summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/nested.c
blob: 638b6205526fa7f99dcb574e98be6dc7a8043207 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2017 - Columbia University and Linaro Ltd.
 * Author: Jintack Lim <jintack.lim@linaro.org>
 */

#include <linux/bitfield.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>

#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/sysreg.h>

#include "sys_regs.h"

/* Protection against the sysreg repainting madness... */
#define NV_FTR(r, f)		ID_AA64##r##_EL1_##f

/*
 * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
 * memory usage and potential number of different sets of S2 PTs in
 * the guests. Running out of S2 MMUs only affects performance (we
 * will invalidate them more often).
 */
#define S2_MMU_PER_VCPU		2

void kvm_init_nested(struct kvm *kvm)
{
	kvm->arch.nested_mmus = NULL;
	kvm->arch.nested_mmus_size = 0;
}

static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
{
	/*
	 * We only initialise the IPA range on the canonical MMU, which
	 * defines the contract between KVM and userspace on where the
	 * "hardware" is in the IPA space. This affects the validity of MMIO
	 * exits forwarded to userspace, for example.
	 *
	 * For nested S2s, we use the PARange as exposed to the guest, as it
	 * is allowed to use it at will to expose whatever memory map it
	 * wants to its own guests as it would be on real HW.
	 */
	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
}

int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_s2_mmu *tmp;
	int num_mmus, ret = 0;

	/*
	 * Let's treat memory allocation failures as benign: If we fail to
	 * allocate anything, return an error and keep the allocated array
	 * alive. Userspace may try to recover by intializing the vcpu
	 * again, and there is no reason to affect the whole VM for this.
	 */
	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
	tmp = kvrealloc(kvm->arch.nested_mmus,
			size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size),
			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!tmp)
		return -ENOMEM;

	/*
	 * If we went through a realocation, adjust the MMU back-pointers in
	 * the previously initialised kvm_pgtable structures.
	 */
	if (kvm->arch.nested_mmus != tmp)
		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
			tmp[i].pgt->mmu = &tmp[i];

	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
		ret = init_nested_s2_mmu(kvm, &tmp[i]);

	if (ret) {
		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
			kvm_free_stage2_pgd(&tmp[i]);

		return ret;
	}

	kvm->arch.nested_mmus_size = num_mmus;
	kvm->arch.nested_mmus = tmp;

	return 0;
}

struct s2_walk_info {
	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
	void	     *data;
	u64	     baddr;
	unsigned int max_oa_bits;
	unsigned int pgshift;
	unsigned int sl;
	unsigned int t0sz;
	bool	     be;
};

static u32 compute_fsc(int level, u32 fsc)
{
	return fsc | (level & 0x3);
}

static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
{
	u32 esr;

	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
	esr |= compute_fsc(level, fsc);
	return esr;
}

static int get_ia_size(struct s2_walk_info *wi)
{
	return 64 - wi->t0sz;
}

static int check_base_s2_limits(struct s2_walk_info *wi,
				int level, int input_size, int stride)
{
	int start_size, ia_size;

	ia_size = get_ia_size(wi);

	/* Check translation limits */
	switch (BIT(wi->pgshift)) {
	case SZ_64K:
		if (level == 0 || (level == 1 && ia_size <= 42))
			return -EFAULT;
		break;
	case SZ_16K:
		if (level == 0 || (level == 1 && ia_size <= 40))
			return -EFAULT;
		break;
	case SZ_4K:
		if (level < 0 || (level == 0 && ia_size <= 42))
			return -EFAULT;
		break;
	}

	/* Check input size limits */
	if (input_size > ia_size)
		return -EFAULT;

	/* Check number of entries in starting level table */
	start_size = input_size - ((3 - level) * stride + wi->pgshift);
	if (start_size < 1 || start_size > stride + 4)
		return -EFAULT;

	return 0;
}

/* Check if output is within boundaries */
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
{
	unsigned int output_size = wi->max_oa_bits;

	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
		return -1;

	return 0;
}

/*
 * This is essentially a C-version of the pseudo code from the ARM ARM
 * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
 * that pseudocode in trying to understand this.
 *
 * Must be called with the kvm->srcu read lock held
 */
static int walk_nested_s2_pgd(phys_addr_t ipa,
			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
{
	int first_block_level, level, stride, input_size, base_lower_bound;
	phys_addr_t base_addr;
	unsigned int addr_top, addr_bottom;
	u64 desc;  /* page table entry */
	int ret;
	phys_addr_t paddr;

	switch (BIT(wi->pgshift)) {
	default:
	case SZ_64K:
	case SZ_16K:
		level = 3 - wi->sl;
		first_block_level = 2;
		break;
	case SZ_4K:
		level = 2 - wi->sl;
		first_block_level = 1;
		break;
	}

	stride = wi->pgshift - 3;
	input_size = get_ia_size(wi);
	if (input_size > 48 || input_size < 25)
		return -EFAULT;

	ret = check_base_s2_limits(wi, level, input_size, stride);
	if (WARN_ON(ret))
		return ret;

	base_lower_bound = 3 + input_size - ((3 - level) * stride +
			   wi->pgshift);
	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);

	if (check_output_size(wi, base_addr)) {
		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
		return 1;
	}

	addr_top = input_size - 1;

	while (1) {
		phys_addr_t index;

		addr_bottom = (3 - level) * stride + wi->pgshift;
		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
			>> (addr_bottom - 3);

		paddr = base_addr | index;
		ret = wi->read_desc(paddr, &desc, wi->data);
		if (ret < 0)
			return ret;

		/*
		 * Handle reversedescriptors if endianness differs between the
		 * host and the guest hypervisor.
		 */
		if (wi->be)
			desc = be64_to_cpu((__force __be64)desc);
		else
			desc = le64_to_cpu((__force __le64)desc);

		/* Check for valid descriptor at this point */
		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
			out->desc = desc;
			return 1;
		}

		/* We're at the final level or block translation level */
		if ((desc & 3) == 1 || level == 3)
			break;

		if (check_output_size(wi, desc)) {
			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
			out->desc = desc;
			return 1;
		}

		base_addr = desc & GENMASK_ULL(47, wi->pgshift);

		level += 1;
		addr_top = addr_bottom - 1;
	}

	if (level < first_block_level) {
		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
		out->desc = desc;
		return 1;
	}

	if (check_output_size(wi, desc)) {
		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
		out->desc = desc;
		return 1;
	}

	if (!(desc & BIT(10))) {
		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
		out->desc = desc;
		return 1;
	}

	addr_bottom += contiguous_bit_shift(desc, wi, level);

	/* Calculate and return the result */
	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
	out->output = paddr;
	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
	out->readable = desc & (0b01 << 6);
	out->writable = desc & (0b10 << 6);
	out->level = level;
	out->desc = desc;
	return 0;
}

static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
{
	struct kvm_vcpu *vcpu = data;

	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
}

static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
{
	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;

	switch (vtcr & VTCR_EL2_TG0_MASK) {
	case VTCR_EL2_TG0_4K:
		wi->pgshift = 12;	 break;
	case VTCR_EL2_TG0_16K:
		wi->pgshift = 14;	 break;
	case VTCR_EL2_TG0_64K:
	default:	    /* IMPDEF: treat any other value as 64k */
		wi->pgshift = 16;	 break;
	}

	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
	/* Global limit for now, should eventually be per-VM */
	wi->max_oa_bits = min(get_kvm_ipa_limit(),
			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
}

int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
		       struct kvm_s2_trans *result)
{
	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
	struct s2_walk_info wi;
	int ret;

	result->esr = 0;

	if (!vcpu_has_nv(vcpu))
		return 0;

	wi.read_desc = read_guest_s2_desc;
	wi.data = vcpu;
	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);

	vtcr_to_walk_info(vtcr, &wi);

	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;

	ret = walk_nested_s2_pgd(gipa, &wi, result);
	if (ret)
		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);

	return ret;
}

static unsigned int ttl_to_size(u8 ttl)
{
	int level = ttl & 3;
	int gran = (ttl >> 2) & 3;
	unsigned int max_size = 0;

	switch (gran) {
	case TLBI_TTL_TG_4K:
		switch (level) {
		case 0:
			break;
		case 1:
			max_size = SZ_1G;
			break;
		case 2:
			max_size = SZ_2M;
			break;
		case 3:
			max_size = SZ_4K;
			break;
		}
		break;
	case TLBI_TTL_TG_16K:
		switch (level) {
		case 0:
		case 1:
			break;
		case 2:
			max_size = SZ_32M;
			break;
		case 3:
			max_size = SZ_16K;
			break;
		}
		break;
	case TLBI_TTL_TG_64K:
		switch (level) {
		case 0:
		case 1:
			/* No 52bit IPA support */
			break;
		case 2:
			max_size = SZ_512M;
			break;
		case 3:
			max_size = SZ_64K;
			break;
		}
		break;
	default:			/* No size information */
		break;
	}

	return max_size;
}

/*
 * Compute the equivalent of the TTL field by parsing the shadow PT.  The
 * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
 * retrieved from first entry carrying the level as a tag.
 */
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
{
	u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
	kvm_pte_t pte;
	u8 ttl, level;

	lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);

	switch (vtcr & VTCR_EL2_TG0_MASK) {
	case VTCR_EL2_TG0_4K:
		ttl = (TLBI_TTL_TG_4K << 2);
		break;
	case VTCR_EL2_TG0_16K:
		ttl = (TLBI_TTL_TG_16K << 2);
		break;
	case VTCR_EL2_TG0_64K:
	default:	    /* IMPDEF: treat any other value as 64k */
		ttl = (TLBI_TTL_TG_64K << 2);
		break;
	}

	tmp = addr;

again:
	/* Iteratively compute the block sizes for a particular granule size */
	switch (vtcr & VTCR_EL2_TG0_MASK) {
	case VTCR_EL2_TG0_4K:
		if	(sz < SZ_4K)	sz = SZ_4K;
		else if (sz < SZ_2M)	sz = SZ_2M;
		else if (sz < SZ_1G)	sz = SZ_1G;
		else			sz = 0;
		break;
	case VTCR_EL2_TG0_16K:
		if	(sz < SZ_16K)	sz = SZ_16K;
		else if (sz < SZ_32M)	sz = SZ_32M;
		else			sz = 0;
		break;
	case VTCR_EL2_TG0_64K:
	default:	    /* IMPDEF: treat any other value as 64k */
		if	(sz < SZ_64K)	sz = SZ_64K;
		else if (sz < SZ_512M)	sz = SZ_512M;
		else			sz = 0;
		break;
	}

	if (sz == 0)
		return 0;

	tmp &= ~(sz - 1);
	if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
		goto again;
	if (!(pte & PTE_VALID))
		goto again;
	level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
	if (!level)
		goto again;

	ttl |= level;

	/*
	 * We now have found some level information in the shadow S2. Check
	 * that the resulting range is actually including the original IPA.
	 */
	sz = ttl_to_size(ttl);
	if (addr < (tmp + sz))
		return ttl;

	return 0;
}

unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
{
	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
	unsigned long max_size;
	u8 ttl;

	ttl = FIELD_GET(TLBI_TTL_MASK, val);

	if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
		/* No TTL, check the shadow S2 for a hint */
		u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
		ttl = get_guest_mapping_ttl(mmu, addr);
	}

	max_size = ttl_to_size(ttl);

	if (!max_size) {
		/* Compute the maximum extent of the invalidation */
		switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
		case VTCR_EL2_TG0_4K:
			max_size = SZ_1G;
			break;
		case VTCR_EL2_TG0_16K:
			max_size = SZ_32M;
			break;
		case VTCR_EL2_TG0_64K:
		default:    /* IMPDEF: treat any other value as 64k */
			/*
			 * No, we do not support 52bit IPA in nested yet. Once
			 * we do, this should be 4TB.
			 */
			max_size = SZ_512M;
			break;
		}
	}

	WARN_ON(!max_size);
	return max_size;
}

/*
 * We can have multiple *different* MMU contexts with the same VMID:
 *
 * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
 *
 * - Multiple vcpus using private S2s (huh huh...), hence differing by the
 *   VBBTR_EL2.BADDR address
 *
 * - A combination of the above...
 *
 * We can always identify which MMU context to pick at run-time.  However,
 * TLB invalidation involving a VMID must take action on all the TLBs using
 * this particular VMID. This translates into applying the same invalidation
 * operation to all the contexts that are using this VMID. Moar phun!
 */
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
				const union tlbi_info *info,
				void (*tlbi_callback)(struct kvm_s2_mmu *,
						      const union tlbi_info *))
{
	write_lock(&kvm->mmu_lock);

	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (!kvm_s2_mmu_valid(mmu))
			continue;

		if (vmid == get_vmid(mmu->tlb_vttbr))
			tlbi_callback(mmu, info);
	}

	write_unlock(&kvm->mmu_lock);
}

struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	bool nested_stage2_enabled;
	u64 vttbr, vtcr, hcr;

	lockdep_assert_held_write(&kvm->mmu_lock);

	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);

	nested_stage2_enabled = hcr & HCR_VM;

	/* Don't consider the CnP bit for the vttbr match */
	vttbr &= ~VTTBR_CNP_BIT;

	/*
	 * Two possibilities when looking up a S2 MMU context:
	 *
	 * - either S2 is enabled in the guest, and we need a context that is
	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
	 *   which makes it safe from a TLB conflict perspective (a broken
	 *   guest won't be able to generate them),
	 *
	 * - or S2 is disabled, and we need a context that is S2-disabled
	 *   and matches the VMID only, as all TLBs are tagged by VMID even
	 *   if S2 translation is disabled.
	 */
	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (!kvm_s2_mmu_valid(mmu))
			continue;

		if (nested_stage2_enabled &&
		    mmu->nested_stage2_enabled &&
		    vttbr == mmu->tlb_vttbr &&
		    vtcr == mmu->tlb_vtcr)
			return mmu;

		if (!nested_stage2_enabled &&
		    !mmu->nested_stage2_enabled &&
		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
			return mmu;
	}
	return NULL;
}

static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_s2_mmu *s2_mmu;
	int i;

	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);

	s2_mmu = lookup_s2_mmu(vcpu);
	if (s2_mmu)
		goto out;

	/*
	 * Make sure we don't always search from the same point, or we
	 * will always reuse a potentially active context, leaving
	 * free contexts unused.
	 */
	for (i = kvm->arch.nested_mmus_next;
	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
	     i++) {
		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];

		if (atomic_read(&s2_mmu->refcnt) == 0)
			break;
	}
	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */

	/* Set the scene for the next search */
	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;

	/* Clear the old state */
	if (kvm_s2_mmu_valid(s2_mmu))
		kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));

	/*
	 * The virtual VMID (modulo CnP) will be used as a key when matching
	 * an existing kvm_s2_mmu.
	 *
	 * We cache VTCR at allocation time, once and for all. It'd be great
	 * if the guest didn't screw that one up, as this is not very
	 * forgiving...
	 */
	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;

out:
	atomic_inc(&s2_mmu->refcnt);
	return s2_mmu;
}

void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
{
	/* CnP being set denotes an invalid entry */
	mmu->tlb_vttbr = VTTBR_CNP_BIT;
	mmu->nested_stage2_enabled = false;
	atomic_set(&mmu->refcnt, 0);
}

void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
{
	if (is_hyp_ctxt(vcpu)) {
		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
	} else {
		write_lock(&vcpu->kvm->mmu_lock);
		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
		write_unlock(&vcpu->kvm->mmu_lock);
	}
}

void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
{
	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
		vcpu->arch.hw_mmu = NULL;
	}
}

/*
 * Returns non-zero if permission fault is handled by injecting it to the next
 * level hypervisor.
 */
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
{
	bool forward_fault = false;

	trans->esr = 0;

	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
		return 0;

	if (kvm_vcpu_trap_is_iabt(vcpu)) {
		forward_fault = !kvm_s2_trans_executable(trans);
	} else {
		bool write_fault = kvm_is_write_fault(vcpu);

		forward_fault = ((write_fault && !trans->writable) ||
				 (!write_fault && !trans->readable));
	}

	if (forward_fault)
		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);

	return forward_fault;
}

int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
{
	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);

	return kvm_inject_nested_sync(vcpu, esr_el2);
}

void kvm_nested_s2_wp(struct kvm *kvm)
{
	int i;

	lockdep_assert_held_write(&kvm->mmu_lock);

	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (kvm_s2_mmu_valid(mmu))
			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
	}
}

void kvm_nested_s2_unmap(struct kvm *kvm)
{
	int i;

	lockdep_assert_held_write(&kvm->mmu_lock);

	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (kvm_s2_mmu_valid(mmu))
			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
	}
}

void kvm_nested_s2_flush(struct kvm *kvm)
{
	int i;

	lockdep_assert_held_write(&kvm->mmu_lock);

	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (kvm_s2_mmu_valid(mmu))
			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
	}
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
	int i;

	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];

		if (!WARN_ON(atomic_read(&mmu->refcnt)))
			kvm_free_stage2_pgd(mmu);
	}
	kvfree(kvm->arch.nested_mmus);
	kvm->arch.nested_mmus = NULL;
	kvm->arch.nested_mmus_size = 0;
	kvm_uninit_stage2_mmu(kvm);
}

/*
 * Our emulated CPU doesn't support all the possible features. For the
 * sake of simplicity (and probably mental sanity), wipe out a number
 * of feature bits we don't intend to support for the time being.
 * This list should get updated as new features get added to the NV
 * support, and new extension to the architecture.
 */
static void limit_nv_id_regs(struct kvm *kvm)
{
	u64 val, tmp;

	/* Support everything but TME */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
	val &= ~NV_FTR(ISAR0, TME);
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);

	/* Support everything but Spec Invalidation and LS64 */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
	val &= ~(NV_FTR(ISAR1, LS64)	|
		 NV_FTR(ISAR1, SPECRES));
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);

	/* No AMU, MPAM, S-EL2, or RAS */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
	val &= ~(GENMASK_ULL(55, 52)	|
		 NV_FTR(PFR0, AMU)	|
		 NV_FTR(PFR0, MPAM)	|
		 NV_FTR(PFR0, SEL2)	|
		 NV_FTR(PFR0, RAS)	|
		 NV_FTR(PFR0, EL3)	|
		 NV_FTR(PFR0, EL2)	|
		 NV_FTR(PFR0, EL1));
	/* 64bit EL1/EL2/EL3 only */
	val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
	val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
	val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);

	/* Only support BTI, SSBS, CSV2_frac */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
	val &= (NV_FTR(PFR1, BT)	|
		NV_FTR(PFR1, SSBS)	|
		NV_FTR(PFR1, CSV2_frac));
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);

	/* Hide ECV, ExS, Secure Memory */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
	val &= ~(NV_FTR(MMFR0, ECV)		|
		 NV_FTR(MMFR0, EXS)		|
		 NV_FTR(MMFR0, TGRAN4_2)	|
		 NV_FTR(MMFR0, TGRAN16_2)	|
		 NV_FTR(MMFR0, TGRAN64_2)	|
		 NV_FTR(MMFR0, SNSMEM));

	/* Disallow unsupported S2 page sizes */
	switch (PAGE_SIZE) {
	case SZ_64K:
		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
		fallthrough;
	case SZ_16K:
		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
		fallthrough;
	case SZ_4K:
		/* Support everything */
		break;
	}
	/*
	 * Since we can't support a guest S2 page size smaller than
	 * the host's own page size (due to KVM only populating its
	 * own S2 using the kernel's page size), advertise the
	 * limitation using FEAT_GTG.
	 */
	switch (PAGE_SIZE) {
	case SZ_4K:
		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
		fallthrough;
	case SZ_16K:
		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
		fallthrough;
	case SZ_64K:
		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
		break;
	}
	/* Cap PARange to 48bits */
	tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
	if (tmp > 0b0101) {
		val &= ~NV_FTR(MMFR0, PARANGE);
		val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
	}
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);

	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
	val &= (NV_FTR(MMFR1, HCX)	|
		NV_FTR(MMFR1, PAN)	|
		NV_FTR(MMFR1, LO)	|
		NV_FTR(MMFR1, HPDS)	|
		NV_FTR(MMFR1, VH)	|
		NV_FTR(MMFR1, VMIDBits));
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);

	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
	val &= ~(NV_FTR(MMFR2, BBM)	|
		 NV_FTR(MMFR2, TTL)	|
		 GENMASK_ULL(47, 44)	|
		 NV_FTR(MMFR2, ST)	|
		 NV_FTR(MMFR2, CCIDX)	|
		 NV_FTR(MMFR2, VARange));

	/* Force TTL support */
	val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);

	val = 0;
	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
		val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
				  ID_AA64MMFR4_EL1_E2H0_NI_NV1);
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);

	/* Only limited support for PMU, Debug, BPs and WPs */
	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
	val &= (NV_FTR(DFR0, PMUVer)	|
		NV_FTR(DFR0, WRPs)	|
		NV_FTR(DFR0, BRPs)	|
		NV_FTR(DFR0, DebugVer));

	/* Cap Debug to ARMv8.1 */
	tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
	if (tmp > 0b0111) {
		val &= ~NV_FTR(DFR0, DebugVer);
		val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
	}
	kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
}

u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
{
	u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
	struct kvm_sysreg_masks *masks;

	masks = vcpu->kvm->arch.sysreg_masks;

	if (masks) {
		sr -= __VNCR_START__;

		v &= ~masks->mask[sr].res0;
		v |= masks->mask[sr].res1;
	}

	return v;
}

static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
{
	int i = sr - __VNCR_START__;

	kvm->arch.sysreg_masks->mask[i].res0 = res0;
	kvm->arch.sysreg_masks->mask[i].res1 = res1;
}

int kvm_init_nv_sysregs(struct kvm *kvm)
{
	u64 res0, res1;

	lockdep_assert_held(&kvm->arch.config_lock);

	if (kvm->arch.sysreg_masks)
		return 0;

	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
					 GFP_KERNEL_ACCOUNT);
	if (!kvm->arch.sysreg_masks)
		return -ENOMEM;

	limit_nv_id_regs(kvm);

	/* VTTBR_EL2 */
	res0 = res1 = 0;
	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
		res0 |= GENMASK(63, 56);
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
		res0 |= VTTBR_CNP_BIT;
	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);

	/* VTCR_EL2 */
	res0 = GENMASK(63, 32) | GENMASK(30, 20);
	res1 = BIT(31);
	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);

	/* VMPIDR_EL2 */
	res0 = GENMASK(63, 40) | GENMASK(30, 24);
	res1 = BIT(31);
	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);

	/* HCR_EL2 */
	res0 = BIT(48);
	res1 = HCR_RW;
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
		res0 |= GENMASK(63, 59);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
		res0 |= HCR_ENSCXT;
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
		res0 |= HCR_AMVOFFEN;
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
		res0 |= HCR_FIEN;
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
		res0 |= HCR_FWB;
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
		res0 |= HCR_NV2;
	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
		res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
		res0 |= (HCR_API | HCR_APK);
	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
		res0 |= BIT(39);
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
		res0 |= (HCR_TEA | HCR_TERR);
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
		res0 |= HCR_TLOR;
	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
		res1 |= HCR_E2H;
	set_sysreg_masks(kvm, HCR_EL2, res0, res1);

	/* HCRX_EL2 */
	res0 = HCRX_EL2_RES0;
	res1 = HCRX_EL2_RES1;
	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
		res0 |= HCRX_EL2_PACMEn;
	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
		res0 |= HCRX_EL2_EnFPM;
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
		res0 |= HCRX_EL2_GCSEn;
	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
		res0 |= HCRX_EL2_EnIDCP128;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
		res0 |= HCRX_EL2_TMEA;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
		res0 |= HCRX_EL2_D128En;
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
		res0 |= HCRX_EL2_PTTWI;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
		res0 |= HCRX_EL2_SCTLR2En;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
		res0 |= HCRX_EL2_TCR2En;
	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
		res0 |= HCRX_EL2_CMOW;
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
		res0 |= HCRX_EL2_SMPME;
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
		res0 |= HCRX_EL2_EnASR;
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
		res0 |= HCRX_EL2_EnALS;
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
		res0 |= HCRX_EL2_EnAS0;
	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);

	/* HFG[RW]TR_EL2 */
	res0 = res1 = 0;
	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
			 HFGxTR_EL2_APIBKey);
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
			 HFGxTR_EL2_LORSA_EL1);
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
		res0 |= HFGxTR_EL2_nACCDATA_EL1;
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
		res0 |= HFGxTR_EL2_nS2POR_EL1;
	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);

	/* HDFG[RW]TR_EL2 */
	res0 = res1 = 0;
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
		res0 |= HDFGRTR_EL2_OSDLR_EL1;
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
			 HDFGRTR_EL2_PMCEIDn_EL0);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
			 HDFGRTR_EL2_PMBIDR_EL1);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
			 HDFGRTR_EL2_TRCVICTLR);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
			 HDFGRTR_EL2_TRBTRG_EL1);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
			 HDFGRTR_EL2_nBRBDATA);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);

	/* Reuse the bits from the read-side and add the write-specific stuff */
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
		res0 |= HDFGWTR_EL2_TRCOSLAR;
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
		res0 |= HDFGWTR_EL2_TRFCR_EL1;
	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);

	/* HFGITR_EL2 */
	res0 = HFGITR_EL2_RES0;
	res1 = HFGITR_EL2_RES1;
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
		res0 |= HFGITR_EL2_DCCVADP;
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
			 HFGITR_EL2_CPPRCTX);
	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
			 HFGITR_EL2_nGCSEPP);
	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
		res0 |= HFGITR_EL2_COSPRCTX;
	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
		res0 |= HFGITR_EL2_ATS1E1A;
	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);

	/* HAFGRTR_EL2 - not a lot to see here */
	res0 = HAFGRTR_EL2_RES0;
	res1 = HAFGRTR_EL2_RES1;
	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
		res0 |= ~(res0 | res1);
	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);

	/* SCTLR_EL1 */
	res0 = SCTLR_EL1_RES0;
	res1 = SCTLR_EL1_RES1;
	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
		res0 |= SCTLR_EL1_EPAN;
	set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);

	return 0;
}