summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/traps.c
blob: 4fa0b17e5043aa81070fe7716cda5518f808957c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * Handle hardware traps and faults.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/context_tracking.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/kmsan.h>
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/io.h>
#include <linux/hardirq.h>
#include <linux/atomic.h>
#include <linux/iommu.h>

#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/realmode.h>
#include <asm/text-patching.h>
#include <asm/ftrace.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/fred.h>
#include <asm/fpu/api.h>
#include <asm/cpu.h>
#include <asm/cpu_entry_area.h>
#include <asm/mce.h>
#include <asm/fixmap.h>
#include <asm/mach_traps.h>
#include <asm/alternative.h>
#include <asm/fpu/xstate.h>
#include <asm/vm86.h>
#include <asm/umip.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/vdso.h>
#include <asm/tdx.h>
#include <asm/cfi.h>

#ifdef CONFIG_X86_64
#include <asm/x86_init.h>
#else
#include <asm/processor-flags.h>
#include <asm/setup.h>
#endif

#include <asm/proto.h>

DECLARE_BITMAP(system_vectors, NR_VECTORS);

__always_inline int is_valid_bugaddr(unsigned long addr)
{
	if (addr < TASK_SIZE_MAX)
		return 0;

	/*
	 * We got #UD, if the text isn't readable we'd have gotten
	 * a different exception.
	 */
	return *(unsigned short *)addr == INSN_UD2;
}

static nokprobe_inline int
do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
		  struct pt_regs *regs,	long error_code)
{
	if (v8086_mode(regs)) {
		/*
		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
		 * On nmi (interrupt 2), do_trap should not be called.
		 */
		if (trapnr < X86_TRAP_UD) {
			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
						error_code, trapnr))
				return 0;
		}
	} else if (!user_mode(regs)) {
		if (fixup_exception(regs, trapnr, error_code, 0))
			return 0;

		tsk->thread.error_code = error_code;
		tsk->thread.trap_nr = trapnr;
		die(str, regs, error_code);
	} else {
		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
			return 0;
	}

	/*
	 * We want error_code and trap_nr set for userspace faults and
	 * kernelspace faults which result in die(), but not
	 * kernelspace faults which are fixed up.  die() gives the
	 * process no chance to handle the signal and notice the
	 * kernel fault information, so that won't result in polluting
	 * the information about previously queued, but not yet
	 * delivered, faults.  See also exc_general_protection below.
	 */
	tsk->thread.error_code = error_code;
	tsk->thread.trap_nr = trapnr;

	return -1;
}

static void show_signal(struct task_struct *tsk, int signr,
			const char *type, const char *desc,
			struct pt_regs *regs, long error_code)
{
	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
	    printk_ratelimit()) {
		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
			tsk->comm, task_pid_nr(tsk), type, desc,
			regs->ip, regs->sp, error_code);
		print_vma_addr(KERN_CONT " in ", regs->ip);
		pr_cont("\n");
	}
}

static void
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
	long error_code, int sicode, void __user *addr)
{
	struct task_struct *tsk = current;

	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
		return;

	show_signal(tsk, signr, "trap ", str, regs, error_code);

	if (!sicode)
		force_sig(signr);
	else
		force_sig_fault(signr, sicode, addr);
}
NOKPROBE_SYMBOL(do_trap);

static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
	unsigned long trapnr, int signr, int sicode, void __user *addr)
{
	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");

	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
			NOTIFY_STOP) {
		cond_local_irq_enable(regs);
		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
		cond_local_irq_disable(regs);
	}
}

/*
 * Posix requires to provide the address of the faulting instruction for
 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 *
 * This address is usually regs->ip, but when an uprobe moved the code out
 * of line then regs->ip points to the XOL code which would confuse
 * anything which analyzes the fault address vs. the unmodified binary. If
 * a trap happened in XOL code then uprobe maps regs->ip back to the
 * original instruction address.
 */
static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
{
	return (void __user *)uprobe_get_trap_addr(regs);
}

DEFINE_IDTENTRY(exc_divide_error)
{
	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
		      FPE_INTDIV, error_get_trap_addr(regs));
}

DEFINE_IDTENTRY(exc_overflow)
{
	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
}

#ifdef CONFIG_X86_F00F_BUG
void handle_invalid_op(struct pt_regs *regs)
#else
static inline void handle_invalid_op(struct pt_regs *regs)
#endif
{
	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
		      ILL_ILLOPN, error_get_trap_addr(regs));
}

static noinstr bool handle_bug(struct pt_regs *regs)
{
	bool handled = false;

	/*
	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
	 * is a rare case that uses @regs without passing them to
	 * irqentry_enter().
	 */
	kmsan_unpoison_entry_regs(regs);
	if (!is_valid_bugaddr(regs->ip))
		return handled;

	/*
	 * All lies, just get the WARN/BUG out.
	 */
	instrumentation_begin();
	/*
	 * Since we're emulating a CALL with exceptions, restore the interrupt
	 * state to what it was at the exception site.
	 */
	if (regs->flags & X86_EFLAGS_IF)
		raw_local_irq_enable();
	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
		regs->ip += LEN_UD2;
		handled = true;
	}
	if (regs->flags & X86_EFLAGS_IF)
		raw_local_irq_disable();
	instrumentation_end();

	return handled;
}

DEFINE_IDTENTRY_RAW(exc_invalid_op)
{
	irqentry_state_t state;

	/*
	 * We use UD2 as a short encoding for 'CALL __WARN', as such
	 * handle it before exception entry to avoid recursive WARN
	 * in case exception entry is the one triggering WARNs.
	 */
	if (!user_mode(regs) && handle_bug(regs))
		return;

	state = irqentry_enter(regs);
	instrumentation_begin();
	handle_invalid_op(regs);
	instrumentation_end();
	irqentry_exit(regs, state);
}

DEFINE_IDTENTRY(exc_coproc_segment_overrun)
{
	do_error_trap(regs, 0, "coprocessor segment overrun",
		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
}

DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
{
	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
		      0, NULL);
}

DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
{
	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
		      SIGBUS, 0, NULL);
}

DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
{
	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
		      0, NULL);
}

DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
{
	char *str = "alignment check";

	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
		return;

	if (!user_mode(regs))
		die("Split lock detected\n", regs, error_code);

	local_irq_enable();

	if (handle_user_split_lock(regs, error_code))
		goto out;

	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
		error_code, BUS_ADRALN, NULL);

out:
	local_irq_disable();
}

#ifdef CONFIG_VMAP_STACK
__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
						unsigned long fault_address,
						struct stack_info *info)
{
	const char *name = stack_type_name(info->type);

	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
	       name, (void *)fault_address, info->begin, info->end);

	die("stack guard page", regs, 0);

	/* Be absolutely certain we don't return. */
	panic("%s stack guard hit", name);
}
#endif

/*
 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 *
 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 * SDM's warnings about double faults being unrecoverable, returning works as
 * expected.  Presumably what the SDM actually means is that the CPU may get
 * the register state wrong on entry, so returning could be a bad idea.
 *
 * Various CPU engineers have promised that double faults due to an IRET fault
 * while the stack is read-only are, in fact, recoverable.
 *
 * On x86_32, this is entered through a task gate, and regs are synthesized
 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 * be lost.  If, for some reason, we need to return to a context with modified
 * regs, the shim code could be adjusted to synchronize the registers.
 *
 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 * to be read before doing anything else.
 */
DEFINE_IDTENTRY_DF(exc_double_fault)
{
	static const char str[] = "double fault";
	struct task_struct *tsk = current;

#ifdef CONFIG_VMAP_STACK
	unsigned long address = read_cr2();
	struct stack_info info;
#endif

#ifdef CONFIG_X86_ESPFIX64
	extern unsigned char native_irq_return_iret[];

	/*
	 * If IRET takes a non-IST fault on the espfix64 stack, then we
	 * end up promoting it to a doublefault.  In that case, take
	 * advantage of the fact that we're not using the normal (TSS.sp0)
	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
	 * and then modify our own IRET frame so that, when we return,
	 * we land directly at the #GP(0) vector with the stack already
	 * set up according to its expectations.
	 *
	 * The net result is that our #GP handler will think that we
	 * entered from usermode with the bad user context.
	 *
	 * No need for nmi_enter() here because we don't use RCU.
	 */
	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
		regs->cs == __KERNEL_CS &&
		regs->ip == (unsigned long)native_irq_return_iret)
	{
		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
		unsigned long *p = (unsigned long *)regs->sp;

		/*
		 * regs->sp points to the failing IRET frame on the
		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
		 * in gpregs->ss through gpregs->ip.
		 *
		 */
		gpregs->ip	= p[0];
		gpregs->cs	= p[1];
		gpregs->flags	= p[2];
		gpregs->sp	= p[3];
		gpregs->ss	= p[4];
		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */

		/*
		 * Adjust our frame so that we return straight to the #GP
		 * vector with the expected RSP value.  This is safe because
		 * we won't enable interrupts or schedule before we invoke
		 * general_protection, so nothing will clobber the stack
		 * frame we just set up.
		 *
		 * We will enter general_protection with kernel GSBASE,
		 * which is what the stub expects, given that the faulting
		 * RIP will be the IRET instruction.
		 */
		regs->ip = (unsigned long)asm_exc_general_protection;
		regs->sp = (unsigned long)&gpregs->orig_ax;

		return;
	}
#endif

	irqentry_nmi_enter(regs);
	instrumentation_begin();
	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);

	tsk->thread.error_code = error_code;
	tsk->thread.trap_nr = X86_TRAP_DF;

#ifdef CONFIG_VMAP_STACK
	/*
	 * If we overflow the stack into a guard page, the CPU will fail
	 * to deliver #PF and will send #DF instead.  Similarly, if we
	 * take any non-IST exception while too close to the bottom of
	 * the stack, the processor will get a page fault while
	 * delivering the exception and will generate a double fault.
	 *
	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
	 * Page-Fault Exception (#PF):
	 *
	 *   Processors update CR2 whenever a page fault is detected. If a
	 *   second page fault occurs while an earlier page fault is being
	 *   delivered, the faulting linear address of the second fault will
	 *   overwrite the contents of CR2 (replacing the previous
	 *   address). These updates to CR2 occur even if the page fault
	 *   results in a double fault or occurs during the delivery of a
	 *   double fault.
	 *
	 * The logic below has a small possibility of incorrectly diagnosing
	 * some errors as stack overflows.  For example, if the IDT or GDT
	 * gets corrupted such that #GP delivery fails due to a bad descriptor
	 * causing #GP and we hit this condition while CR2 coincidentally
	 * points to the stack guard page, we'll think we overflowed the
	 * stack.  Given that we're going to panic one way or another
	 * if this happens, this isn't necessarily worth fixing.
	 *
	 * If necessary, we could improve the test by only diagnosing
	 * a stack overflow if the saved RSP points within 47 bytes of
	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
	 * take an exception, the stack is already aligned and there
	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
	 * possible error code, so a stack overflow would *not* double
	 * fault.  With any less space left, exception delivery could
	 * fail, and, as a practical matter, we've overflowed the
	 * stack even if the actual trigger for the double fault was
	 * something else.
	 */
	if (get_stack_guard_info((void *)address, &info))
		handle_stack_overflow(regs, address, &info);
#endif

	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
	die("double fault", regs, error_code);
	panic("Machine halted.");
	instrumentation_end();
}

DEFINE_IDTENTRY(exc_bounds)
{
	if (notify_die(DIE_TRAP, "bounds", regs, 0,
			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
		return;
	cond_local_irq_enable(regs);

	if (!user_mode(regs))
		die("bounds", regs, 0);

	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);

	cond_local_irq_disable(regs);
}

enum kernel_gp_hint {
	GP_NO_HINT,
	GP_NON_CANONICAL,
	GP_CANONICAL
};

/*
 * When an uncaught #GP occurs, try to determine the memory address accessed by
 * the instruction and return that address to the caller. Also, try to figure
 * out whether any part of the access to that address was non-canonical.
 */
static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
						 unsigned long *addr)
{
	u8 insn_buf[MAX_INSN_SIZE];
	struct insn insn;
	int ret;

	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
			MAX_INSN_SIZE))
		return GP_NO_HINT;

	ret = insn_decode_kernel(&insn, insn_buf);
	if (ret < 0)
		return GP_NO_HINT;

	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
	if (*addr == -1UL)
		return GP_NO_HINT;

#ifdef CONFIG_X86_64
	/*
	 * Check that:
	 *  - the operand is not in the kernel half
	 *  - the last byte of the operand is not in the user canonical half
	 */
	if (*addr < ~__VIRTUAL_MASK &&
	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
		return GP_NON_CANONICAL;
#endif

	return GP_CANONICAL;
}

#define GPFSTR "general protection fault"

static bool fixup_iopl_exception(struct pt_regs *regs)
{
	struct thread_struct *t = &current->thread;
	unsigned char byte;
	unsigned long ip;

	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
		return false;

	if (insn_get_effective_ip(regs, &ip))
		return false;

	if (get_user(byte, (const char __user *)ip))
		return false;

	if (byte != 0xfa && byte != 0xfb)
		return false;

	if (!t->iopl_warn && printk_ratelimit()) {
		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
		       current->comm, task_pid_nr(current), ip);
		print_vma_addr(KERN_CONT " in ", ip);
		pr_cont("\n");
		t->iopl_warn = 1;
	}

	regs->ip += 1;
	return true;
}

/*
 * The unprivileged ENQCMD instruction generates #GPs if the
 * IA32_PASID MSR has not been populated.  If possible, populate
 * the MSR from a PASID previously allocated to the mm.
 */
static bool try_fixup_enqcmd_gp(void)
{
#ifdef CONFIG_ARCH_HAS_CPU_PASID
	u32 pasid;

	/*
	 * MSR_IA32_PASID is managed using XSAVE.  Directly
	 * writing to the MSR is only possible when fpregs
	 * are valid and the fpstate is not.  This is
	 * guaranteed when handling a userspace exception
	 * in *before* interrupts are re-enabled.
	 */
	lockdep_assert_irqs_disabled();

	/*
	 * Hardware without ENQCMD will not generate
	 * #GPs that can be fixed up here.
	 */
	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
		return false;

	/*
	 * If the mm has not been allocated a
	 * PASID, the #GP can not be fixed up.
	 */
	if (!mm_valid_pasid(current->mm))
		return false;

	pasid = mm_get_enqcmd_pasid(current->mm);

	/*
	 * Did this thread already have its PASID activated?
	 * If so, the #GP must be from something else.
	 */
	if (current->pasid_activated)
		return false;

	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
	current->pasid_activated = 1;

	return true;
#else
	return false;
#endif
}

static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
				    unsigned long error_code, const char *str,
				    unsigned long address)
{
	if (fixup_exception(regs, trapnr, error_code, address))
		return true;

	current->thread.error_code = error_code;
	current->thread.trap_nr = trapnr;

	/*
	 * To be potentially processing a kprobe fault and to trust the result
	 * from kprobe_running(), we have to be non-preemptible.
	 */
	if (!preemptible() && kprobe_running() &&
	    kprobe_fault_handler(regs, trapnr))
		return true;

	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
}

static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
				   unsigned long error_code, const char *str)
{
	current->thread.error_code = error_code;
	current->thread.trap_nr = trapnr;
	show_signal(current, SIGSEGV, "", str, regs, error_code);
	force_sig(SIGSEGV);
}

DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
{
	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
	enum kernel_gp_hint hint = GP_NO_HINT;
	unsigned long gp_addr;

	if (user_mode(regs) && try_fixup_enqcmd_gp())
		return;

	cond_local_irq_enable(regs);

	if (static_cpu_has(X86_FEATURE_UMIP)) {
		if (user_mode(regs) && fixup_umip_exception(regs))
			goto exit;
	}

	if (v8086_mode(regs)) {
		local_irq_enable();
		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
		local_irq_disable();
		return;
	}

	if (user_mode(regs)) {
		if (fixup_iopl_exception(regs))
			goto exit;

		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
			goto exit;

		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
		goto exit;
	}

	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
		goto exit;

	if (error_code)
		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
	else
		hint = get_kernel_gp_address(regs, &gp_addr);

	if (hint != GP_NO_HINT)
		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
						    : "maybe for address",
			 gp_addr);

	/*
	 * KASAN is interested only in the non-canonical case, clear it
	 * otherwise.
	 */
	if (hint != GP_NON_CANONICAL)
		gp_addr = 0;

	die_addr(desc, regs, error_code, gp_addr);

exit:
	cond_local_irq_disable(regs);
}

static bool do_int3(struct pt_regs *regs)
{
	int res;

#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
			 SIGTRAP) == NOTIFY_STOP)
		return true;
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */

#ifdef CONFIG_KPROBES
	if (kprobe_int3_handler(regs))
		return true;
#endif
	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);

	return res == NOTIFY_STOP;
}
NOKPROBE_SYMBOL(do_int3);

static void do_int3_user(struct pt_regs *regs)
{
	if (do_int3(regs))
		return;

	cond_local_irq_enable(regs);
	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
	cond_local_irq_disable(regs);
}

DEFINE_IDTENTRY_RAW(exc_int3)
{
	/*
	 * poke_int3_handler() is completely self contained code; it does (and
	 * must) *NOT* call out to anything, lest it hits upon yet another
	 * INT3.
	 */
	if (poke_int3_handler(regs))
		return;

	/*
	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
	 * and therefore can trigger INT3, hence poke_int3_handler() must
	 * be done before. If the entry came from kernel mode, then use
	 * nmi_enter() because the INT3 could have been hit in any context
	 * including NMI.
	 */
	if (user_mode(regs)) {
		irqentry_enter_from_user_mode(regs);
		instrumentation_begin();
		do_int3_user(regs);
		instrumentation_end();
		irqentry_exit_to_user_mode(regs);
	} else {
		irqentry_state_t irq_state = irqentry_nmi_enter(regs);

		instrumentation_begin();
		if (!do_int3(regs))
			die("int3", regs, 0);
		instrumentation_end();
		irqentry_nmi_exit(regs, irq_state);
	}
}

#ifdef CONFIG_X86_64
/*
 * Help handler running on a per-cpu (IST or entry trampoline) stack
 * to switch to the normal thread stack if the interrupted code was in
 * user mode. The actual stack switch is done in entry_64.S
 */
asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
{
	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
	if (regs != eregs)
		*regs = *eregs;
	return regs;
}

#ifdef CONFIG_AMD_MEM_ENCRYPT
asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
{
	unsigned long sp, *stack;
	struct stack_info info;
	struct pt_regs *regs_ret;

	/*
	 * In the SYSCALL entry path the RSP value comes from user-space - don't
	 * trust it and switch to the current kernel stack
	 */
	if (ip_within_syscall_gap(regs)) {
		sp = current_top_of_stack();
		goto sync;
	}

	/*
	 * From here on the RSP value is trusted. Now check whether entry
	 * happened from a safe stack. Not safe are the entry or unknown stacks,
	 * use the fall-back stack instead in this case.
	 */
	sp    = regs->sp;
	stack = (unsigned long *)sp;

	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
	    info.type > STACK_TYPE_EXCEPTION_LAST)
		sp = __this_cpu_ist_top_va(VC2);

sync:
	/*
	 * Found a safe stack - switch to it as if the entry didn't happen via
	 * IST stack. The code below only copies pt_regs, the real switch happens
	 * in assembly code.
	 */
	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);

	regs_ret = (struct pt_regs *)sp;
	*regs_ret = *regs;

	return regs_ret;
}
#endif

asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
{
	struct pt_regs tmp, *new_stack;

	/*
	 * This is called from entry_64.S early in handling a fault
	 * caused by a bad iret to user mode.  To handle the fault
	 * correctly, we want to move our stack frame to where it would
	 * be had we entered directly on the entry stack (rather than
	 * just below the IRET frame) and we want to pretend that the
	 * exception came from the IRET target.
	 */
	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;

	/* Copy the IRET target to the temporary storage. */
	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);

	/* Copy the remainder of the stack from the current stack. */
	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));

	/* Update the entry stack */
	__memcpy(new_stack, &tmp, sizeof(tmp));

	BUG_ON(!user_mode(new_stack));
	return new_stack;
}
#endif

static bool is_sysenter_singlestep(struct pt_regs *regs)
{
	/*
	 * We don't try for precision here.  If we're anywhere in the region of
	 * code that can be single-stepped in the SYSENTER entry path, then
	 * assume that this is a useless single-step trap due to SYSENTER
	 * being invoked with TF set.  (We don't know in advance exactly
	 * which instructions will be hit because BTF could plausibly
	 * be set.)
	 */
#ifdef CONFIG_X86_32
	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
		(unsigned long)__end_SYSENTER_singlestep_region -
		(unsigned long)__begin_SYSENTER_singlestep_region;
#elif defined(CONFIG_IA32_EMULATION)
	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
		(unsigned long)__end_entry_SYSENTER_compat -
		(unsigned long)entry_SYSENTER_compat;
#else
	return false;
#endif
}

static __always_inline unsigned long debug_read_clear_dr6(void)
{
	unsigned long dr6;

	/*
	 * The Intel SDM says:
	 *
	 *   Certain debug exceptions may clear bits 0-3. The remaining
	 *   contents of the DR6 register are never cleared by the
	 *   processor. To avoid confusion in identifying debug
	 *   exceptions, debug handlers should clear the register before
	 *   returning to the interrupted task.
	 *
	 * Keep it simple: clear DR6 immediately.
	 */
	get_debugreg(dr6, 6);
	set_debugreg(DR6_RESERVED, 6);
	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */

	return dr6;
}

/*
 * Our handling of the processor debug registers is non-trivial.
 * We do not clear them on entry and exit from the kernel. Therefore
 * it is possible to get a watchpoint trap here from inside the kernel.
 * However, the code in ./ptrace.c has ensured that the user can
 * only set watchpoints on userspace addresses. Therefore the in-kernel
 * watchpoint trap can only occur in code which is reading/writing
 * from user space. Such code must not hold kernel locks (since it
 * can equally take a page fault), therefore it is safe to call
 * force_sig_info even though that claims and releases locks.
 *
 * Code in ./signal.c ensures that the debug control register
 * is restored before we deliver any signal, and therefore that
 * user code runs with the correct debug control register even though
 * we clear it here.
 *
 * Being careful here means that we don't have to be as careful in a
 * lot of more complicated places (task switching can be a bit lazy
 * about restoring all the debug state, and ptrace doesn't have to
 * find every occurrence of the TF bit that could be saved away even
 * by user code)
 *
 * May run on IST stack.
 */

static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
{
	/*
	 * Notifiers will clear bits in @dr6 to indicate the event has been
	 * consumed - hw_breakpoint_handler(), single_stop_cont().
	 *
	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
	 */
	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
		return true;

	return false;
}

static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
{
	/*
	 * Disable breakpoints during exception handling; recursive exceptions
	 * are exceedingly 'fun'.
	 *
	 * Since this function is NOKPROBE, and that also applies to
	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
	 * HW_BREAKPOINT_W on our stack)
	 *
	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
	 * includes the entry stack is excluded for everything.
	 *
	 * For FRED, nested #DB should just work fine. But when a watchpoint or
	 * breakpoint is set in the code path which is executed by #DB handler,
	 * it results in an endless recursion and stack overflow. Thus we stay
	 * with the IDT approach, i.e., save DR7 and disable #DB.
	 */
	unsigned long dr7 = local_db_save();
	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
	instrumentation_begin();

	/*
	 * If something gets miswired and we end up here for a user mode
	 * #DB, we will malfunction.
	 */
	WARN_ON_ONCE(user_mode(regs));

	if (test_thread_flag(TIF_BLOCKSTEP)) {
		/*
		 * The SDM says "The processor clears the BTF flag when it
		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
		 * it for userspace, but we just took a kernel #DB, so re-set
		 * BTF.
		 */
		unsigned long debugctl;

		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
		debugctl |= DEBUGCTLMSR_BTF;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
	}

	/*
	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
	 * watchpoint at the same time then that will still be handled.
	 */
	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
		dr6 &= ~DR_STEP;

	/*
	 * The kernel doesn't use INT1
	 */
	if (!dr6)
		goto out;

	if (notify_debug(regs, &dr6))
		goto out;

	/*
	 * The kernel doesn't use TF single-step outside of:
	 *
	 *  - Kprobes, consumed through kprobe_debug_handler()
	 *  - KGDB, consumed through notify_debug()
	 *
	 * So if we get here with DR_STEP set, something is wonky.
	 *
	 * A known way to trigger this is through QEMU's GDB stub,
	 * which leaks #DB into the guest and causes IST recursion.
	 */
	if (WARN_ON_ONCE(dr6 & DR_STEP))
		regs->flags &= ~X86_EFLAGS_TF;
out:
	instrumentation_end();
	irqentry_nmi_exit(regs, irq_state);

	local_db_restore(dr7);
}

static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
{
	bool icebp;

	/*
	 * If something gets miswired and we end up here for a kernel mode
	 * #DB, we will malfunction.
	 */
	WARN_ON_ONCE(!user_mode(regs));

	/*
	 * NB: We can't easily clear DR7 here because
	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
	 * user memory, etc.  This means that a recursive #DB is possible.  If
	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
	 * Since we're not on the IST stack right now, everything will be
	 * fine.
	 */

	irqentry_enter_from_user_mode(regs);
	instrumentation_begin();

	/*
	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
	 *
	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
	 * even if it is not the result of PTRACE_SINGLESTEP.
	 */
	current->thread.virtual_dr6 = (dr6 & DR_STEP);

	/*
	 * The SDM says "The processor clears the BTF flag when it
	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
	 */
	clear_thread_flag(TIF_BLOCKSTEP);

	/*
	 * If dr6 has no reason to give us about the origin of this trap,
	 * then it's very likely the result of an icebp/int01 trap.
	 * User wants a sigtrap for that.
	 */
	icebp = !dr6;

	if (notify_debug(regs, &dr6))
		goto out;

	/* It's safe to allow irq's after DR6 has been saved */
	local_irq_enable();

	if (v8086_mode(regs)) {
		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
		goto out_irq;
	}

	/* #DB for bus lock can only be triggered from userspace. */
	if (dr6 & DR_BUS_LOCK)
		handle_bus_lock(regs);

	/* Add the virtual_dr6 bits for signals. */
	dr6 |= current->thread.virtual_dr6;
	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
		send_sigtrap(regs, 0, get_si_code(dr6));

out_irq:
	local_irq_disable();
out:
	instrumentation_end();
	irqentry_exit_to_user_mode(regs);
}

#ifdef CONFIG_X86_64
/* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)
{
	exc_debug_kernel(regs, debug_read_clear_dr6());
}

/* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
{
	exc_debug_user(regs, debug_read_clear_dr6());
}

#ifdef CONFIG_X86_FRED
/*
 * When occurred on different ring level, i.e., from user or kernel
 * context, #DB needs to be handled on different stack: User #DB on
 * current task stack, while kernel #DB on a dedicated stack.
 *
 * This is exactly how FRED event delivery invokes an exception
 * handler: ring 3 event on level 0 stack, i.e., current task stack;
 * ring 0 event on the #DB dedicated stack specified in the
 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
 * entry stub doesn't do stack switch.
 */
DEFINE_FREDENTRY_DEBUG(exc_debug)
{
	/*
	 * FRED #DB stores DR6 on the stack in the format which
	 * debug_read_clear_dr6() returns for the IDT entry points.
	 */
	unsigned long dr6 = fred_event_data(regs);

	if (user_mode(regs))
		exc_debug_user(regs, dr6);
	else
		exc_debug_kernel(regs, dr6);
}
#endif /* CONFIG_X86_FRED */

#else
/* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)
{
	unsigned long dr6 = debug_read_clear_dr6();

	if (user_mode(regs))
		exc_debug_user(regs, dr6);
	else
		exc_debug_kernel(regs, dr6);
}
#endif

/*
 * Note that we play around with the 'TS' bit in an attempt to get
 * the correct behaviour even in the presence of the asynchronous
 * IRQ13 behaviour
 */
static void math_error(struct pt_regs *regs, int trapnr)
{
	struct task_struct *task = current;
	struct fpu *fpu = &task->thread.fpu;
	int si_code;
	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
						"simd exception";

	cond_local_irq_enable(regs);

	if (!user_mode(regs)) {
		if (fixup_exception(regs, trapnr, 0, 0))
			goto exit;

		task->thread.error_code = 0;
		task->thread.trap_nr = trapnr;

		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
			       SIGFPE) != NOTIFY_STOP)
			die(str, regs, 0);
		goto exit;
	}

	/*
	 * Synchronize the FPU register state to the memory register state
	 * if necessary. This allows the exception handler to inspect it.
	 */
	fpu_sync_fpstate(fpu);

	task->thread.trap_nr	= trapnr;
	task->thread.error_code = 0;

	si_code = fpu__exception_code(fpu, trapnr);
	/* Retry when we get spurious exceptions: */
	if (!si_code)
		goto exit;

	if (fixup_vdso_exception(regs, trapnr, 0, 0))
		goto exit;

	force_sig_fault(SIGFPE, si_code,
			(void __user *)uprobe_get_trap_addr(regs));
exit:
	cond_local_irq_disable(regs);
}

DEFINE_IDTENTRY(exc_coprocessor_error)
{
	math_error(regs, X86_TRAP_MF);
}

DEFINE_IDTENTRY(exc_simd_coprocessor_error)
{
	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
		if (!static_cpu_has(X86_FEATURE_XMM)) {
			__exc_general_protection(regs, 0);
			return;
		}
	}
	math_error(regs, X86_TRAP_XF);
}

DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
{
	/*
	 * This addresses a Pentium Pro Erratum:
	 *
	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
	 * Virtual Wire mode implemented through the local APIC, an
	 * interrupt vector of 0Fh (Intel reserved encoding) may be
	 * generated by the local APIC (Int 15).  This vector may be
	 * generated upon receipt of a spurious interrupt (an interrupt
	 * which is removed before the system receives the INTA sequence)
	 * instead of the programmed 8259 spurious interrupt vector.
	 *
	 * IMPLICATION: The spurious interrupt vector programmed in the
	 * 8259 is normally handled by an operating system's spurious
	 * interrupt handler. However, a vector of 0Fh is unknown to some
	 * operating systems, which would crash if this erratum occurred.
	 *
	 * In theory this could be limited to 32bit, but the handler is not
	 * hurting and who knows which other CPUs suffer from this.
	 */
}

static bool handle_xfd_event(struct pt_regs *regs)
{
	u64 xfd_err;
	int err;

	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
		return false;

	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
	if (!xfd_err)
		return false;

	wrmsrl(MSR_IA32_XFD_ERR, 0);

	/* Die if that happens in kernel space */
	if (WARN_ON(!user_mode(regs)))
		return false;

	local_irq_enable();

	err = xfd_enable_feature(xfd_err);

	switch (err) {
	case -EPERM:
		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
		break;
	case -EFAULT:
		force_sig(SIGSEGV);
		break;
	}

	local_irq_disable();
	return true;
}

DEFINE_IDTENTRY(exc_device_not_available)
{
	unsigned long cr0 = read_cr0();

	if (handle_xfd_event(regs))
		return;

#ifdef CONFIG_MATH_EMULATION
	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
		struct math_emu_info info = { };

		cond_local_irq_enable(regs);

		info.regs = regs;
		math_emulate(&info);

		cond_local_irq_disable(regs);
		return;
	}
#endif

	/* This should not happen. */
	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
		/* Try to fix it up and carry on. */
		write_cr0(cr0 & ~X86_CR0_TS);
	} else {
		/*
		 * Something terrible happened, and we're better off trying
		 * to kill the task than getting stuck in a never-ending
		 * loop of #NM faults.
		 */
		die("unexpected #NM exception", regs, 0);
	}
}

#ifdef CONFIG_INTEL_TDX_GUEST

#define VE_FAULT_STR "VE fault"

static void ve_raise_fault(struct pt_regs *regs, long error_code,
			   unsigned long address)
{
	if (user_mode(regs)) {
		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
		return;
	}

	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
				    VE_FAULT_STR, address)) {
		return;
	}

	die_addr(VE_FAULT_STR, regs, error_code, address);
}

/*
 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
 * specific guest actions which may happen in either user space or the
 * kernel:
 *
 *  * Specific instructions (WBINVD, for example)
 *  * Specific MSR accesses
 *  * Specific CPUID leaf accesses
 *  * Access to specific guest physical addresses
 *
 * In the settings that Linux will run in, virtualization exceptions are
 * never generated on accesses to normal, TD-private memory that has been
 * accepted (by BIOS or with tdx_enc_status_changed()).
 *
 * Syscall entry code has a critical window where the kernel stack is not
 * yet set up. Any exception in this window leads to hard to debug issues
 * and can be exploited for privilege escalation. Exceptions in the NMI
 * entry code also cause issues. Returning from the exception handler with
 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
 *
 * For these reasons, the kernel avoids #VEs during the syscall gap and
 * the NMI entry code. Entry code paths do not access TD-shared memory,
 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
 * that might generate #VE. VMM can remove memory from TD at any point,
 * but access to unaccepted (or missing) private memory leads to VM
 * termination, not to #VE.
 *
 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
 * handlers once the kernel is ready to deal with nested NMIs.
 *
 * During #VE delivery, all interrupts, including NMIs, are blocked until
 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
 * the VE info.
 *
 * If a guest kernel action which would normally cause a #VE occurs in
 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
 * exception) is delivered to the guest which will result in an oops.
 *
 * The entry code has been audited carefully for following these expectations.
 * Changes in the entry code have to be audited for correctness vs. this
 * aspect. Similarly to #PF, #VE in these places will expose kernel to
 * privilege escalation or may lead to random crashes.
 */
DEFINE_IDTENTRY(exc_virtualization_exception)
{
	struct ve_info ve;

	/*
	 * NMIs/Machine-checks/Interrupts will be in a disabled state
	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
	 * info cannot be overwritten by a nested #VE.
	 */
	tdx_get_ve_info(&ve);

	cond_local_irq_enable(regs);

	/*
	 * If tdx_handle_virt_exception() could not process
	 * it successfully, treat it as #GP(0) and handle it.
	 */
	if (!tdx_handle_virt_exception(regs, &ve))
		ve_raise_fault(regs, 0, ve.gla);

	cond_local_irq_disable(regs);
}

#endif

#ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)
{
	local_irq_enable();
	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
			ILL_BADSTK, (void __user *)NULL);
	}
	local_irq_disable();
}
#endif

/* Do not enable FRED by default yet. */
static bool enable_fred __ro_after_init = false;

#ifdef CONFIG_X86_FRED
static int __init fred_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!cpu_feature_enabled(X86_FEATURE_FRED))
		return 0;

	if (!strcmp(str, "on"))
		enable_fred = true;
	else if (!strcmp(str, "off"))
		enable_fred = false;
	else
		pr_warn("invalid FRED option: 'fred=%s'\n", str);
	return 0;
}
early_param("fred", fred_setup);
#endif

void __init trap_init(void)
{
	if (cpu_feature_enabled(X86_FEATURE_FRED) && !enable_fred)
		setup_clear_cpu_cap(X86_FEATURE_FRED);

	/* Init cpu_entry_area before IST entries are set up */
	setup_cpu_entry_areas();

	/* Init GHCB memory pages when running as an SEV-ES guest */
	sev_es_init_vc_handling();

	/* Initialize TSS before setting up traps so ISTs work */
	cpu_init_exception_handling();

	/* Setup traps as cpu_init() might #GP */
	if (!cpu_feature_enabled(X86_FEATURE_FRED))
		idt_setup_traps();

	cpu_init();
}