summaryrefslogtreecommitdiff
path: root/kernel/time
diff options
context:
space:
mode:
authorFrederic Weisbecker <fweisbec@gmail.com>2017-06-01 16:47:09 +0200
committerIngo Molnar <mingo@kernel.org>2017-06-05 09:33:50 +0200
commitf99973e18b65ca1fff8c81532e3132b8f622aea8 (patch)
tree67a0e0197acadd0f4a001e92f0e6d86337302e38 /kernel/time
parent7c25904508afef134d7a9d2ad1690ee6554a1faa (diff)
nohz: Fix buggy tick delay on IRQ storms
When the tick is stopped and we reach the dynticks evaluation code on IRQ exit, we perform a soft tick restart if we observe an expired timer from there. It means we program the nearest possible tick but we stay in dynticks mode (ts->tick_stopped = 1) because we may need to stop the tick again after that expired timer is handled. Now this solution works most of the time but if we suffer an IRQ storm and those interrupts trigger faster than the hardware clockevents min delay, our tick won't fire until that IRQ storm is finished. Here is the problem: on IRQ exit we reprog the timer to at least NOW() + min_clockevents_delay. Another IRQ fires before the tick so we reschedule again to NOW() + min_clockevents_delay, etc... The tick is eternally rescheduled min_clockevents_delay ahead. A solution is to simply remove this soft tick restart. After all the normal dynticks evaluation path can handle 0 delay just fine. And by doing that we benefit from the optimization branch which avoids clock reprogramming if the clockevents deadline hasn't changed since the last reprog. This fixes our issue because we don't do repetitive clock reprog that always add hardware min delay. As a side effect it should even optimize the 0 delay path in general. Reported-and-tested-by: Octavian Purdila <octavian.purdila@nxp.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1496328429-13317-1-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/tick-sched.c21
1 files changed, 2 insertions, 19 deletions
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index e3043873fcdc..9d31f1e0067b 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -713,8 +713,6 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
*/
delta = next_tick - basemono;
if (delta <= (u64)TICK_NSEC) {
- tick = 0;
-
/*
* Tell the timer code that the base is not idle, i.e. undo
* the effect of get_next_timer_interrupt():
@@ -724,23 +722,8 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
* We've not stopped the tick yet, and there's a timer in the
* next period, so no point in stopping it either, bail.
*/
- if (!ts->tick_stopped)
- goto out;
-
- /*
- * If, OTOH, we did stop it, but there's a pending (expired)
- * timer reprogram the timer hardware to fire now.
- *
- * We will not restart the tick proper, just prod the timer
- * hardware into firing an interrupt to process the pending
- * timers. Just like tick_irq_exit() will not restart the tick
- * for 'normal' interrupts.
- *
- * Only once we exit the idle loop will we re-enable the tick,
- * see tick_nohz_idle_exit().
- */
- if (delta == 0) {
- tick_nohz_restart(ts, now);
+ if (!ts->tick_stopped) {
+ tick = 0;
goto out;
}
}