summaryrefslogtreecommitdiff
path: root/drivers/fpga/microchip-spi.c
blob: 2a82c726d6e59c9a29feb3d4271eae4b19d0b88f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip Polarfire FPGA programming over slave SPI interface.
 */

#include <asm/unaligned.h>
#include <linux/delay.h>
#include <linux/fpga/fpga-mgr.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/spi/spi.h>

#define	MPF_SPI_ISC_ENABLE	0x0B
#define	MPF_SPI_ISC_DISABLE	0x0C
#define	MPF_SPI_READ_STATUS	0x00
#define	MPF_SPI_READ_DATA	0x01
#define	MPF_SPI_FRAME_INIT	0xAE
#define	MPF_SPI_FRAME		0xEE
#define	MPF_SPI_PRG_MODE	0x01
#define	MPF_SPI_RELEASE		0x23

#define	MPF_SPI_FRAME_SIZE	16

#define	MPF_HEADER_SIZE_OFFSET	24
#define	MPF_DATA_SIZE_OFFSET	55

#define	MPF_LOOKUP_TABLE_RECORD_SIZE		9
#define	MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET	0
#define	MPF_LOOKUP_TABLE_BLOCK_START_OFFSET	1

#define	MPF_COMPONENTS_SIZE_ID	5
#define	MPF_BITSTREAM_ID	8

#define	MPF_BITS_PER_COMPONENT_SIZE	22

#define	MPF_STATUS_POLL_TIMEOUT		(2 * USEC_PER_SEC)
#define	MPF_STATUS_BUSY			BIT(0)
#define	MPF_STATUS_READY		BIT(1)
#define	MPF_STATUS_SPI_VIOLATION	BIT(2)
#define	MPF_STATUS_SPI_ERROR		BIT(3)

struct mpf_priv {
	struct spi_device *spi;
	bool program_mode;
	u8 tx __aligned(ARCH_KMALLOC_MINALIGN);
	u8 rx;
};

static int mpf_read_status(struct mpf_priv *priv)
{
	/*
	 * HW status is returned on MISO in the first byte after CS went
	 * active. However, first reading can be inadequate, so we submit
	 * two identical SPI transfers and use result of the later one.
	 */
	struct spi_transfer xfers[2] = {
		{
			.tx_buf = &priv->tx,
			.rx_buf = &priv->rx,
			.len = 1,
			.cs_change = 1,
		}, {
			.tx_buf = &priv->tx,
			.rx_buf = &priv->rx,
			.len = 1,
		},
	};
	u8 status;
	int ret;

	priv->tx = MPF_SPI_READ_STATUS;

	ret = spi_sync_transfer(priv->spi, xfers, 2);
	if (ret)
		return ret;

	status = priv->rx;

	if ((status & MPF_STATUS_SPI_VIOLATION) ||
	    (status & MPF_STATUS_SPI_ERROR))
		return -EIO;

	return status;
}

static enum fpga_mgr_states mpf_ops_state(struct fpga_manager *mgr)
{
	struct mpf_priv *priv = mgr->priv;
	bool program_mode;
	int status;

	program_mode = priv->program_mode;
	status = mpf_read_status(priv);

	if (!program_mode && !status)
		return FPGA_MGR_STATE_OPERATING;

	return FPGA_MGR_STATE_UNKNOWN;
}

static int mpf_ops_parse_header(struct fpga_manager *mgr,
				struct fpga_image_info *info,
				const char *buf, size_t count)
{
	size_t component_size_byte_num, component_size_byte_off,
	       components_size_start, bitstream_start,
	       block_id_offset, block_start_offset;
	u8 header_size, blocks_num, block_id;
	u32 block_start, component_size;
	u16 components_num, i;

	if (!buf) {
		dev_err(&mgr->dev, "Image buffer is not provided\n");
		return -EINVAL;
	}

	header_size = *(buf + MPF_HEADER_SIZE_OFFSET);
	if (header_size > count) {
		info->header_size = header_size;
		return -EAGAIN;
	}

	/*
	 * Go through look-up table to find out where actual bitstream starts
	 * and where sizes of components of the bitstream lies.
	 */
	blocks_num = *(buf + header_size - 1);
	block_id_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET;
	block_start_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_START_OFFSET;

	header_size += blocks_num * MPF_LOOKUP_TABLE_RECORD_SIZE;
	if (header_size > count) {
		info->header_size = header_size;
		return -EAGAIN;
	}

	components_size_start = 0;
	bitstream_start = 0;

	while (blocks_num--) {
		block_id = *(buf + block_id_offset);
		block_start = get_unaligned_le32(buf + block_start_offset);

		switch (block_id) {
		case MPF_BITSTREAM_ID:
			bitstream_start = block_start;
			info->header_size = block_start;
			if (block_start > count)
				return -EAGAIN;

			break;
		case MPF_COMPONENTS_SIZE_ID:
			components_size_start = block_start;
			break;
		default:
			break;
		}

		if (bitstream_start && components_size_start)
			break;

		block_id_offset += MPF_LOOKUP_TABLE_RECORD_SIZE;
		block_start_offset += MPF_LOOKUP_TABLE_RECORD_SIZE;
	}

	if (!bitstream_start || !components_size_start) {
		dev_err(&mgr->dev, "Failed to parse header look-up table\n");
		return -EFAULT;
	}

	/*
	 * Parse bitstream size.
	 * Sizes of components of the bitstream are 22-bits long placed next
	 * to each other. Image header should be extended by now up to where
	 * actual bitstream starts, so no need for overflow check anymore.
	 */
	components_num = get_unaligned_le16(buf + MPF_DATA_SIZE_OFFSET);

	for (i = 0; i < components_num; i++) {
		component_size_byte_num =
			(i * MPF_BITS_PER_COMPONENT_SIZE) / BITS_PER_BYTE;
		component_size_byte_off =
			(i * MPF_BITS_PER_COMPONENT_SIZE) % BITS_PER_BYTE;

		component_size = get_unaligned_le32(buf +
						    components_size_start +
						    component_size_byte_num);
		component_size >>= component_size_byte_off;
		component_size &= GENMASK(MPF_BITS_PER_COMPONENT_SIZE - 1, 0);

		info->data_size += component_size * MPF_SPI_FRAME_SIZE;
	}

	return 0;
}

static int mpf_poll_status(struct mpf_priv *priv, u8 mask)
{
	int ret, status;

	/*
	 * Busy poll HW status. Polling stops if any of the following
	 * conditions are met:
	 *  - timeout is reached
	 *  - mpf_read_status() returns an error
	 *  - busy bit is cleared AND mask bits are set
	 */
	ret = read_poll_timeout(mpf_read_status, status,
				(status < 0) ||
				((status & (MPF_STATUS_BUSY | mask)) == mask),
				0, MPF_STATUS_POLL_TIMEOUT, false, priv);
	if (ret < 0)
		return ret;

	return status;
}

static int mpf_spi_write(struct mpf_priv *priv, const void *buf, size_t buf_size)
{
	int status = mpf_poll_status(priv, 0);

	if (status < 0)
		return status;

	return spi_write_then_read(priv->spi, buf, buf_size, NULL, 0);
}

static int mpf_spi_write_then_read(struct mpf_priv *priv,
				   const void *txbuf, size_t txbuf_size,
				   void *rxbuf, size_t rxbuf_size)
{
	const u8 read_command[] = { MPF_SPI_READ_DATA };
	int ret;

	ret = mpf_spi_write(priv, txbuf, txbuf_size);
	if (ret)
		return ret;

	ret = mpf_poll_status(priv, MPF_STATUS_READY);
	if (ret < 0)
		return ret;

	return spi_write_then_read(priv->spi, read_command, sizeof(read_command),
				   rxbuf, rxbuf_size);
}

static int mpf_ops_write_init(struct fpga_manager *mgr,
			      struct fpga_image_info *info, const char *buf,
			      size_t count)
{
	const u8 program_mode[] = { MPF_SPI_FRAME_INIT, MPF_SPI_PRG_MODE };
	const u8 isc_en_command[] = { MPF_SPI_ISC_ENABLE };
	struct mpf_priv *priv = mgr->priv;
	struct device *dev = &mgr->dev;
	u32 isc_ret = 0;
	int ret;

	if (info->flags & FPGA_MGR_PARTIAL_RECONFIG) {
		dev_err(dev, "Partial reconfiguration is not supported\n");
		return -EOPNOTSUPP;
	}

	ret = mpf_spi_write_then_read(priv, isc_en_command, sizeof(isc_en_command),
				      &isc_ret, sizeof(isc_ret));
	if (ret || isc_ret) {
		dev_err(dev, "Failed to enable ISC: spi_ret %d, isc_ret %u\n",
			ret, isc_ret);
		return -EFAULT;
	}

	ret = mpf_spi_write(priv, program_mode, sizeof(program_mode));
	if (ret) {
		dev_err(dev, "Failed to enter program mode: %d\n", ret);
		return ret;
	}

	priv->program_mode = true;

	return 0;
}

static int mpf_spi_frame_write(struct mpf_priv *priv, const char *buf)
{
	struct spi_transfer xfers[2] = {
		{
			.tx_buf = &priv->tx,
			.len = 1,
		}, {
			.tx_buf = buf,
			.len = MPF_SPI_FRAME_SIZE,
		},
	};
	int ret;

	ret = mpf_poll_status(priv, 0);
	if (ret < 0)
		return ret;

	priv->tx = MPF_SPI_FRAME;

	return spi_sync_transfer(priv->spi, xfers, ARRAY_SIZE(xfers));
}

static int mpf_ops_write(struct fpga_manager *mgr, const char *buf, size_t count)
{
	struct mpf_priv *priv = mgr->priv;
	struct device *dev = &mgr->dev;
	int ret, i;

	if (count % MPF_SPI_FRAME_SIZE) {
		dev_err(dev, "Bitstream size is not a multiple of %d\n",
			MPF_SPI_FRAME_SIZE);
		return -EINVAL;
	}

	for (i = 0; i < count / MPF_SPI_FRAME_SIZE; i++) {
		ret = mpf_spi_frame_write(priv, buf + i * MPF_SPI_FRAME_SIZE);
		if (ret) {
			dev_err(dev, "Failed to write bitstream frame %d/%zu\n",
				i, count / MPF_SPI_FRAME_SIZE);
			return ret;
		}
	}

	return 0;
}

static int mpf_ops_write_complete(struct fpga_manager *mgr,
				  struct fpga_image_info *info)
{
	const u8 isc_dis_command[] = { MPF_SPI_ISC_DISABLE };
	const u8 release_command[] = { MPF_SPI_RELEASE };
	struct mpf_priv *priv = mgr->priv;
	struct device *dev = &mgr->dev;
	int ret;

	ret = mpf_spi_write(priv, isc_dis_command, sizeof(isc_dis_command));
	if (ret) {
		dev_err(dev, "Failed to disable ISC: %d\n", ret);
		return ret;
	}

	usleep_range(1000, 2000);

	ret = mpf_spi_write(priv, release_command, sizeof(release_command));
	if (ret) {
		dev_err(dev, "Failed to exit program mode: %d\n", ret);
		return ret;
	}

	priv->program_mode = false;

	return 0;
}

static const struct fpga_manager_ops mpf_ops = {
	.state = mpf_ops_state,
	.initial_header_size = 71,
	.skip_header = true,
	.parse_header = mpf_ops_parse_header,
	.write_init = mpf_ops_write_init,
	.write = mpf_ops_write,
	.write_complete = mpf_ops_write_complete,
};

static int mpf_probe(struct spi_device *spi)
{
	struct device *dev = &spi->dev;
	struct fpga_manager *mgr;
	struct mpf_priv *priv;

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->spi = spi;

	mgr = devm_fpga_mgr_register(dev, "Microchip Polarfire SPI FPGA Manager",
				     &mpf_ops, priv);

	return PTR_ERR_OR_ZERO(mgr);
}

static const struct spi_device_id mpf_spi_ids[] = {
	{ .name = "mpf-spi-fpga-mgr", },
	{},
};
MODULE_DEVICE_TABLE(spi, mpf_spi_ids);

#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id mpf_of_ids[] = {
	{ .compatible = "microchip,mpf-spi-fpga-mgr" },
	{},
};
MODULE_DEVICE_TABLE(of, mpf_of_ids);
#endif /* IS_ENABLED(CONFIG_OF) */

static struct spi_driver mpf_driver = {
	.probe = mpf_probe,
	.id_table = mpf_spi_ids,
	.driver = {
		.name = "microchip_mpf_spi_fpga_mgr",
		.of_match_table = of_match_ptr(mpf_of_ids),
	},
};

module_spi_driver(mpf_driver);

MODULE_DESCRIPTION("Microchip Polarfire SPI FPGA Manager");
MODULE_AUTHOR("Ivan Bornyakov <i.bornyakov@metrotek.ru>");
MODULE_LICENSE("GPL");