summaryrefslogtreecommitdiff
path: root/mm/swapfile.c
diff options
context:
space:
mode:
authorRyan Roberts <ryan.roberts@arm.com>2024-04-08 19:39:41 +0100
committerAndrew Morton <akpm@linux-foundation.org>2024-04-25 20:56:37 -0700
commita62fb92ac12ed39df4930dca599a3b427552882a (patch)
treec0f9ffe693552fb8c89aae858db0186976579e50 /mm/swapfile.c
parentd7d0d389ff90644546ffcb8e15ea3ccaf6138958 (diff)
mm: swap: free_swap_and_cache_nr() as batched free_swap_and_cache()
Now that we no longer have a convenient flag in the cluster to determine if a folio is large, free_swap_and_cache() will take a reference and lock a large folio much more often, which could lead to contention and (e.g.) failure to split large folios, etc. Let's solve that problem by batch freeing swap and cache with a new function, free_swap_and_cache_nr(), to free a contiguous range of swap entries together. This allows us to first drop a reference to each swap slot before we try to release the cache folio. This means we only try to release the folio once, only taking the reference and lock once - much better than the previous 512 times for the 2M THP case. Contiguous swap entries are gathered in zap_pte_range() and madvise_free_pte_range() in a similar way to how present ptes are already gathered in zap_pte_range(). While we are at it, let's simplify by converting the return type of both functions to void. The return value was used only by zap_pte_range() to print a bad pte, and was ignored by everyone else, so the extra reporting wasn't exactly guaranteed. We will still get the warning with most of the information from get_swap_device(). With the batch version, we wouldn't know which pte was bad anyway so could print the wrong one. [ryan.roberts@arm.com: fix a build warning on parisc] Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Barry Song <v-songbaohua@oppo.com> Cc: Chris Li <chrisl@kernel.org> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/swapfile.c')
-rw-r--r--mm/swapfile.c97
1 files changed, 79 insertions, 18 deletions
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 1ded6d1dcab4..20c45757f2b2 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -130,7 +130,11 @@ static inline unsigned char swap_count(unsigned char ent)
/* Reclaim the swap entry if swap is getting full*/
#define TTRS_FULL 0x4
-/* returns 1 if swap entry is freed */
+/*
+ * returns number of pages in the folio that backs the swap entry. If positive,
+ * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
+ * folio was associated with the swap entry.
+ */
static int __try_to_reclaim_swap(struct swap_info_struct *si,
unsigned long offset, unsigned long flags)
{
@@ -155,6 +159,7 @@ static int __try_to_reclaim_swap(struct swap_info_struct *si,
ret = folio_free_swap(folio);
folio_unlock(folio);
}
+ ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
folio_put(folio);
return ret;
}
@@ -895,7 +900,7 @@ checks:
swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
spin_lock(&si->lock);
/* entry was freed successfully, try to use this again */
- if (swap_was_freed)
+ if (swap_was_freed > 0)
goto checks;
goto scan; /* check next one */
}
@@ -1572,32 +1577,88 @@ bool folio_free_swap(struct folio *folio)
return true;
}
-/*
- * Free the swap entry like above, but also try to
- * free the page cache entry if it is the last user.
+/**
+ * free_swap_and_cache_nr() - Release reference on range of swap entries and
+ * reclaim their cache if no more references remain.
+ * @entry: First entry of range.
+ * @nr: Number of entries in range.
+ *
+ * For each swap entry in the contiguous range, release a reference. If any swap
+ * entries become free, try to reclaim their underlying folios, if present. The
+ * offset range is defined by [entry.offset, entry.offset + nr).
*/
-int free_swap_and_cache(swp_entry_t entry)
+void free_swap_and_cache_nr(swp_entry_t entry, int nr)
{
- struct swap_info_struct *p;
+ const unsigned long start_offset = swp_offset(entry);
+ const unsigned long end_offset = start_offset + nr;
+ unsigned int type = swp_type(entry);
+ struct swap_info_struct *si;
+ bool any_only_cache = false;
+ unsigned long offset;
unsigned char count;
if (non_swap_entry(entry))
- return 1;
+ return;
- p = get_swap_device(entry);
- if (p) {
- if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
- put_swap_device(p);
- return 0;
+ si = get_swap_device(entry);
+ if (!si)
+ return;
+
+ if (WARN_ON(end_offset > si->max))
+ goto out;
+
+ /*
+ * First free all entries in the range.
+ */
+ for (offset = start_offset; offset < end_offset; offset++) {
+ if (data_race(si->swap_map[offset])) {
+ count = __swap_entry_free(si, swp_entry(type, offset));
+ if (count == SWAP_HAS_CACHE)
+ any_only_cache = true;
+ } else {
+ WARN_ON_ONCE(1);
}
+ }
+
+ /*
+ * Short-circuit the below loop if none of the entries had their
+ * reference drop to zero.
+ */
+ if (!any_only_cache)
+ goto out;
- count = __swap_entry_free(p, entry);
- if (count == SWAP_HAS_CACHE)
- __try_to_reclaim_swap(p, swp_offset(entry),
+ /*
+ * Now go back over the range trying to reclaim the swap cache. This is
+ * more efficient for large folios because we will only try to reclaim
+ * the swap once per folio in the common case. If we do
+ * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
+ * latter will get a reference and lock the folio for every individual
+ * page but will only succeed once the swap slot for every subpage is
+ * zero.
+ */
+ for (offset = start_offset; offset < end_offset; offset += nr) {
+ nr = 1;
+ if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
+ /*
+ * Folios are always naturally aligned in swap so
+ * advance forward to the next boundary. Zero means no
+ * folio was found for the swap entry, so advance by 1
+ * in this case. Negative value means folio was found
+ * but could not be reclaimed. Here we can still advance
+ * to the next boundary.
+ */
+ nr = __try_to_reclaim_swap(si, offset,
TTRS_UNMAPPED | TTRS_FULL);
- put_swap_device(p);
+ if (nr == 0)
+ nr = 1;
+ else if (nr < 0)
+ nr = -nr;
+ nr = ALIGN(offset + 1, nr) - offset;
+ }
}
- return p != NULL;
+
+out:
+ put_swap_device(si);
}
#ifdef CONFIG_HIBERNATION