1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 Regents of the University of California
*/
#ifndef _ASM_RISCV_PGTABLE_H
#define _ASM_RISCV_PGTABLE_H
#include <linux/mmzone.h>
#include <linux/sizes.h>
#include <asm/pgtable-bits.h>
#ifndef CONFIG_MMU
#define KERNEL_LINK_ADDR PAGE_OFFSET
#define KERN_VIRT_SIZE (UL(-1))
#else
#define ADDRESS_SPACE_END (UL(-1))
#ifdef CONFIG_64BIT
/* Leave 2GB for kernel and BPF at the end of the address space */
#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
#else
#define KERNEL_LINK_ADDR PAGE_OFFSET
#endif
/* Number of entries in the page global directory */
#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
/* Number of entries in the page table */
#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
/*
* Half of the kernel address space (1/4 of the entries of the page global
* directory) is for the direct mapping.
*/
#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END PAGE_OFFSET
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#ifdef CONFIG_64BIT
#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (MODULES_END)
#else
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
#endif
/* Modules always live before the kernel */
#ifdef CONFIG_64BIT
/* This is used to define the end of the KASAN shadow region */
#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
#else
#define MODULES_VADDR VMALLOC_START
#define MODULES_END VMALLOC_END
#endif
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VA_BITS_SV32 32
#ifdef CONFIG_64BIT
#define VA_BITS_SV39 39
#define VA_BITS_SV48 48
#define VA_BITS_SV57 57
#define VA_BITS (pgtable_l5_enabled ? \
VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
#else
#define VA_BITS VA_BITS_SV32
#endif
#define VMEMMAP_SHIFT \
(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END VMALLOC_START
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
/*
* Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
* is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
*/
#define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
#define PCI_IO_SIZE SZ_16M
#define PCI_IO_END VMEMMAP_START
#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
#define FIXADDR_TOP PCI_IO_START
#ifdef CONFIG_64BIT
#define MAX_FDT_SIZE PMD_SIZE
#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
#else
#define MAX_FDT_SIZE PGDIR_SIZE
#define FIX_FDT_SIZE MAX_FDT_SIZE
#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
#endif
#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
#endif
#ifdef CONFIG_XIP_KERNEL
#define XIP_OFFSET SZ_32M
#define XIP_OFFSET_MASK (SZ_32M - 1)
#else
#define XIP_OFFSET 0
#endif
#ifndef __ASSEMBLY__
#include <asm/page.h>
#include <asm/tlbflush.h>
#include <linux/mm_types.h>
#include <asm/compat.h>
#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
#ifdef CONFIG_64BIT
#include <asm/pgtable-64.h>
#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
#else
#include <asm/pgtable-32.h>
#endif /* CONFIG_64BIT */
#include <linux/page_table_check.h>
#ifdef CONFIG_XIP_KERNEL
#define XIP_FIXUP(addr) ({ \
uintptr_t __a = (uintptr_t)(addr); \
(__a >= CONFIG_XIP_PHYS_ADDR && \
__a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
__a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
__a; \
})
#else
#define XIP_FIXUP(addr) (addr)
#endif /* CONFIG_XIP_KERNEL */
struct pt_alloc_ops {
pte_t *(*get_pte_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pte)(uintptr_t va);
#ifndef __PAGETABLE_PMD_FOLDED
pmd_t *(*get_pmd_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pmd)(uintptr_t va);
pud_t *(*get_pud_virt)(phys_addr_t pa);
phys_addr_t (*alloc_pud)(uintptr_t va);
p4d_t *(*get_p4d_virt)(phys_addr_t pa);
phys_addr_t (*alloc_p4d)(uintptr_t va);
#endif
};
extern struct pt_alloc_ops pt_ops __meminitdata;
#ifdef CONFIG_MMU
/* Number of PGD entries that a user-mode program can use */
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/* Page protection bits */
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
_PAGE_EXEC | _PAGE_WRITE)
#define PAGE_COPY PAGE_READ
#define PAGE_COPY_EXEC PAGE_READ_EXEC
#define PAGE_SHARED PAGE_WRITE
#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
#define _PAGE_KERNEL (_PAGE_READ \
| _PAGE_WRITE \
| _PAGE_PRESENT \
| _PAGE_ACCESSED \
| _PAGE_DIRTY \
| _PAGE_GLOBAL)
#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
| _PAGE_EXEC)
#define PAGE_TABLE __pgprot(_PAGE_TABLE)
#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
extern pgd_t swapper_pg_dir[];
extern pgd_t trampoline_pg_dir[];
extern pgd_t early_pg_dir[];
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_present(pmd_t pmd)
{
/*
* Checking for _PAGE_LEAF is needed too because:
* When splitting a THP, split_huge_page() will temporarily clear
* the present bit, in this situation, pmd_present() and
* pmd_trans_huge() still needs to return true.
*/
return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
}
#else
static inline int pmd_present(pmd_t pmd)
{
return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
}
#endif
static inline int pmd_none(pmd_t pmd)
{
return (pmd_val(pmd) == 0);
}
static inline int pmd_bad(pmd_t pmd)
{
return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
}
#define pmd_leaf pmd_leaf
static inline bool pmd_leaf(pmd_t pmd)
{
return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
WRITE_ONCE(*pmdp, pmd);
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
{
unsigned long prot_val = pgprot_val(prot);
ALT_THEAD_PMA(prot_val);
return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
}
static inline unsigned long _pgd_pfn(pgd_t pgd)
{
return __page_val_to_pfn(pgd_val(pgd));
}
static inline struct page *pmd_page(pmd_t pmd)
{
return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
#ifdef CONFIG_RISCV_ISA_SVNAPOT
#include <asm/cpufeature.h>
static __always_inline bool has_svnapot(void)
{
return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
}
static inline unsigned long pte_napot(pte_t pte)
{
return pte_val(pte) & _PAGE_NAPOT;
}
static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
{
int pos = order - 1 + _PAGE_PFN_SHIFT;
unsigned long napot_bit = BIT(pos);
unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
}
#else
static __always_inline bool has_svnapot(void) { return false; }
static inline unsigned long pte_napot(pte_t pte)
{
return 0;
}
#endif /* CONFIG_RISCV_ISA_SVNAPOT */
/* Yields the page frame number (PFN) of a page table entry */
static inline unsigned long pte_pfn(pte_t pte)
{
unsigned long res = __page_val_to_pfn(pte_val(pte));
if (has_svnapot() && pte_napot(pte))
res = res & (res - 1UL);
return res;
}
#define pte_page(x) pfn_to_page(pte_pfn(x))
/* Constructs a page table entry */
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
{
unsigned long prot_val = pgprot_val(prot);
ALT_THEAD_PMA(prot_val);
return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
}
#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
static inline int pte_present(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
}
#define pte_accessible pte_accessible
static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
{
if (pte_val(a) & _PAGE_PRESENT)
return true;
if ((pte_val(a) & _PAGE_PROT_NONE) &&
atomic_read(&mm->tlb_flush_pending))
return true;
return false;
}
static inline int pte_none(pte_t pte)
{
return (pte_val(pte) == 0);
}
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
static inline int pte_exec(pte_t pte)
{
return pte_val(pte) & _PAGE_EXEC;
}
static inline int pte_user(pte_t pte)
{
return pte_val(pte) & _PAGE_USER;
}
static inline int pte_huge(pte_t pte)
{
return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
}
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_DIRTY;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
static inline int pte_special(pte_t pte)
{
return pte_val(pte) & _PAGE_SPECIAL;
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
return pte_val(pte) & _PAGE_DEVMAP;
}
#endif
/* static inline pte_t pte_rdprotect(pte_t pte) */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_WRITE));
}
/* static inline pte_t pte_mkread(pte_t pte) */
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_WRITE);
}
/* static inline pte_t pte_mkexec(pte_t pte) */
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DEVMAP);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
#ifdef CONFIG_RISCV_ISA_SVNAPOT
#define pte_leaf_size(pte) (pte_napot(pte) ? \
napot_cont_size(napot_cont_order(pte)) :\
PAGE_SIZE)
#endif
#ifdef CONFIG_NUMA_BALANCING
/*
* See the comment in include/asm-generic/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif
/* Modify page protection bits */
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
unsigned long newprot_val = pgprot_val(newprot);
ALT_THEAD_PMA(newprot_val);
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
}
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
/* Commit new configuration to MMU hardware */
static inline void update_mmu_cache_range(struct vm_fault *vmf,
struct vm_area_struct *vma, unsigned long address,
pte_t *ptep, unsigned int nr)
{
/*
* The kernel assumes that TLBs don't cache invalid entries, but
* in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
* cache flush; it is necessary even after writing invalid entries.
* Relying on flush_tlb_fix_spurious_fault would suffice, but
* the extra traps reduce performance. So, eagerly SFENCE.VMA.
*/
while (nr--)
local_flush_tlb_page(address + nr * PAGE_SIZE);
}
#define update_mmu_cache(vma, addr, ptep) \
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
#define update_mmu_tlb_range(vma, addr, ptep, nr) \
update_mmu_cache_range(NULL, vma, addr, ptep, nr)
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
pte_t *ptep = (pte_t *)pmdp;
update_mmu_cache(vma, address, ptep);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return pte_val(pte_a) == pte_val(pte_b);
}
/*
* Certain architectures need to do special things when PTEs within
* a page table are directly modified. Thus, the following hook is
* made available.
*/
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
WRITE_ONCE(*ptep, pteval);
}
void flush_icache_pte(struct mm_struct *mm, pte_t pte);
static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
{
if (pte_present(pteval) && pte_exec(pteval))
flush_icache_pte(mm, pteval);
set_pte(ptep, pteval);
}
#define PFN_PTE_SHIFT _PAGE_PFN_SHIFT
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval, unsigned int nr)
{
page_table_check_ptes_set(mm, ptep, pteval, nr);
for (;;) {
__set_pte_at(mm, ptep, pteval);
if (--nr == 0)
break;
ptep++;
pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
}
}
#define set_ptes set_ptes
static inline void pte_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
__set_pte_at(mm, ptep, __pte(0));
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep, pte_t entry, int dirty);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */
extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep);
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
page_table_check_pte_clear(mm, pte);
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
/*
* This comment is borrowed from x86, but applies equally to RISC-V:
*
* Clearing the accessed bit without a TLB flush
* doesn't cause data corruption. [ It could cause incorrect
* page aging and the (mistaken) reclaim of hot pages, but the
* chance of that should be relatively low. ]
*
* So as a performance optimization don't flush the TLB when
* clearing the accessed bit, it will eventually be flushed by
* a context switch or a VM operation anyway. [ In the rare
* event of it not getting flushed for a long time the delay
* shouldn't really matter because there's no real memory
* pressure for swapout to react to. ]
*/
return ptep_test_and_clear_young(vma, address, ptep);
}
#define pgprot_nx pgprot_nx
static inline pgprot_t pgprot_nx(pgprot_t _prot)
{
return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
}
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot &= ~_PAGE_MTMASK;
prot |= _PAGE_IO;
return __pgprot(prot);
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot &= ~_PAGE_MTMASK;
prot |= _PAGE_NOCACHE;
return __pgprot(prot);
}
/*
* THP functions
*/
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return pmd;
}
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
}
#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
static inline unsigned long pmd_pfn(pmd_t pmd)
{
return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
}
#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
#define pud_pfn pud_pfn
static inline unsigned long pud_pfn(pud_t pud)
{
return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
return pte_write(pmd_pte(pmd));
}
#define pud_write pud_write
static inline int pud_write(pud_t pud)
{
return pte_write(pud_pte(pud));
}
#define pmd_dirty pmd_dirty
static inline int pmd_dirty(pmd_t pmd)
{
return pte_dirty(pmd_pte(pmd));
}
#define pmd_young pmd_young
static inline int pmd_young(pmd_t pmd)
{
return pte_young(pmd_pte(pmd));
}
static inline int pmd_user(pmd_t pmd)
{
return pte_user(pmd_pte(pmd));
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
return pte_pmd(pte_mkold(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
{
return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
return pte_pmd(pte_mkclean(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
}
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pte_pmd(pte_mkdevmap(pmd_pte(pmd)));
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(mm, pmdp, pmd);
return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
}
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, pud_t pud)
{
page_table_check_pud_set(mm, pudp, pud);
return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
}
#ifdef CONFIG_PAGE_TABLE_CHECK
static inline bool pte_user_accessible_page(pte_t pte)
{
return pte_present(pte) && pte_user(pte);
}
static inline bool pmd_user_accessible_page(pmd_t pmd)
{
return pmd_leaf(pmd) && pmd_user(pmd);
}
static inline bool pud_user_accessible_page(pud_t pud)
{
return pud_leaf(pud) && pud_user(pud);
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_leaf(pmd);
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
page_table_check_pmd_clear(mm, pmd);
return pmd;
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
}
#define pmdp_collapse_flush pmdp_collapse_flush
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
* are !pte_none() && !pte_present().
*
* Format of swap PTE:
* bit 0: _PAGE_PRESENT (zero)
* bit 1 to 3: _PAGE_LEAF (zero)
* bit 5: _PAGE_PROT_NONE (zero)
* bit 6: exclusive marker
* bits 7 to 11: swap type
* bits 12 to XLEN-1: swap offset
*/
#define __SWP_TYPE_SHIFT 7
#define __SWP_TYPE_BITS 5
#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define MAX_SWAPFILES_CHECK() \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) \
{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
}
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
#define __swp_entry_to_pmd(swp) __pmd((swp).val)
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
/*
* In the RV64 Linux scheme, we give the user half of the virtual-address space
* and give the kernel the other (upper) half.
*/
#ifdef CONFIG_64BIT
#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
#else
#define KERN_VIRT_START FIXADDR_START
#endif
/*
* Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
* Note that PGDIR_SIZE must evenly divide TASK_SIZE.
* Task size is:
* - 0x9fc00000 (~2.5GB) for RV32.
* - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
* - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
* - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
*
* Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
* Instruction Set Manual Volume II: Privileged Architecture" states that
* "load and store effective addresses, which are 64bits, must have bits
* 63–48 all equal to bit 47, or else a page-fault exception will occur."
* Similarly for SV57, bits 63–57 must be equal to bit 56.
*/
#ifdef CONFIG_64BIT
#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
#define TASK_SIZE_MAX LONG_MAX
#ifdef CONFIG_COMPAT
#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
#define TASK_SIZE (is_compat_task() ? \
TASK_SIZE_32 : TASK_SIZE_64)
#else
#define TASK_SIZE TASK_SIZE_64
#endif
#else
#define TASK_SIZE FIXADDR_START
#endif
#else /* CONFIG_MMU */
#define PAGE_SHARED __pgprot(0)
#define PAGE_KERNEL __pgprot(0)
#define swapper_pg_dir NULL
#define TASK_SIZE _AC(-1, UL)
#define VMALLOC_START _AC(0, UL)
#define VMALLOC_END TASK_SIZE
#endif /* !CONFIG_MMU */
extern char _start[];
extern void *_dtb_early_va;
extern uintptr_t _dtb_early_pa;
#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
#else
#define dtb_early_va _dtb_early_va
#define dtb_early_pa _dtb_early_pa
#endif /* CONFIG_XIP_KERNEL */
extern u64 satp_mode;
void paging_init(void);
void misc_mem_init(void);
/*
* ZERO_PAGE is a global shared page that is always zero,
* used for zero-mapped memory areas, etc.
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_RISCV_PGTABLE_H */
|