summaryrefslogtreecommitdiff
path: root/drivers/clocksource/exynos_mct.c
blob: 6db3d5511b0ffa9cc388aaf405d2c1039649eb1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// SPDX-License-Identifier: GPL-2.0-only
/* linux/arch/arm/mach-exynos4/mct.c
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * Exynos4 MCT(Multi-Core Timer) support
*/

#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/percpu.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>

#define EXYNOS4_MCTREG(x)		(x)
#define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
#define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
#define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
#define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
#define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
#define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
#define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
#define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
#define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
#define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
#define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
#define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
#define EXYNOS4_MCT_L_MASK		(0xffffff00)

#define MCT_L_TCNTB_OFFSET		(0x00)
#define MCT_L_ICNTB_OFFSET		(0x08)
#define MCT_L_TCON_OFFSET		(0x20)
#define MCT_L_INT_CSTAT_OFFSET		(0x30)
#define MCT_L_INT_ENB_OFFSET		(0x34)
#define MCT_L_WSTAT_OFFSET		(0x40)
#define MCT_G_TCON_START		(1 << 8)
#define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
#define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
#define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
#define MCT_L_TCON_INT_START		(1 << 1)
#define MCT_L_TCON_TIMER_START		(1 << 0)

#define TICK_BASE_CNT	1

#ifdef CONFIG_ARM
/* Use values higher than ARM arch timer. See 6282edb72bed. */
#define MCT_CLKSOURCE_RATING		450
#define MCT_CLKEVENTS_RATING		500
#else
#define MCT_CLKSOURCE_RATING		350
#define MCT_CLKEVENTS_RATING		350
#endif

enum {
	MCT_INT_SPI,
	MCT_INT_PPI
};

enum {
	MCT_G0_IRQ,
	MCT_G1_IRQ,
	MCT_G2_IRQ,
	MCT_G3_IRQ,
	MCT_L0_IRQ,
	MCT_L1_IRQ,
	MCT_L2_IRQ,
	MCT_L3_IRQ,
	MCT_L4_IRQ,
	MCT_L5_IRQ,
	MCT_L6_IRQ,
	MCT_L7_IRQ,
	MCT_NR_IRQS,
};

static void __iomem *reg_base;
static unsigned long clk_rate;
static unsigned int mct_int_type;
static int mct_irqs[MCT_NR_IRQS];

struct mct_clock_event_device {
	struct clock_event_device evt;
	unsigned long base;
	char name[10];
};

static void exynos4_mct_write(unsigned int value, unsigned long offset)
{
	unsigned long stat_addr;
	u32 mask;
	u32 i;

	writel_relaxed(value, reg_base + offset);

	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
		switch (offset & ~EXYNOS4_MCT_L_MASK) {
		case MCT_L_TCON_OFFSET:
			mask = 1 << 3;		/* L_TCON write status */
			break;
		case MCT_L_ICNTB_OFFSET:
			mask = 1 << 1;		/* L_ICNTB write status */
			break;
		case MCT_L_TCNTB_OFFSET:
			mask = 1 << 0;		/* L_TCNTB write status */
			break;
		default:
			return;
		}
	} else {
		switch (offset) {
		case EXYNOS4_MCT_G_TCON:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 16;		/* G_TCON write status */
			break;
		case EXYNOS4_MCT_G_COMP0_L:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 0;		/* G_COMP0_L write status */
			break;
		case EXYNOS4_MCT_G_COMP0_U:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 1;		/* G_COMP0_U write status */
			break;
		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
			break;
		case EXYNOS4_MCT_G_CNT_L:
			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
			mask = 1 << 0;		/* G_CNT_L write status */
			break;
		case EXYNOS4_MCT_G_CNT_U:
			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
			mask = 1 << 1;		/* G_CNT_U write status */
			break;
		default:
			return;
		}
	}

	/* Wait maximum 1 ms until written values are applied */
	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
		if (readl_relaxed(reg_base + stat_addr) & mask) {
			writel_relaxed(mask, reg_base + stat_addr);
			return;
		}

	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
}

/* Clocksource handling */
static void exynos4_mct_frc_start(void)
{
	u32 reg;

	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
	reg |= MCT_G_TCON_START;
	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
}

/**
 * exynos4_read_count_64 - Read all 64-bits of the global counter
 *
 * This will read all 64-bits of the global counter taking care to make sure
 * that the upper and lower half match.  Note that reading the MCT can be quite
 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
 * only) version when possible.
 *
 * Returns the number of cycles in the global counter.
 */
static u64 exynos4_read_count_64(void)
{
	unsigned int lo, hi;
	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);

	do {
		hi = hi2;
		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
	} while (hi != hi2);

	return ((u64)hi << 32) | lo;
}

/**
 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
 *
 * This will read just the lower 32-bits of the global counter.  This is marked
 * as notrace so it can be used by the scheduler clock.
 *
 * Returns the number of cycles in the global counter (lower 32 bits).
 */
static u32 notrace exynos4_read_count_32(void)
{
	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
}

static u64 exynos4_frc_read(struct clocksource *cs)
{
	return exynos4_read_count_32();
}

static void exynos4_frc_resume(struct clocksource *cs)
{
	exynos4_mct_frc_start();
}

static struct clocksource mct_frc = {
	.name		= "mct-frc",
	.rating		= MCT_CLKSOURCE_RATING,
	.read		= exynos4_frc_read,
	.mask		= CLOCKSOURCE_MASK(32),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.resume		= exynos4_frc_resume,
};

static u64 notrace exynos4_read_sched_clock(void)
{
	return exynos4_read_count_32();
}

#if defined(CONFIG_ARM)
static struct delay_timer exynos4_delay_timer;

static cycles_t exynos4_read_current_timer(void)
{
	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
			 "cycles_t needs to move to 32-bit for ARM64 usage");
	return exynos4_read_count_32();
}
#endif

static int __init exynos4_clocksource_init(void)
{
	exynos4_mct_frc_start();

#if defined(CONFIG_ARM)
	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
	exynos4_delay_timer.freq = clk_rate;
	register_current_timer_delay(&exynos4_delay_timer);
#endif

	if (clocksource_register_hz(&mct_frc, clk_rate))
		panic("%s: can't register clocksource\n", mct_frc.name);

	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);

	return 0;
}

static void exynos4_mct_comp0_stop(void)
{
	unsigned int tcon;

	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);

	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
}

static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
{
	unsigned int tcon;
	u64 comp_cycle;

	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);

	if (periodic) {
		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
	}

	comp_cycle = exynos4_read_count_64() + cycles;
	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);

	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);

	tcon |= MCT_G_TCON_COMP0_ENABLE;
	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
}

static int exynos4_comp_set_next_event(unsigned long cycles,
				       struct clock_event_device *evt)
{
	exynos4_mct_comp0_start(false, cycles);

	return 0;
}

static int mct_set_state_shutdown(struct clock_event_device *evt)
{
	exynos4_mct_comp0_stop();
	return 0;
}

static int mct_set_state_periodic(struct clock_event_device *evt)
{
	unsigned long cycles_per_jiffy;

	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
			    >> evt->shift);
	exynos4_mct_comp0_stop();
	exynos4_mct_comp0_start(true, cycles_per_jiffy);
	return 0;
}

static struct clock_event_device mct_comp_device = {
	.name			= "mct-comp",
	.features		= CLOCK_EVT_FEAT_PERIODIC |
				  CLOCK_EVT_FEAT_ONESHOT,
	.rating			= 250,
	.set_next_event		= exynos4_comp_set_next_event,
	.set_state_periodic	= mct_set_state_periodic,
	.set_state_shutdown	= mct_set_state_shutdown,
	.set_state_oneshot	= mct_set_state_shutdown,
	.set_state_oneshot_stopped = mct_set_state_shutdown,
	.tick_resume		= mct_set_state_shutdown,
};

static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);

	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static int exynos4_clockevent_init(void)
{
	mct_comp_device.cpumask = cpumask_of(0);
	clockevents_config_and_register(&mct_comp_device, clk_rate,
					0xf, 0xffffffff);
	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
			&mct_comp_device))
		pr_err("%s: request_irq() failed\n", "mct_comp_irq");

	return 0;
}

static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);

/* Clock event handling */
static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
{
	unsigned long tmp;
	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;

	tmp = readl_relaxed(reg_base + offset);
	if (tmp & mask) {
		tmp &= ~mask;
		exynos4_mct_write(tmp, offset);
	}
}

static void exynos4_mct_tick_start(unsigned long cycles,
				   struct mct_clock_event_device *mevt)
{
	unsigned long tmp;

	exynos4_mct_tick_stop(mevt);

	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */

	/* update interrupt count buffer */
	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);

	/* enable MCT tick interrupt */
	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);

	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
	       MCT_L_TCON_INTERVAL_MODE;
	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
}

static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
{
	/* Clear the MCT tick interrupt */
	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
}

static int exynos4_tick_set_next_event(unsigned long cycles,
				       struct clock_event_device *evt)
{
	struct mct_clock_event_device *mevt;

	mevt = container_of(evt, struct mct_clock_event_device, evt);
	exynos4_mct_tick_start(cycles, mevt);
	return 0;
}

static int set_state_shutdown(struct clock_event_device *evt)
{
	struct mct_clock_event_device *mevt;

	mevt = container_of(evt, struct mct_clock_event_device, evt);
	exynos4_mct_tick_stop(mevt);
	exynos4_mct_tick_clear(mevt);
	return 0;
}

static int set_state_periodic(struct clock_event_device *evt)
{
	struct mct_clock_event_device *mevt;
	unsigned long cycles_per_jiffy;

	mevt = container_of(evt, struct mct_clock_event_device, evt);
	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
			    >> evt->shift);
	exynos4_mct_tick_stop(mevt);
	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
	return 0;
}

static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
{
	struct mct_clock_event_device *mevt = dev_id;
	struct clock_event_device *evt = &mevt->evt;

	/*
	 * This is for supporting oneshot mode.
	 * Mct would generate interrupt periodically
	 * without explicit stopping.
	 */
	if (!clockevent_state_periodic(&mevt->evt))
		exynos4_mct_tick_stop(mevt);

	exynos4_mct_tick_clear(mevt);

	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static int exynos4_mct_starting_cpu(unsigned int cpu)
{
	struct mct_clock_event_device *mevt =
		per_cpu_ptr(&percpu_mct_tick, cpu);
	struct clock_event_device *evt = &mevt->evt;

	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);

	evt->name = mevt->name;
	evt->cpumask = cpumask_of(cpu);
	evt->set_next_event = exynos4_tick_set_next_event;
	evt->set_state_periodic = set_state_periodic;
	evt->set_state_shutdown = set_state_shutdown;
	evt->set_state_oneshot = set_state_shutdown;
	evt->set_state_oneshot_stopped = set_state_shutdown;
	evt->tick_resume = set_state_shutdown;
	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
			CLOCK_EVT_FEAT_PERCPU;
	evt->rating = MCT_CLKEVENTS_RATING;

	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);

	if (mct_int_type == MCT_INT_SPI) {

		if (evt->irq == -1)
			return -EIO;

		irq_force_affinity(evt->irq, cpumask_of(cpu));
		enable_irq(evt->irq);
	} else {
		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
	}
	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
					0xf, 0x7fffffff);

	return 0;
}

static int exynos4_mct_dying_cpu(unsigned int cpu)
{
	struct mct_clock_event_device *mevt =
		per_cpu_ptr(&percpu_mct_tick, cpu);
	struct clock_event_device *evt = &mevt->evt;

	evt->set_state_shutdown(evt);
	if (mct_int_type == MCT_INT_SPI) {
		if (evt->irq != -1)
			disable_irq_nosync(evt->irq);
		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
	} else {
		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
	}
	return 0;
}

static int __init exynos4_timer_resources(struct device_node *np)
{
	struct clk *mct_clk, *tick_clk;

	reg_base = of_iomap(np, 0);
	if (!reg_base)
		panic("%s: unable to ioremap mct address space\n", __func__);

	tick_clk = of_clk_get_by_name(np, "fin_pll");
	if (IS_ERR(tick_clk))
		panic("%s: unable to determine tick clock rate\n", __func__);
	clk_rate = clk_get_rate(tick_clk);

	mct_clk = of_clk_get_by_name(np, "mct");
	if (IS_ERR(mct_clk))
		panic("%s: unable to retrieve mct clock instance\n", __func__);
	clk_prepare_enable(mct_clk);

	return 0;
}

static int __init exynos4_timer_interrupts(struct device_node *np,
					   unsigned int int_type)
{
	int nr_irqs, i, err, cpu;

	mct_int_type = int_type;

	/* This driver uses only one global timer interrupt */
	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);

	/*
	 * Find out the number of local irqs specified. The local
	 * timer irqs are specified after the four global timer
	 * irqs are specified.
	 */
	nr_irqs = of_irq_count(np);
	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
		mct_irqs[i] = irq_of_parse_and_map(np, i);

	if (mct_int_type == MCT_INT_PPI) {

		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
					 exynos4_mct_tick_isr, "MCT",
					 &percpu_mct_tick);
		WARN(err, "MCT: can't request IRQ %d (%d)\n",
		     mct_irqs[MCT_L0_IRQ], err);
	} else {
		for_each_possible_cpu(cpu) {
			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
			struct mct_clock_event_device *pcpu_mevt =
				per_cpu_ptr(&percpu_mct_tick, cpu);

			pcpu_mevt->evt.irq = -1;

			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
			if (request_irq(mct_irq,
					exynos4_mct_tick_isr,
					IRQF_TIMER | IRQF_NOBALANCING,
					pcpu_mevt->name, pcpu_mevt)) {
				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
									cpu);

				continue;
			}
			pcpu_mevt->evt.irq = mct_irq;
		}
	}

	/* Install hotplug callbacks which configure the timer on this CPU */
	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
				"clockevents/exynos4/mct_timer:starting",
				exynos4_mct_starting_cpu,
				exynos4_mct_dying_cpu);
	if (err)
		goto out_irq;

	return 0;

out_irq:
	if (mct_int_type == MCT_INT_PPI) {
		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
	} else {
		for_each_possible_cpu(cpu) {
			struct mct_clock_event_device *pcpu_mevt =
				per_cpu_ptr(&percpu_mct_tick, cpu);

			if (pcpu_mevt->evt.irq != -1) {
				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
				pcpu_mevt->evt.irq = -1;
			}
		}
	}
	return err;
}

static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
{
	int ret;

	ret = exynos4_timer_resources(np);
	if (ret)
		return ret;

	ret = exynos4_timer_interrupts(np, int_type);
	if (ret)
		return ret;

	ret = exynos4_clocksource_init();
	if (ret)
		return ret;

	return exynos4_clockevent_init();
}


static int __init mct_init_spi(struct device_node *np)
{
	return mct_init_dt(np, MCT_INT_SPI);
}

static int __init mct_init_ppi(struct device_node *np)
{
	return mct_init_dt(np, MCT_INT_PPI);
}
TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);