summaryrefslogtreecommitdiff
path: root/arch/x86/coco/sev/core.c
blob: 082d61d85dfc1022de4266bfbeca880fe20c2e1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
// SPDX-License-Identifier: GPL-2.0-only
/*
 * AMD Memory Encryption Support
 *
 * Copyright (C) 2019 SUSE
 *
 * Author: Joerg Roedel <jroedel@suse.de>
 */

#define pr_fmt(fmt)	"SEV: " fmt

#include <linux/sched/debug.h>	/* For show_regs() */
#include <linux/percpu-defs.h>
#include <linux/cc_platform.h>
#include <linux/printk.h>
#include <linux/mm_types.h>
#include <linux/set_memory.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/efi.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/psp-sev.h>
#include <linux/dmi.h>
#include <uapi/linux/sev-guest.h>

#include <asm/init.h>
#include <asm/cpu_entry_area.h>
#include <asm/stacktrace.h>
#include <asm/sev.h>
#include <asm/insn-eval.h>
#include <asm/fpu/xcr.h>
#include <asm/processor.h>
#include <asm/realmode.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/svm.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/cpuid.h>
#include <asm/cmdline.h>

#define DR7_RESET_VALUE        0x400

/* AP INIT values as documented in the APM2  section "Processor Initialization State" */
#define AP_INIT_CS_LIMIT		0xffff
#define AP_INIT_DS_LIMIT		0xffff
#define AP_INIT_LDTR_LIMIT		0xffff
#define AP_INIT_GDTR_LIMIT		0xffff
#define AP_INIT_IDTR_LIMIT		0xffff
#define AP_INIT_TR_LIMIT		0xffff
#define AP_INIT_RFLAGS_DEFAULT		0x2
#define AP_INIT_DR6_DEFAULT		0xffff0ff0
#define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
#define AP_INIT_XCR0_DEFAULT		0x1
#define AP_INIT_X87_FTW_DEFAULT		0x5555
#define AP_INIT_X87_FCW_DEFAULT		0x0040
#define AP_INIT_CR0_DEFAULT		0x60000010
#define AP_INIT_MXCSR_DEFAULT		0x1f80

static const char * const sev_status_feat_names[] = {
	[MSR_AMD64_SEV_ENABLED_BIT]		= "SEV",
	[MSR_AMD64_SEV_ES_ENABLED_BIT]		= "SEV-ES",
	[MSR_AMD64_SEV_SNP_ENABLED_BIT]		= "SEV-SNP",
	[MSR_AMD64_SNP_VTOM_BIT]		= "vTom",
	[MSR_AMD64_SNP_REFLECT_VC_BIT]		= "ReflectVC",
	[MSR_AMD64_SNP_RESTRICTED_INJ_BIT]	= "RI",
	[MSR_AMD64_SNP_ALT_INJ_BIT]		= "AI",
	[MSR_AMD64_SNP_DEBUG_SWAP_BIT]		= "DebugSwap",
	[MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT]	= "NoHostIBS",
	[MSR_AMD64_SNP_BTB_ISOLATION_BIT]	= "BTBIsol",
	[MSR_AMD64_SNP_VMPL_SSS_BIT]		= "VmplSSS",
	[MSR_AMD64_SNP_SECURE_TSC_BIT]		= "SecureTSC",
	[MSR_AMD64_SNP_VMGEXIT_PARAM_BIT]	= "VMGExitParam",
	[MSR_AMD64_SNP_IBS_VIRT_BIT]		= "IBSVirt",
	[MSR_AMD64_SNP_VMSA_REG_PROT_BIT]	= "VMSARegProt",
	[MSR_AMD64_SNP_SMT_PROT_BIT]		= "SMTProt",
};

/* For early boot hypervisor communication in SEV-ES enabled guests */
static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);

/*
 * Needs to be in the .data section because we need it NULL before bss is
 * cleared
 */
static struct ghcb *boot_ghcb __section(".data");

/* Bitmap of SEV features supported by the hypervisor */
static u64 sev_hv_features __ro_after_init;

/* #VC handler runtime per-CPU data */
struct sev_es_runtime_data {
	struct ghcb ghcb_page;

	/*
	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
	 * It is needed when an NMI happens while the #VC handler uses the real
	 * GHCB, and the NMI handler itself is causing another #VC exception. In
	 * that case the GHCB content of the first handler needs to be backed up
	 * and restored.
	 */
	struct ghcb backup_ghcb;

	/*
	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
	 * There is no need for it to be atomic, because nothing is written to
	 * the GHCB between the read and the write of ghcb_active. So it is safe
	 * to use it when a nested #VC exception happens before the write.
	 *
	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
	 * happens while the first #VC handler uses the GHCB. When the NMI code
	 * raises a second #VC handler it might overwrite the contents of the
	 * GHCB written by the first handler. To avoid this the content of the
	 * GHCB is saved and restored when the GHCB is detected to be in use
	 * already.
	 */
	bool ghcb_active;
	bool backup_ghcb_active;

	/*
	 * Cached DR7 value - write it on DR7 writes and return it on reads.
	 * That value will never make it to the real hardware DR7 as debugging
	 * is currently unsupported in SEV-ES guests.
	 */
	unsigned long dr7;
};

struct ghcb_state {
	struct ghcb *ghcb;
};

/* For early boot SVSM communication */
static struct svsm_ca boot_svsm_ca_page __aligned(PAGE_SIZE);

static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
static DEFINE_PER_CPU(struct svsm_ca *, svsm_caa);
static DEFINE_PER_CPU(u64, svsm_caa_pa);

struct sev_config {
	__u64 debug		: 1,

	      /*
	       * Indicates when the per-CPU GHCB has been created and registered
	       * and thus can be used by the BSP instead of the early boot GHCB.
	       *
	       * For APs, the per-CPU GHCB is created before they are started
	       * and registered upon startup, so this flag can be used globally
	       * for the BSP and APs.
	       */
	      ghcbs_initialized	: 1,

	      /*
	       * Indicates when the per-CPU SVSM CA is to be used instead of the
	       * boot SVSM CA.
	       *
	       * For APs, the per-CPU SVSM CA is created as part of the AP
	       * bringup, so this flag can be used globally for the BSP and APs.
	       */
	      use_cas		: 1,

	      __reserved	: 62;
};

static struct sev_config sev_cfg __read_mostly;

static __always_inline bool on_vc_stack(struct pt_regs *regs)
{
	unsigned long sp = regs->sp;

	/* User-mode RSP is not trusted */
	if (user_mode(regs))
		return false;

	/* SYSCALL gap still has user-mode RSP */
	if (ip_within_syscall_gap(regs))
		return false;

	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
}

/*
 * This function handles the case when an NMI is raised in the #VC
 * exception handler entry code, before the #VC handler has switched off
 * its IST stack. In this case, the IST entry for #VC must be adjusted,
 * so that any nested #VC exception will not overwrite the stack
 * contents of the interrupted #VC handler.
 *
 * The IST entry is adjusted unconditionally so that it can be also be
 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
 * nested sev_es_ist_exit() call may adjust back the IST entry too
 * early.
 *
 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
 * on the NMI IST stack, as they are only called from NMI handling code
 * right now.
 */
void noinstr __sev_es_ist_enter(struct pt_regs *regs)
{
	unsigned long old_ist, new_ist;

	/* Read old IST entry */
	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);

	/*
	 * If NMI happened while on the #VC IST stack, set the new IST
	 * value below regs->sp, so that the interrupted stack frame is
	 * not overwritten by subsequent #VC exceptions.
	 */
	if (on_vc_stack(regs))
		new_ist = regs->sp;

	/*
	 * Reserve additional 8 bytes and store old IST value so this
	 * adjustment can be unrolled in __sev_es_ist_exit().
	 */
	new_ist -= sizeof(old_ist);
	*(unsigned long *)new_ist = old_ist;

	/* Set new IST entry */
	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
}

void noinstr __sev_es_ist_exit(void)
{
	unsigned long ist;

	/* Read IST entry */
	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);

	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
		return;

	/* Read back old IST entry and write it to the TSS */
	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
}

/*
 * Nothing shall interrupt this code path while holding the per-CPU
 * GHCB. The backup GHCB is only for NMIs interrupting this path.
 *
 * Callers must disable local interrupts around it.
 */
static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
{
	struct sev_es_runtime_data *data;
	struct ghcb *ghcb;

	WARN_ON(!irqs_disabled());

	data = this_cpu_read(runtime_data);
	ghcb = &data->ghcb_page;

	if (unlikely(data->ghcb_active)) {
		/* GHCB is already in use - save its contents */

		if (unlikely(data->backup_ghcb_active)) {
			/*
			 * Backup-GHCB is also already in use. There is no way
			 * to continue here so just kill the machine. To make
			 * panic() work, mark GHCBs inactive so that messages
			 * can be printed out.
			 */
			data->ghcb_active        = false;
			data->backup_ghcb_active = false;

			instrumentation_begin();
			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
			instrumentation_end();
		}

		/* Mark backup_ghcb active before writing to it */
		data->backup_ghcb_active = true;

		state->ghcb = &data->backup_ghcb;

		/* Backup GHCB content */
		*state->ghcb = *ghcb;
	} else {
		state->ghcb = NULL;
		data->ghcb_active = true;
	}

	return ghcb;
}

static inline u64 sev_es_rd_ghcb_msr(void)
{
	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
}

static __always_inline void sev_es_wr_ghcb_msr(u64 val)
{
	u32 low, high;

	low  = (u32)(val);
	high = (u32)(val >> 32);

	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
}

static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
				unsigned char *buffer)
{
	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
}

static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
{
	char buffer[MAX_INSN_SIZE];
	int insn_bytes;

	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
	if (insn_bytes == 0) {
		/* Nothing could be copied */
		ctxt->fi.vector     = X86_TRAP_PF;
		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
		ctxt->fi.cr2        = ctxt->regs->ip;
		return ES_EXCEPTION;
	} else if (insn_bytes == -EINVAL) {
		/* Effective RIP could not be calculated */
		ctxt->fi.vector     = X86_TRAP_GP;
		ctxt->fi.error_code = 0;
		ctxt->fi.cr2        = 0;
		return ES_EXCEPTION;
	}

	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
		return ES_DECODE_FAILED;

	if (ctxt->insn.immediate.got)
		return ES_OK;
	else
		return ES_DECODE_FAILED;
}

static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
{
	char buffer[MAX_INSN_SIZE];
	int res, ret;

	res = vc_fetch_insn_kernel(ctxt, buffer);
	if (res) {
		ctxt->fi.vector     = X86_TRAP_PF;
		ctxt->fi.error_code = X86_PF_INSTR;
		ctxt->fi.cr2        = ctxt->regs->ip;
		return ES_EXCEPTION;
	}

	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
	if (ret < 0)
		return ES_DECODE_FAILED;
	else
		return ES_OK;
}

static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
{
	if (user_mode(ctxt->regs))
		return __vc_decode_user_insn(ctxt);
	else
		return __vc_decode_kern_insn(ctxt);
}

static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
				   char *dst, char *buf, size_t size)
{
	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;

	/*
	 * This function uses __put_user() independent of whether kernel or user
	 * memory is accessed. This works fine because __put_user() does no
	 * sanity checks of the pointer being accessed. All that it does is
	 * to report when the access failed.
	 *
	 * Also, this function runs in atomic context, so __put_user() is not
	 * allowed to sleep. The page-fault handler detects that it is running
	 * in atomic context and will not try to take mmap_sem and handle the
	 * fault, so additional pagefault_enable()/disable() calls are not
	 * needed.
	 *
	 * The access can't be done via copy_to_user() here because
	 * vc_write_mem() must not use string instructions to access unsafe
	 * memory. The reason is that MOVS is emulated by the #VC handler by
	 * splitting the move up into a read and a write and taking a nested #VC
	 * exception on whatever of them is the MMIO access. Using string
	 * instructions here would cause infinite nesting.
	 */
	switch (size) {
	case 1: {
		u8 d1;
		u8 __user *target = (u8 __user *)dst;

		memcpy(&d1, buf, 1);
		if (__put_user(d1, target))
			goto fault;
		break;
	}
	case 2: {
		u16 d2;
		u16 __user *target = (u16 __user *)dst;

		memcpy(&d2, buf, 2);
		if (__put_user(d2, target))
			goto fault;
		break;
	}
	case 4: {
		u32 d4;
		u32 __user *target = (u32 __user *)dst;

		memcpy(&d4, buf, 4);
		if (__put_user(d4, target))
			goto fault;
		break;
	}
	case 8: {
		u64 d8;
		u64 __user *target = (u64 __user *)dst;

		memcpy(&d8, buf, 8);
		if (__put_user(d8, target))
			goto fault;
		break;
	}
	default:
		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
		return ES_UNSUPPORTED;
	}

	return ES_OK;

fault:
	if (user_mode(ctxt->regs))
		error_code |= X86_PF_USER;

	ctxt->fi.vector = X86_TRAP_PF;
	ctxt->fi.error_code = error_code;
	ctxt->fi.cr2 = (unsigned long)dst;

	return ES_EXCEPTION;
}

static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
				  char *src, char *buf, size_t size)
{
	unsigned long error_code = X86_PF_PROT;

	/*
	 * This function uses __get_user() independent of whether kernel or user
	 * memory is accessed. This works fine because __get_user() does no
	 * sanity checks of the pointer being accessed. All that it does is
	 * to report when the access failed.
	 *
	 * Also, this function runs in atomic context, so __get_user() is not
	 * allowed to sleep. The page-fault handler detects that it is running
	 * in atomic context and will not try to take mmap_sem and handle the
	 * fault, so additional pagefault_enable()/disable() calls are not
	 * needed.
	 *
	 * The access can't be done via copy_from_user() here because
	 * vc_read_mem() must not use string instructions to access unsafe
	 * memory. The reason is that MOVS is emulated by the #VC handler by
	 * splitting the move up into a read and a write and taking a nested #VC
	 * exception on whatever of them is the MMIO access. Using string
	 * instructions here would cause infinite nesting.
	 */
	switch (size) {
	case 1: {
		u8 d1;
		u8 __user *s = (u8 __user *)src;

		if (__get_user(d1, s))
			goto fault;
		memcpy(buf, &d1, 1);
		break;
	}
	case 2: {
		u16 d2;
		u16 __user *s = (u16 __user *)src;

		if (__get_user(d2, s))
			goto fault;
		memcpy(buf, &d2, 2);
		break;
	}
	case 4: {
		u32 d4;
		u32 __user *s = (u32 __user *)src;

		if (__get_user(d4, s))
			goto fault;
		memcpy(buf, &d4, 4);
		break;
	}
	case 8: {
		u64 d8;
		u64 __user *s = (u64 __user *)src;
		if (__get_user(d8, s))
			goto fault;
		memcpy(buf, &d8, 8);
		break;
	}
	default:
		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
		return ES_UNSUPPORTED;
	}

	return ES_OK;

fault:
	if (user_mode(ctxt->regs))
		error_code |= X86_PF_USER;

	ctxt->fi.vector = X86_TRAP_PF;
	ctxt->fi.error_code = error_code;
	ctxt->fi.cr2 = (unsigned long)src;

	return ES_EXCEPTION;
}

static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
					   unsigned long vaddr, phys_addr_t *paddr)
{
	unsigned long va = (unsigned long)vaddr;
	unsigned int level;
	phys_addr_t pa;
	pgd_t *pgd;
	pte_t *pte;

	pgd = __va(read_cr3_pa());
	pgd = &pgd[pgd_index(va)];
	pte = lookup_address_in_pgd(pgd, va, &level);
	if (!pte) {
		ctxt->fi.vector     = X86_TRAP_PF;
		ctxt->fi.cr2        = vaddr;
		ctxt->fi.error_code = 0;

		if (user_mode(ctxt->regs))
			ctxt->fi.error_code |= X86_PF_USER;

		return ES_EXCEPTION;
	}

	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
		/* Emulated MMIO to/from encrypted memory not supported */
		return ES_UNSUPPORTED;

	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
	pa |= va & ~page_level_mask(level);

	*paddr = pa;

	return ES_OK;
}

static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
{
	BUG_ON(size > 4);

	if (user_mode(ctxt->regs)) {
		struct thread_struct *t = &current->thread;
		struct io_bitmap *iobm = t->io_bitmap;
		size_t idx;

		if (!iobm)
			goto fault;

		for (idx = port; idx < port + size; ++idx) {
			if (test_bit(idx, iobm->bitmap))
				goto fault;
		}
	}

	return ES_OK;

fault:
	ctxt->fi.vector = X86_TRAP_GP;
	ctxt->fi.error_code = 0;

	return ES_EXCEPTION;
}

static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
{
	long error_code = ctxt->fi.error_code;
	int trapnr = ctxt->fi.vector;

	ctxt->regs->orig_ax = ctxt->fi.error_code;

	switch (trapnr) {
	case X86_TRAP_GP:
		exc_general_protection(ctxt->regs, error_code);
		break;
	case X86_TRAP_UD:
		exc_invalid_op(ctxt->regs);
		break;
	case X86_TRAP_PF:
		write_cr2(ctxt->fi.cr2);
		exc_page_fault(ctxt->regs, error_code);
		break;
	case X86_TRAP_AC:
		exc_alignment_check(ctxt->regs, error_code);
		break;
	default:
		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
		BUG();
	}
}

/* Include code shared with pre-decompression boot stage */
#include "shared.c"

static inline struct svsm_ca *svsm_get_caa(void)
{
	/*
	 * Use rIP-relative references when called early in the boot. If
	 * ->use_cas is set, then it is late in the boot and no need
	 * to worry about rIP-relative references.
	 */
	if (RIP_REL_REF(sev_cfg).use_cas)
		return this_cpu_read(svsm_caa);
	else
		return RIP_REL_REF(boot_svsm_caa);
}

static u64 svsm_get_caa_pa(void)
{
	/*
	 * Use rIP-relative references when called early in the boot. If
	 * ->use_cas is set, then it is late in the boot and no need
	 * to worry about rIP-relative references.
	 */
	if (RIP_REL_REF(sev_cfg).use_cas)
		return this_cpu_read(svsm_caa_pa);
	else
		return RIP_REL_REF(boot_svsm_caa_pa);
}

static noinstr void __sev_put_ghcb(struct ghcb_state *state)
{
	struct sev_es_runtime_data *data;
	struct ghcb *ghcb;

	WARN_ON(!irqs_disabled());

	data = this_cpu_read(runtime_data);
	ghcb = &data->ghcb_page;

	if (state->ghcb) {
		/* Restore GHCB from Backup */
		*ghcb = *state->ghcb;
		data->backup_ghcb_active = false;
		state->ghcb = NULL;
	} else {
		/*
		 * Invalidate the GHCB so a VMGEXIT instruction issued
		 * from userspace won't appear to be valid.
		 */
		vc_ghcb_invalidate(ghcb);
		data->ghcb_active = false;
	}
}

static int svsm_perform_call_protocol(struct svsm_call *call)
{
	struct ghcb_state state;
	unsigned long flags;
	struct ghcb *ghcb;
	int ret;

	/*
	 * This can be called very early in the boot, use native functions in
	 * order to avoid paravirt issues.
	 */
	flags = native_local_irq_save();

	/*
	 * Use rip-relative references when called early in the boot. If
	 * ghcbs_initialized is set, then it is late in the boot and no need
	 * to worry about rip-relative references in called functions.
	 */
	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
		ghcb = __sev_get_ghcb(&state);
	else if (RIP_REL_REF(boot_ghcb))
		ghcb = RIP_REL_REF(boot_ghcb);
	else
		ghcb = NULL;

	do {
		ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
			   : svsm_perform_msr_protocol(call);
	} while (ret == -EAGAIN);

	if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
		__sev_put_ghcb(&state);

	native_local_irq_restore(flags);

	return ret;
}

void noinstr __sev_es_nmi_complete(void)
{
	struct ghcb_state state;
	struct ghcb *ghcb;

	ghcb = __sev_get_ghcb(&state);

	vc_ghcb_invalidate(ghcb);
	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
	ghcb_set_sw_exit_info_1(ghcb, 0);
	ghcb_set_sw_exit_info_2(ghcb, 0);

	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
	VMGEXIT();

	__sev_put_ghcb(&state);
}

static u64 __init get_secrets_page(void)
{
	u64 pa_data = boot_params.cc_blob_address;
	struct cc_blob_sev_info info;
	void *map;

	/*
	 * The CC blob contains the address of the secrets page, check if the
	 * blob is present.
	 */
	if (!pa_data)
		return 0;

	map = early_memremap(pa_data, sizeof(info));
	if (!map) {
		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
		return 0;
	}
	memcpy(&info, map, sizeof(info));
	early_memunmap(map, sizeof(info));

	/* smoke-test the secrets page passed */
	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
		return 0;

	return info.secrets_phys;
}

static u64 __init get_snp_jump_table_addr(void)
{
	struct snp_secrets_page *secrets;
	void __iomem *mem;
	u64 pa, addr;

	pa = get_secrets_page();
	if (!pa)
		return 0;

	mem = ioremap_encrypted(pa, PAGE_SIZE);
	if (!mem) {
		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
		return 0;
	}

	secrets = (__force struct snp_secrets_page *)mem;

	addr = secrets->os_area.ap_jump_table_pa;
	iounmap(mem);

	return addr;
}

static u64 __init get_jump_table_addr(void)
{
	struct ghcb_state state;
	unsigned long flags;
	struct ghcb *ghcb;
	u64 ret = 0;

	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return get_snp_jump_table_addr();

	local_irq_save(flags);

	ghcb = __sev_get_ghcb(&state);

	vc_ghcb_invalidate(ghcb);
	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
	ghcb_set_sw_exit_info_2(ghcb, 0);

	sev_es_wr_ghcb_msr(__pa(ghcb));
	VMGEXIT();

	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
	    ghcb_sw_exit_info_2_is_valid(ghcb))
		ret = ghcb->save.sw_exit_info_2;

	__sev_put_ghcb(&state);

	local_irq_restore(flags);

	return ret;
}

static void __head
early_set_pages_state(unsigned long vaddr, unsigned long paddr,
		      unsigned long npages, enum psc_op op)
{
	unsigned long paddr_end;
	u64 val;

	vaddr = vaddr & PAGE_MASK;

	paddr = paddr & PAGE_MASK;
	paddr_end = paddr + (npages << PAGE_SHIFT);

	while (paddr < paddr_end) {
		/* Page validation must be rescinded before changing to shared */
		if (op == SNP_PAGE_STATE_SHARED)
			pvalidate_4k_page(vaddr, paddr, false);

		/*
		 * Use the MSR protocol because this function can be called before
		 * the GHCB is established.
		 */
		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
		VMGEXIT();

		val = sev_es_rd_ghcb_msr();

		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
			 "Wrong PSC response code: 0x%x\n",
			 (unsigned int)GHCB_RESP_CODE(val)))
			goto e_term;

		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
			goto e_term;

		/* Page validation must be performed after changing to private */
		if (op == SNP_PAGE_STATE_PRIVATE)
			pvalidate_4k_page(vaddr, paddr, true);

		vaddr += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return;

e_term:
	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
}

void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
					 unsigned long npages)
{
	/*
	 * This can be invoked in early boot while running identity mapped, so
	 * use an open coded check for SNP instead of using cc_platform_has().
	 * This eliminates worries about jump tables or checking boot_cpu_data
	 * in the cc_platform_has() function.
	 */
	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
		return;

	 /*
	  * Ask the hypervisor to mark the memory pages as private in the RMP
	  * table.
	  */
	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
}

void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
					unsigned long npages)
{
	/*
	 * This can be invoked in early boot while running identity mapped, so
	 * use an open coded check for SNP instead of using cc_platform_has().
	 * This eliminates worries about jump tables or checking boot_cpu_data
	 * in the cc_platform_has() function.
	 */
	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
		return;

	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
}

static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
				       unsigned long vaddr_end, int op)
{
	struct ghcb_state state;
	bool use_large_entry;
	struct psc_hdr *hdr;
	struct psc_entry *e;
	unsigned long flags;
	unsigned long pfn;
	struct ghcb *ghcb;
	int i;

	hdr = &data->hdr;
	e = data->entries;

	memset(data, 0, sizeof(*data));
	i = 0;

	while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
		hdr->end_entry = i;

		if (is_vmalloc_addr((void *)vaddr)) {
			pfn = vmalloc_to_pfn((void *)vaddr);
			use_large_entry = false;
		} else {
			pfn = __pa(vaddr) >> PAGE_SHIFT;
			use_large_entry = true;
		}

		e->gfn = pfn;
		e->operation = op;

		if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
		    (vaddr_end - vaddr) >= PMD_SIZE) {
			e->pagesize = RMP_PG_SIZE_2M;
			vaddr += PMD_SIZE;
		} else {
			e->pagesize = RMP_PG_SIZE_4K;
			vaddr += PAGE_SIZE;
		}

		e++;
		i++;
	}

	/* Page validation must be rescinded before changing to shared */
	if (op == SNP_PAGE_STATE_SHARED)
		pvalidate_pages(data);

	local_irq_save(flags);

	if (sev_cfg.ghcbs_initialized)
		ghcb = __sev_get_ghcb(&state);
	else
		ghcb = boot_ghcb;

	/* Invoke the hypervisor to perform the page state changes */
	if (!ghcb || vmgexit_psc(ghcb, data))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);

	if (sev_cfg.ghcbs_initialized)
		__sev_put_ghcb(&state);

	local_irq_restore(flags);

	/* Page validation must be performed after changing to private */
	if (op == SNP_PAGE_STATE_PRIVATE)
		pvalidate_pages(data);

	return vaddr;
}

static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
{
	struct snp_psc_desc desc;
	unsigned long vaddr_end;

	/* Use the MSR protocol when a GHCB is not available. */
	if (!boot_ghcb)
		return early_set_pages_state(vaddr, __pa(vaddr), npages, op);

	vaddr = vaddr & PAGE_MASK;
	vaddr_end = vaddr + (npages << PAGE_SHIFT);

	while (vaddr < vaddr_end)
		vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
}

void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
{
	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return;

	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
}

void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
{
	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return;

	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}

void snp_accept_memory(phys_addr_t start, phys_addr_t end)
{
	unsigned long vaddr, npages;

	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return;

	vaddr = (unsigned long)__va(start);
	npages = (end - start) >> PAGE_SHIFT;

	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}

static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa)
{
	int ret;

	if (snp_vmpl) {
		struct svsm_call call = {};
		unsigned long flags;

		local_irq_save(flags);

		call.caa = this_cpu_read(svsm_caa);
		call.rcx = __pa(va);

		if (make_vmsa) {
			/* Protocol 0, Call ID 2 */
			call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU);
			call.rdx = __pa(caa);
			call.r8  = apic_id;
		} else {
			/* Protocol 0, Call ID 3 */
			call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU);
		}

		ret = svsm_perform_call_protocol(&call);

		local_irq_restore(flags);
	} else {
		/*
		 * If the kernel runs at VMPL0, it can change the VMSA
		 * bit for a page using the RMPADJUST instruction.
		 * However, for the instruction to succeed it must
		 * target the permissions of a lesser privileged (higher
		 * numbered) VMPL level, so use VMPL1.
		 */
		u64 attrs = 1;

		if (make_vmsa)
			attrs |= RMPADJUST_VMSA_PAGE_BIT;

		ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
	}

	return ret;
}

#define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
#define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
#define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)

#define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
#define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)

static void *snp_alloc_vmsa_page(int cpu)
{
	struct page *p;

	/*
	 * Allocate VMSA page to work around the SNP erratum where the CPU will
	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
	 * collides with the RMP entry of VMSA page. The recommended workaround
	 * is to not use a large page.
	 *
	 * Allocate an 8k page which is also 8k-aligned.
	 */
	p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
	if (!p)
		return NULL;

	split_page(p, 1);

	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
	__free_page(p);

	return page_address(p + 1);
}

static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id)
{
	int err;

	err = snp_set_vmsa(vmsa, NULL, apic_id, false);
	if (err)
		pr_err("clear VMSA page failed (%u), leaking page\n", err);
	else
		free_page((unsigned long)vmsa);
}

static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
{
	struct sev_es_save_area *cur_vmsa, *vmsa;
	struct ghcb_state state;
	struct svsm_ca *caa;
	unsigned long flags;
	struct ghcb *ghcb;
	u8 sipi_vector;
	int cpu, ret;
	u64 cr4;

	/*
	 * The hypervisor SNP feature support check has happened earlier, just check
	 * the AP_CREATION one here.
	 */
	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
		return -EOPNOTSUPP;

	/*
	 * Verify the desired start IP against the known trampoline start IP
	 * to catch any future new trampolines that may be introduced that
	 * would require a new protected guest entry point.
	 */
	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
		      "Unsupported SNP start_ip: %lx\n", start_ip))
		return -EINVAL;

	/* Override start_ip with known protected guest start IP */
	start_ip = real_mode_header->sev_es_trampoline_start;

	/* Find the logical CPU for the APIC ID */
	for_each_present_cpu(cpu) {
		if (arch_match_cpu_phys_id(cpu, apic_id))
			break;
	}
	if (cpu >= nr_cpu_ids)
		return -EINVAL;

	cur_vmsa = per_cpu(sev_vmsa, cpu);

	/*
	 * A new VMSA is created each time because there is no guarantee that
	 * the current VMSA is the kernels or that the vCPU is not running. If
	 * an attempt was done to use the current VMSA with a running vCPU, a
	 * #VMEXIT of that vCPU would wipe out all of the settings being done
	 * here.
	 */
	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
	if (!vmsa)
		return -ENOMEM;

	/* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */
	caa = per_cpu(svsm_caa, cpu);

	/* CR4 should maintain the MCE value */
	cr4 = native_read_cr4() & X86_CR4_MCE;

	/* Set the CS value based on the start_ip converted to a SIPI vector */
	sipi_vector		= (start_ip >> 12);
	vmsa->cs.base		= sipi_vector << 12;
	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
	vmsa->cs.selector	= sipi_vector << 8;

	/* Set the RIP value based on start_ip */
	vmsa->rip		= start_ip & 0xfff;

	/* Set AP INIT defaults as documented in the APM */
	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
	vmsa->es		= vmsa->ds;
	vmsa->fs		= vmsa->ds;
	vmsa->gs		= vmsa->ds;
	vmsa->ss		= vmsa->ds;

	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
	vmsa->tr.attrib		= INIT_TR_ATTRIBS;

	vmsa->cr4		= cr4;
	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
	vmsa->dr7		= DR7_RESET_VALUE;
	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;

	/* SVME must be set. */
	vmsa->efer		= EFER_SVME;

	/*
	 * Set the SNP-specific fields for this VMSA:
	 *   VMPL level
	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
	 */
	vmsa->vmpl		= snp_vmpl;
	vmsa->sev_features	= sev_status >> 2;

	/* Switch the page over to a VMSA page now that it is initialized */
	ret = snp_set_vmsa(vmsa, caa, apic_id, true);
	if (ret) {
		pr_err("set VMSA page failed (%u)\n", ret);
		free_page((unsigned long)vmsa);

		return -EINVAL;
	}

	/* Issue VMGEXIT AP Creation NAE event */
	local_irq_save(flags);

	ghcb = __sev_get_ghcb(&state);

	vc_ghcb_invalidate(ghcb);
	ghcb_set_rax(ghcb, vmsa->sev_features);
	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
	ghcb_set_sw_exit_info_1(ghcb,
				((u64)apic_id << 32)	|
				((u64)snp_vmpl << 16)	|
				SVM_VMGEXIT_AP_CREATE);
	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));

	sev_es_wr_ghcb_msr(__pa(ghcb));
	VMGEXIT();

	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
		pr_err("SNP AP Creation error\n");
		ret = -EINVAL;
	}

	__sev_put_ghcb(&state);

	local_irq_restore(flags);

	/* Perform cleanup if there was an error */
	if (ret) {
		snp_cleanup_vmsa(vmsa, apic_id);
		vmsa = NULL;
	}

	/* Free up any previous VMSA page */
	if (cur_vmsa)
		snp_cleanup_vmsa(cur_vmsa, apic_id);

	/* Record the current VMSA page */
	per_cpu(sev_vmsa, cpu) = vmsa;

	return ret;
}

void __init snp_set_wakeup_secondary_cpu(void)
{
	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return;

	/*
	 * Always set this override if SNP is enabled. This makes it the
	 * required method to start APs under SNP. If the hypervisor does
	 * not support AP creation, then no APs will be started.
	 */
	apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
}

int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
{
	u16 startup_cs, startup_ip;
	phys_addr_t jump_table_pa;
	u64 jump_table_addr;
	u16 __iomem *jump_table;

	jump_table_addr = get_jump_table_addr();

	/* On UP guests there is no jump table so this is not a failure */
	if (!jump_table_addr)
		return 0;

	/* Check if AP Jump Table is page-aligned */
	if (jump_table_addr & ~PAGE_MASK)
		return -EINVAL;

	jump_table_pa = jump_table_addr & PAGE_MASK;

	startup_cs = (u16)(rmh->trampoline_start >> 4);
	startup_ip = (u16)(rmh->sev_es_trampoline_start -
			   rmh->trampoline_start);

	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
	if (!jump_table)
		return -EIO;

	writew(startup_ip, &jump_table[0]);
	writew(startup_cs, &jump_table[1]);

	iounmap(jump_table);

	return 0;
}

/*
 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
 */
int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
{
	struct sev_es_runtime_data *data;
	unsigned long address, pflags;
	int cpu;
	u64 pfn;

	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
		return 0;

	pflags = _PAGE_NX | _PAGE_RW;

	for_each_possible_cpu(cpu) {
		data = per_cpu(runtime_data, cpu);

		address = __pa(&data->ghcb_page);
		pfn = address >> PAGE_SHIFT;

		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
			return 1;
	}

	return 0;
}

static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	struct pt_regs *regs = ctxt->regs;
	enum es_result ret;
	u64 exit_info_1;

	/* Is it a WRMSR? */
	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;

	if (regs->cx == MSR_SVSM_CAA) {
		/* Writes to the SVSM CAA msr are ignored */
		if (exit_info_1)
			return ES_OK;

		regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
		regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));

		return ES_OK;
	}

	ghcb_set_rcx(ghcb, regs->cx);
	if (exit_info_1) {
		ghcb_set_rax(ghcb, regs->ax);
		ghcb_set_rdx(ghcb, regs->dx);
	}

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);

	if ((ret == ES_OK) && (!exit_info_1)) {
		regs->ax = ghcb->save.rax;
		regs->dx = ghcb->save.rdx;
	}

	return ret;
}

static void snp_register_per_cpu_ghcb(void)
{
	struct sev_es_runtime_data *data;
	struct ghcb *ghcb;

	data = this_cpu_read(runtime_data);
	ghcb = &data->ghcb_page;

	snp_register_ghcb_early(__pa(ghcb));
}

void setup_ghcb(void)
{
	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
		return;

	/*
	 * Check whether the runtime #VC exception handler is active. It uses
	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
	 *
	 * If SNP is active, register the per-CPU GHCB page so that the runtime
	 * exception handler can use it.
	 */
	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
			snp_register_per_cpu_ghcb();

		sev_cfg.ghcbs_initialized = true;

		return;
	}

	/*
	 * Make sure the hypervisor talks a supported protocol.
	 * This gets called only in the BSP boot phase.
	 */
	if (!sev_es_negotiate_protocol())
		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);

	/*
	 * Clear the boot_ghcb. The first exception comes in before the bss
	 * section is cleared.
	 */
	memset(&boot_ghcb_page, 0, PAGE_SIZE);

	/* Alright - Make the boot-ghcb public */
	boot_ghcb = &boot_ghcb_page;

	/* SNP guest requires that GHCB GPA must be registered. */
	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		snp_register_ghcb_early(__pa(&boot_ghcb_page));
}

#ifdef CONFIG_HOTPLUG_CPU
static void sev_es_ap_hlt_loop(void)
{
	struct ghcb_state state;
	struct ghcb *ghcb;

	ghcb = __sev_get_ghcb(&state);

	while (true) {
		vc_ghcb_invalidate(ghcb);
		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
		ghcb_set_sw_exit_info_1(ghcb, 0);
		ghcb_set_sw_exit_info_2(ghcb, 0);

		sev_es_wr_ghcb_msr(__pa(ghcb));
		VMGEXIT();

		/* Wakeup signal? */
		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
		    ghcb->save.sw_exit_info_2)
			break;
	}

	__sev_put_ghcb(&state);
}

/*
 * Play_dead handler when running under SEV-ES. This is needed because
 * the hypervisor can't deliver an SIPI request to restart the AP.
 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
 * hypervisor wakes it up again.
 */
static void sev_es_play_dead(void)
{
	play_dead_common();

	/* IRQs now disabled */

	sev_es_ap_hlt_loop();

	/*
	 * If we get here, the VCPU was woken up again. Jump to CPU
	 * startup code to get it back online.
	 */
	soft_restart_cpu();
}
#else  /* CONFIG_HOTPLUG_CPU */
#define sev_es_play_dead	native_play_dead
#endif /* CONFIG_HOTPLUG_CPU */

#ifdef CONFIG_SMP
static void __init sev_es_setup_play_dead(void)
{
	smp_ops.play_dead = sev_es_play_dead;
}
#else
static inline void sev_es_setup_play_dead(void) { }
#endif

static void __init alloc_runtime_data(int cpu)
{
	struct sev_es_runtime_data *data;

	data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
	if (!data)
		panic("Can't allocate SEV-ES runtime data");

	per_cpu(runtime_data, cpu) = data;

	if (snp_vmpl) {
		struct svsm_ca *caa;

		/* Allocate the SVSM CA page if an SVSM is present */
		caa = memblock_alloc(sizeof(*caa), PAGE_SIZE);
		if (!caa)
			panic("Can't allocate SVSM CA page\n");

		per_cpu(svsm_caa, cpu) = caa;
		per_cpu(svsm_caa_pa, cpu) = __pa(caa);
	}
}

static void __init init_ghcb(int cpu)
{
	struct sev_es_runtime_data *data;
	int err;

	data = per_cpu(runtime_data, cpu);

	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
					 sizeof(data->ghcb_page));
	if (err)
		panic("Can't map GHCBs unencrypted");

	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));

	data->ghcb_active = false;
	data->backup_ghcb_active = false;
}

void __init sev_es_init_vc_handling(void)
{
	int cpu;

	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);

	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
		return;

	if (!sev_es_check_cpu_features())
		panic("SEV-ES CPU Features missing");

	/*
	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
	 * features.
	 */
	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
		sev_hv_features = get_hv_features();

		if (!(sev_hv_features & GHCB_HV_FT_SNP))
			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
	}

	/* Initialize per-cpu GHCB pages */
	for_each_possible_cpu(cpu) {
		alloc_runtime_data(cpu);
		init_ghcb(cpu);
	}

	/* If running under an SVSM, switch to the per-cpu CA */
	if (snp_vmpl) {
		struct svsm_call call = {};
		unsigned long flags;
		int ret;

		local_irq_save(flags);

		/*
		 * SVSM_CORE_REMAP_CA call:
		 *   RAX = 0 (Protocol=0, CallID=0)
		 *   RCX = New CA GPA
		 */
		call.caa = svsm_get_caa();
		call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
		call.rcx = this_cpu_read(svsm_caa_pa);
		ret = svsm_perform_call_protocol(&call);
		if (ret)
			panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n",
			      ret, call.rax_out);

		sev_cfg.use_cas = true;

		local_irq_restore(flags);
	}

	sev_es_setup_play_dead();

	/* Secondary CPUs use the runtime #VC handler */
	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
}

static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
{
	int trapnr = ctxt->fi.vector;

	if (trapnr == X86_TRAP_PF)
		native_write_cr2(ctxt->fi.cr2);

	ctxt->regs->orig_ax = ctxt->fi.error_code;
	do_early_exception(ctxt->regs, trapnr);
}

static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
{
	long *reg_array;
	int offset;

	reg_array = (long *)ctxt->regs;
	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);

	if (offset < 0)
		return NULL;

	offset /= sizeof(long);

	return reg_array + offset;
}
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
				 unsigned int bytes, bool read)
{
	u64 exit_code, exit_info_1, exit_info_2;
	unsigned long ghcb_pa = __pa(ghcb);
	enum es_result res;
	phys_addr_t paddr;
	void __user *ref;

	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
	if (ref == (void __user *)-1L)
		return ES_UNSUPPORTED;

	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;

	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
	if (res != ES_OK) {
		if (res == ES_EXCEPTION && !read)
			ctxt->fi.error_code |= X86_PF_WRITE;

		return res;
	}

	exit_info_1 = paddr;
	/* Can never be greater than 8 */
	exit_info_2 = bytes;

	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));

	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
}

/*
 * The MOVS instruction has two memory operands, which raises the
 * problem that it is not known whether the access to the source or the
 * destination caused the #VC exception (and hence whether an MMIO read
 * or write operation needs to be emulated).
 *
 * Instead of playing games with walking page-tables and trying to guess
 * whether the source or destination is an MMIO range, split the move
 * into two operations, a read and a write with only one memory operand.
 * This will cause a nested #VC exception on the MMIO address which can
 * then be handled.
 *
 * This implementation has the benefit that it also supports MOVS where
 * source _and_ destination are MMIO regions.
 *
 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
 * rare operation. If it turns out to be a performance problem the split
 * operations can be moved to memcpy_fromio() and memcpy_toio().
 */
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
					  unsigned int bytes)
{
	unsigned long ds_base, es_base;
	unsigned char *src, *dst;
	unsigned char buffer[8];
	enum es_result ret;
	bool rep;
	int off;

	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);

	if (ds_base == -1L || es_base == -1L) {
		ctxt->fi.vector = X86_TRAP_GP;
		ctxt->fi.error_code = 0;
		return ES_EXCEPTION;
	}

	src = ds_base + (unsigned char *)ctxt->regs->si;
	dst = es_base + (unsigned char *)ctxt->regs->di;

	ret = vc_read_mem(ctxt, src, buffer, bytes);
	if (ret != ES_OK)
		return ret;

	ret = vc_write_mem(ctxt, dst, buffer, bytes);
	if (ret != ES_OK)
		return ret;

	if (ctxt->regs->flags & X86_EFLAGS_DF)
		off = -bytes;
	else
		off =  bytes;

	ctxt->regs->si += off;
	ctxt->regs->di += off;

	rep = insn_has_rep_prefix(&ctxt->insn);
	if (rep)
		ctxt->regs->cx -= 1;

	if (!rep || ctxt->regs->cx == 0)
		return ES_OK;
	else
		return ES_RETRY;
}

static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	struct insn *insn = &ctxt->insn;
	enum insn_mmio_type mmio;
	unsigned int bytes = 0;
	enum es_result ret;
	u8 sign_byte;
	long *reg_data;

	mmio = insn_decode_mmio(insn, &bytes);
	if (mmio == INSN_MMIO_DECODE_FAILED)
		return ES_DECODE_FAILED;

	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
		if (!reg_data)
			return ES_DECODE_FAILED;
	}

	if (user_mode(ctxt->regs))
		return ES_UNSUPPORTED;

	switch (mmio) {
	case INSN_MMIO_WRITE:
		memcpy(ghcb->shared_buffer, reg_data, bytes);
		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
		break;
	case INSN_MMIO_WRITE_IMM:
		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
		break;
	case INSN_MMIO_READ:
		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
		if (ret)
			break;

		/* Zero-extend for 32-bit operation */
		if (bytes == 4)
			*reg_data = 0;

		memcpy(reg_data, ghcb->shared_buffer, bytes);
		break;
	case INSN_MMIO_READ_ZERO_EXTEND:
		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
		if (ret)
			break;

		/* Zero extend based on operand size */
		memset(reg_data, 0, insn->opnd_bytes);
		memcpy(reg_data, ghcb->shared_buffer, bytes);
		break;
	case INSN_MMIO_READ_SIGN_EXTEND:
		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
		if (ret)
			break;

		if (bytes == 1) {
			u8 *val = (u8 *)ghcb->shared_buffer;

			sign_byte = (*val & 0x80) ? 0xff : 0x00;
		} else {
			u16 *val = (u16 *)ghcb->shared_buffer;

			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
		}

		/* Sign extend based on operand size */
		memset(reg_data, sign_byte, insn->opnd_bytes);
		memcpy(reg_data, ghcb->shared_buffer, bytes);
		break;
	case INSN_MMIO_MOVS:
		ret = vc_handle_mmio_movs(ctxt, bytes);
		break;
	default:
		ret = ES_UNSUPPORTED;
		break;
	}

	return ret;
}

static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
					  struct es_em_ctxt *ctxt)
{
	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
	long val, *reg = vc_insn_get_rm(ctxt);
	enum es_result ret;

	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
		return ES_VMM_ERROR;

	if (!reg)
		return ES_DECODE_FAILED;

	val = *reg;

	/* Upper 32 bits must be written as zeroes */
	if (val >> 32) {
		ctxt->fi.vector = X86_TRAP_GP;
		ctxt->fi.error_code = 0;
		return ES_EXCEPTION;
	}

	/* Clear out other reserved bits and set bit 10 */
	val = (val & 0xffff23ffL) | BIT(10);

	/* Early non-zero writes to DR7 are not supported */
	if (!data && (val & ~DR7_RESET_VALUE))
		return ES_UNSUPPORTED;

	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
	ghcb_set_rax(ghcb, val);
	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (data)
		data->dr7 = val;

	return ES_OK;
}

static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
					 struct es_em_ctxt *ctxt)
{
	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
	long *reg = vc_insn_get_rm(ctxt);

	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
		return ES_VMM_ERROR;

	if (!reg)
		return ES_DECODE_FAILED;

	if (data)
		*reg = data->dr7;
	else
		*reg = DR7_RESET_VALUE;

	return ES_OK;
}

static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
				       struct es_em_ctxt *ctxt)
{
	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
}

static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	enum es_result ret;

	ghcb_set_rcx(ghcb, ctxt->regs->cx);

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
		return ES_VMM_ERROR;

	ctxt->regs->ax = ghcb->save.rax;
	ctxt->regs->dx = ghcb->save.rdx;

	return ES_OK;
}

static enum es_result vc_handle_monitor(struct ghcb *ghcb,
					struct es_em_ctxt *ctxt)
{
	/*
	 * Treat it as a NOP and do not leak a physical address to the
	 * hypervisor.
	 */
	return ES_OK;
}

static enum es_result vc_handle_mwait(struct ghcb *ghcb,
				      struct es_em_ctxt *ctxt)
{
	/* Treat the same as MONITOR/MONITORX */
	return ES_OK;
}

static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
					struct es_em_ctxt *ctxt)
{
	enum es_result ret;

	ghcb_set_rax(ghcb, ctxt->regs->ax);
	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);

	if (x86_platform.hyper.sev_es_hcall_prepare)
		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (!ghcb_rax_is_valid(ghcb))
		return ES_VMM_ERROR;

	ctxt->regs->ax = ghcb->save.rax;

	/*
	 * Call sev_es_hcall_finish() after regs->ax is already set.
	 * This allows the hypervisor handler to overwrite it again if
	 * necessary.
	 */
	if (x86_platform.hyper.sev_es_hcall_finish &&
	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
		return ES_VMM_ERROR;

	return ES_OK;
}

static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
					struct es_em_ctxt *ctxt)
{
	/*
	 * Calling ecx_alignment_check() directly does not work, because it
	 * enables IRQs and the GHCB is active. Forward the exception and call
	 * it later from vc_forward_exception().
	 */
	ctxt->fi.vector = X86_TRAP_AC;
	ctxt->fi.error_code = 0;
	return ES_EXCEPTION;
}

static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
					 struct ghcb *ghcb,
					 unsigned long exit_code)
{
	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);

	if (result != ES_OK)
		return result;

	switch (exit_code) {
	case SVM_EXIT_READ_DR7:
		result = vc_handle_dr7_read(ghcb, ctxt);
		break;
	case SVM_EXIT_WRITE_DR7:
		result = vc_handle_dr7_write(ghcb, ctxt);
		break;
	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
		result = vc_handle_trap_ac(ghcb, ctxt);
		break;
	case SVM_EXIT_RDTSC:
	case SVM_EXIT_RDTSCP:
		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
		break;
	case SVM_EXIT_RDPMC:
		result = vc_handle_rdpmc(ghcb, ctxt);
		break;
	case SVM_EXIT_INVD:
		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
		result = ES_UNSUPPORTED;
		break;
	case SVM_EXIT_CPUID:
		result = vc_handle_cpuid(ghcb, ctxt);
		break;
	case SVM_EXIT_IOIO:
		result = vc_handle_ioio(ghcb, ctxt);
		break;
	case SVM_EXIT_MSR:
		result = vc_handle_msr(ghcb, ctxt);
		break;
	case SVM_EXIT_VMMCALL:
		result = vc_handle_vmmcall(ghcb, ctxt);
		break;
	case SVM_EXIT_WBINVD:
		result = vc_handle_wbinvd(ghcb, ctxt);
		break;
	case SVM_EXIT_MONITOR:
		result = vc_handle_monitor(ghcb, ctxt);
		break;
	case SVM_EXIT_MWAIT:
		result = vc_handle_mwait(ghcb, ctxt);
		break;
	case SVM_EXIT_NPF:
		result = vc_handle_mmio(ghcb, ctxt);
		break;
	default:
		/*
		 * Unexpected #VC exception
		 */
		result = ES_UNSUPPORTED;
	}

	return result;
}

static __always_inline bool is_vc2_stack(unsigned long sp)
{
	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
}

static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
{
	unsigned long sp, prev_sp;

	sp      = (unsigned long)regs;
	prev_sp = regs->sp;

	/*
	 * If the code was already executing on the VC2 stack when the #VC
	 * happened, let it proceed to the normal handling routine. This way the
	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
	 */
	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
}

static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
{
	struct ghcb_state state;
	struct es_em_ctxt ctxt;
	enum es_result result;
	struct ghcb *ghcb;
	bool ret = true;

	ghcb = __sev_get_ghcb(&state);

	vc_ghcb_invalidate(ghcb);
	result = vc_init_em_ctxt(&ctxt, regs, error_code);

	if (result == ES_OK)
		result = vc_handle_exitcode(&ctxt, ghcb, error_code);

	__sev_put_ghcb(&state);

	/* Done - now check the result */
	switch (result) {
	case ES_OK:
		vc_finish_insn(&ctxt);
		break;
	case ES_UNSUPPORTED:
		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
				   error_code, regs->ip);
		ret = false;
		break;
	case ES_VMM_ERROR:
		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
				   error_code, regs->ip);
		ret = false;
		break;
	case ES_DECODE_FAILED:
		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
				   error_code, regs->ip);
		ret = false;
		break;
	case ES_EXCEPTION:
		vc_forward_exception(&ctxt);
		break;
	case ES_RETRY:
		/* Nothing to do */
		break;
	default:
		pr_emerg("Unknown result in %s():%d\n", __func__, result);
		/*
		 * Emulating the instruction which caused the #VC exception
		 * failed - can't continue so print debug information
		 */
		BUG();
	}

	return ret;
}

static __always_inline bool vc_is_db(unsigned long error_code)
{
	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
}

/*
 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
 * and will panic when an error happens.
 */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
{
	irqentry_state_t irq_state;

	/*
	 * With the current implementation it is always possible to switch to a
	 * safe stack because #VC exceptions only happen at known places, like
	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
	 * also happen with code instrumentation when the hypervisor intercepts
	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
	 * exceptions currently also only happen in safe places.
	 *
	 * But keep this here in case the noinstr annotations are violated due
	 * to bug elsewhere.
	 */
	if (unlikely(vc_from_invalid_context(regs))) {
		instrumentation_begin();
		panic("Can't handle #VC exception from unsupported context\n");
		instrumentation_end();
	}

	/*
	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
	 */
	if (vc_is_db(error_code)) {
		exc_debug(regs);
		return;
	}

	irq_state = irqentry_nmi_enter(regs);

	instrumentation_begin();

	if (!vc_raw_handle_exception(regs, error_code)) {
		/* Show some debug info */
		show_regs(regs);

		/* Ask hypervisor to sev_es_terminate */
		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);

		/* If that fails and we get here - just panic */
		panic("Returned from Terminate-Request to Hypervisor\n");
	}

	instrumentation_end();
	irqentry_nmi_exit(regs, irq_state);
}

/*
 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
 * and will kill the current task with SIGBUS when an error happens.
 */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
{
	/*
	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
	 */
	if (vc_is_db(error_code)) {
		noist_exc_debug(regs);
		return;
	}

	irqentry_enter_from_user_mode(regs);
	instrumentation_begin();

	if (!vc_raw_handle_exception(regs, error_code)) {
		/*
		 * Do not kill the machine if user-space triggered the
		 * exception. Send SIGBUS instead and let user-space deal with
		 * it.
		 */
		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
	}

	instrumentation_end();
	irqentry_exit_to_user_mode(regs);
}

bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
{
	unsigned long exit_code = regs->orig_ax;
	struct es_em_ctxt ctxt;
	enum es_result result;

	vc_ghcb_invalidate(boot_ghcb);

	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
	if (result == ES_OK)
		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);

	/* Done - now check the result */
	switch (result) {
	case ES_OK:
		vc_finish_insn(&ctxt);
		break;
	case ES_UNSUPPORTED:
		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
				exit_code, regs->ip);
		goto fail;
	case ES_VMM_ERROR:
		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
				exit_code, regs->ip);
		goto fail;
	case ES_DECODE_FAILED:
		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
				exit_code, regs->ip);
		goto fail;
	case ES_EXCEPTION:
		vc_early_forward_exception(&ctxt);
		break;
	case ES_RETRY:
		/* Nothing to do */
		break;
	default:
		BUG();
	}

	return true;

fail:
	show_regs(regs);

	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}

/*
 * Initial set up of SNP relies on information provided by the
 * Confidential Computing blob, which can be passed to the kernel
 * in the following ways, depending on how it is booted:
 *
 * - when booted via the boot/decompress kernel:
 *   - via boot_params
 *
 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
 *   - via a setup_data entry, as defined by the Linux Boot Protocol
 *
 * Scan for the blob in that order.
 */
static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
{
	struct cc_blob_sev_info *cc_info;

	/* Boot kernel would have passed the CC blob via boot_params. */
	if (bp->cc_blob_address) {
		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
		goto found_cc_info;
	}

	/*
	 * If kernel was booted directly, without the use of the
	 * boot/decompression kernel, the CC blob may have been passed via
	 * setup_data instead.
	 */
	cc_info = find_cc_blob_setup_data(bp);
	if (!cc_info)
		return NULL;

found_cc_info:
	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
		snp_abort();

	return cc_info;
}

static __head void svsm_setup(struct cc_blob_sev_info *cc_info)
{
	struct svsm_call call = {};
	int ret;
	u64 pa;

	/*
	 * Record the SVSM Calling Area address (CAA) if the guest is not
	 * running at VMPL0. The CA will be used to communicate with the
	 * SVSM to perform the SVSM services.
	 */
	if (!svsm_setup_ca(cc_info))
		return;

	/*
	 * It is very early in the boot and the kernel is running identity
	 * mapped but without having adjusted the pagetables to where the
	 * kernel was loaded (physbase), so the get the CA address using
	 * RIP-relative addressing.
	 */
	pa = (u64)&RIP_REL_REF(boot_svsm_ca_page);

	/*
	 * Switch over to the boot SVSM CA while the current CA is still
	 * addressable. There is no GHCB at this point so use the MSR protocol.
	 *
	 * SVSM_CORE_REMAP_CA call:
	 *   RAX = 0 (Protocol=0, CallID=0)
	 *   RCX = New CA GPA
	 */
	call.caa = svsm_get_caa();
	call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
	call.rcx = pa;
	ret = svsm_perform_call_protocol(&call);
	if (ret)
		panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", ret, call.rax_out);

	RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)pa;
	RIP_REL_REF(boot_svsm_caa_pa) = pa;
}

bool __head snp_init(struct boot_params *bp)
{
	struct cc_blob_sev_info *cc_info;

	if (!bp)
		return false;

	cc_info = find_cc_blob(bp);
	if (!cc_info)
		return false;

	setup_cpuid_table(cc_info);

	svsm_setup(cc_info);

	/*
	 * The CC blob will be used later to access the secrets page. Cache
	 * it here like the boot kernel does.
	 */
	bp->cc_blob_address = (u32)(unsigned long)cc_info;

	return true;
}

void __head __noreturn snp_abort(void)
{
	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
}

/*
 * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
 * enabled, as the alternative (fallback) logic for DMI probing in the legacy
 * ROM region can cause a crash since this region is not pre-validated.
 */
void __init snp_dmi_setup(void)
{
	if (efi_enabled(EFI_CONFIG_TABLES))
		dmi_setup();
}

static void dump_cpuid_table(void)
{
	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
	int i = 0;

	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);

	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];

		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
	}
}

/*
 * It is useful from an auditing/testing perspective to provide an easy way
 * for the guest owner to know that the CPUID table has been initialized as
 * expected, but that initialization happens too early in boot to print any
 * sort of indicator, and there's not really any other good place to do it,
 * so do it here.
 *
 * If running as an SNP guest, report the current VM privilege level (VMPL).
 */
static int __init report_snp_info(void)
{
	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();

	if (cpuid_table->count) {
		pr_info("Using SNP CPUID table, %d entries present.\n",
			cpuid_table->count);

		if (sev_cfg.debug)
			dump_cpuid_table();
	}

	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		pr_info("SNP running at VMPL%u.\n", snp_vmpl);

	return 0;
}
arch_initcall(report_snp_info);

static int __init init_sev_config(char *str)
{
	char *s;

	while ((s = strsep(&str, ","))) {
		if (!strcmp(s, "debug")) {
			sev_cfg.debug = true;
			continue;
		}

		pr_info("SEV command-line option '%s' was not recognized\n", s);
	}

	return 1;
}
__setup("sev=", init_sev_config);

static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input)
{
	/* If (new) lengths have been returned, propagate them up */
	if (call->rcx_out != call->rcx)
		input->manifest_buf.len = call->rcx_out;

	if (call->rdx_out != call->rdx)
		input->certificates_buf.len = call->rdx_out;

	if (call->r8_out != call->r8)
		input->report_buf.len = call->r8_out;
}

int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call,
			      struct svsm_attest_call *input)
{
	struct svsm_attest_call *ac;
	unsigned long flags;
	u64 attest_call_pa;
	int ret;

	if (!snp_vmpl)
		return -EINVAL;

	local_irq_save(flags);

	call->caa = svsm_get_caa();

	ac = (struct svsm_attest_call *)call->caa->svsm_buffer;
	attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);

	*ac = *input;

	/*
	 * Set input registers for the request and set RDX and R8 to known
	 * values in order to detect length values being returned in them.
	 */
	call->rax = call_id;
	call->rcx = attest_call_pa;
	call->rdx = -1;
	call->r8 = -1;
	ret = svsm_perform_call_protocol(call);
	update_attest_input(call, input);

	local_irq_restore(flags);

	return ret;
}
EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req);

int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
{
	struct ghcb_state state;
	struct es_em_ctxt ctxt;
	unsigned long flags;
	struct ghcb *ghcb;
	int ret;

	rio->exitinfo2 = SEV_RET_NO_FW_CALL;

	/*
	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
	 * a per-CPU GHCB.
	 */
	local_irq_save(flags);

	ghcb = __sev_get_ghcb(&state);
	if (!ghcb) {
		ret = -EIO;
		goto e_restore_irq;
	}

	vc_ghcb_invalidate(ghcb);

	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
		ghcb_set_rax(ghcb, input->data_gpa);
		ghcb_set_rbx(ghcb, input->data_npages);
	}

	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
	if (ret)
		goto e_put;

	rio->exitinfo2 = ghcb->save.sw_exit_info_2;
	switch (rio->exitinfo2) {
	case 0:
		break;

	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
		ret = -EAGAIN;
		break;

	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
		/* Number of expected pages are returned in RBX */
		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
			input->data_npages = ghcb_get_rbx(ghcb);
			ret = -ENOSPC;
			break;
		}
		fallthrough;
	default:
		ret = -EIO;
		break;
	}

e_put:
	__sev_put_ghcb(&state);
e_restore_irq:
	local_irq_restore(flags);

	return ret;
}
EXPORT_SYMBOL_GPL(snp_issue_guest_request);

static struct platform_device sev_guest_device = {
	.name		= "sev-guest",
	.id		= -1,
};

static int __init snp_init_platform_device(void)
{
	struct sev_guest_platform_data data;
	u64 gpa;

	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return -ENODEV;

	gpa = get_secrets_page();
	if (!gpa)
		return -ENODEV;

	data.secrets_gpa = gpa;
	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
		return -ENODEV;

	if (platform_device_register(&sev_guest_device))
		return -ENODEV;

	pr_info("SNP guest platform device initialized.\n");
	return 0;
}
device_initcall(snp_init_platform_device);

void sev_show_status(void)
{
	int i;

	pr_info("Status: ");
	for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
		if (sev_status & BIT_ULL(i)) {
			if (!sev_status_feat_names[i])
				continue;

			pr_cont("%s ", sev_status_feat_names[i]);
		}
	}
	pr_cont("\n");
}

void __init snp_update_svsm_ca(void)
{
	if (!snp_vmpl)
		return;

	/* Update the CAA to a proper kernel address */
	boot_svsm_caa = &boot_svsm_ca_page;
}

#ifdef CONFIG_SYSFS
static ssize_t vmpl_show(struct kobject *kobj,
			 struct kobj_attribute *attr, char *buf)
{
	return sysfs_emit(buf, "%d\n", snp_vmpl);
}

static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl);

static struct attribute *vmpl_attrs[] = {
	&vmpl_attr.attr,
	NULL
};

static struct attribute_group sev_attr_group = {
	.attrs = vmpl_attrs,
};

static int __init sev_sysfs_init(void)
{
	struct kobject *sev_kobj;
	struct device *dev_root;
	int ret;

	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
		return -ENODEV;

	dev_root = bus_get_dev_root(&cpu_subsys);
	if (!dev_root)
		return -ENODEV;

	sev_kobj = kobject_create_and_add("sev", &dev_root->kobj);
	put_device(dev_root);

	if (!sev_kobj)
		return -ENOMEM;

	ret = sysfs_create_group(sev_kobj, &sev_attr_group);
	if (ret)
		kobject_put(sev_kobj);

	return ret;
}
arch_initcall(sev_sysfs_init);
#endif // CONFIG_SYSFS