate_create_context(m);
	if (IS_ERR(ce))
		ce = intel_context_get(m->context);
	GEM_BUG_ON(IS_ERR(ce));

	err = intel_context_pin_ww(ce, ww);
	if (err)
		goto out;

	err = intel_context_migrate_clear(ce, deps, sg, cache_level,
					  is_lmem, value, out);

	intel_context_unpin(ce);
out:
	intel_context_put(ce);
	return err;
}

void intel_migrate_fini(struct intel_migrate *m)
{
	struct intel_context *ce;

	ce = fetch_and_zero(&m->context);
	if (!ce)
		return;

	intel_engine_destroy_pinned_context(ce);
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_migrate.c"
#endif