summaryrefslogtreecommitdiff
path: root/fs/nfs
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2021-02-23 13:39:45 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2021-02-23 13:39:45 -0800
commit7d6beb71da3cc033649d641e1e608713b8220290 (patch)
treec323553489c3c936321ac4e6c08fd9ef0eadc606 /fs/nfs
parentaa8e3291729fd885351af0b077330721d4bf5db9 (diff)
parentf69e8091c4a2ae291e1f55225e8116fef05dc156 (diff)
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner: "This introduces idmapped mounts which has been in the making for some time. Simply put, different mounts can expose the same file or directory with different ownership. This initial implementation comes with ports for fat, ext4 and with Christoph's port for xfs with more filesystems being actively worked on by independent people and maintainers. Idmapping mounts handle a wide range of long standing use-cases. Here are just a few: - Idmapped mounts make it possible to easily share files between multiple users or multiple machines especially in complex scenarios. For example, idmapped mounts will be used in the implementation of portable home directories in systemd-homed.service(8) where they allow users to move their home directory to an external storage device and use it on multiple computers where they are assigned different uids and gids. This effectively makes it possible to assign random uids and gids at login time. - It is possible to share files from the host with unprivileged containers without having to change ownership permanently through chown(2). - It is possible to idmap a container's rootfs and without having to mangle every file. For example, Chromebooks use it to share the user's Download folder with their unprivileged containers in their Linux subsystem. - It is possible to share files between containers with non-overlapping idmappings. - Filesystem that lack a proper concept of ownership such as fat can use idmapped mounts to implement discretionary access (DAC) permission checking. - They allow users to efficiently changing ownership on a per-mount basis without having to (recursively) chown(2) all files. In contrast to chown (2) changing ownership of large sets of files is instantenous with idmapped mounts. This is especially useful when ownership of a whole root filesystem of a virtual machine or container is changed. With idmapped mounts a single syscall mount_setattr syscall will be sufficient to change the ownership of all files. - Idmapped mounts always take the current ownership into account as idmappings specify what a given uid or gid is supposed to be mapped to. This contrasts with the chown(2) syscall which cannot by itself take the current ownership of the files it changes into account. It simply changes the ownership to the specified uid and gid. This is especially problematic when recursively chown(2)ing a large set of files which is commong with the aforementioned portable home directory and container and vm scenario. - Idmapped mounts allow to change ownership locally, restricting it to specific mounts, and temporarily as the ownership changes only apply as long as the mount exists. Several userspace projects have either already put up patches and pull-requests for this feature or will do so should you decide to pull this: - systemd: In a wide variety of scenarios but especially right away in their implementation of portable home directories. https://systemd.io/HOME_DIRECTORY/ - container runtimes: containerd, runC, LXD:To share data between host and unprivileged containers, unprivileged and privileged containers, etc. The pull request for idmapped mounts support in containerd, the default Kubernetes runtime is already up for quite a while now: https://github.com/containerd/containerd/pull/4734 - The virtio-fs developers and several users have expressed interest in using this feature with virtual machines once virtio-fs is ported. - ChromeOS: Sharing host-directories with unprivileged containers. I've tightly synced with all those projects and all of those listed here have also expressed their need/desire for this feature on the mailing list. For more info on how people use this there's a bunch of talks about this too. Here's just two recent ones: https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf https://fosdem.org/2021/schedule/event/containers_idmap/ This comes with an extensive xfstests suite covering both ext4 and xfs: https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts It covers truncation, creation, opening, xattrs, vfscaps, setid execution, setgid inheritance and more both with idmapped and non-idmapped mounts. It already helped to discover an unrelated xfs setgid inheritance bug which has since been fixed in mainline. It will be sent for inclusion with the xfstests project should you decide to merge this. In order to support per-mount idmappings vfsmounts are marked with user namespaces. The idmapping of the user namespace will be used to map the ids of vfs objects when they are accessed through that mount. By default all vfsmounts are marked with the initial user namespace. The initial user namespace is used to indicate that a mount is not idmapped. All operations behave as before and this is verified in the testsuite. Based on prior discussions we want to attach the whole user namespace and not just a dedicated idmapping struct. This allows us to reuse all the helpers that already exist for dealing with idmappings instead of introducing a whole new range of helpers. In addition, if we decide in the future that we are confident enough to enable unprivileged users to setup idmapped mounts the permission checking can take into account whether the caller is privileged in the user namespace the mount is currently marked with. The user namespace the mount will be marked with can be specified by passing a file descriptor refering to the user namespace as an argument to the new mount_setattr() syscall together with the new MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern of extensibility. The following conditions must be met in order to create an idmapped mount: - The caller must currently have the CAP_SYS_ADMIN capability in the user namespace the underlying filesystem has been mounted in. - The underlying filesystem must support idmapped mounts. - The mount must not already be idmapped. This also implies that the idmapping of a mount cannot be altered once it has been idmapped. - The mount must be a detached/anonymous mount, i.e. it must have been created by calling open_tree() with the OPEN_TREE_CLONE flag and it must not already have been visible in the filesystem. The last two points guarantee easier semantics for userspace and the kernel and make the implementation significantly simpler. By default vfsmounts are marked with the initial user namespace and no behavioral or performance changes are observed. The manpage with a detailed description can be found here: https://git.kernel.org/brauner/man-pages/c/1d7b902e2875a1ff342e036a9f866a995640aea8 In order to support idmapped mounts, filesystems need to be changed and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The patches to convert individual filesystem are not very large or complicated overall as can be seen from the included fat, ext4, and xfs ports. Patches for other filesystems are actively worked on and will be sent out separately. The xfstestsuite can be used to verify that port has been done correctly. The mount_setattr() syscall is motivated independent of the idmapped mounts patches and it's been around since July 2019. One of the most valuable features of the new mount api is the ability to perform mounts based on file descriptors only. Together with the lookup restrictions available in the openat2() RESOLVE_* flag namespace which we added in v5.6 this is the first time we are close to hardened and race-free (e.g. symlinks) mounting and path resolution. While userspace has started porting to the new mount api to mount proper filesystems and create new bind-mounts it is currently not possible to change mount options of an already existing bind mount in the new mount api since the mount_setattr() syscall is missing. With the addition of the mount_setattr() syscall we remove this last restriction and userspace can now fully port to the new mount api, covering every use-case the old mount api could. We also add the crucial ability to recursively change mount options for a whole mount tree, both removing and adding mount options at the same time. This syscall has been requested multiple times by various people and projects. There is a simple tool available at https://github.com/brauner/mount-idmapped that allows to create idmapped mounts so people can play with this patch series. I'll add support for the regular mount binary should you decide to pull this in the following weeks: Here's an example to a simple idmapped mount of another user's home directory: u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt u1001@f2-vm:/$ ls -al /home/ubuntu/ total 28 drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 . drwxr-xr-x 4 root root 4096 Oct 28 04:00 .. -rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history -rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile -rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo u1001@f2-vm:/$ ls -al /mnt/ total 28 drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 . drwxr-xr-x 29 root root 4096 Oct 28 22:01 .. -rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history -rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout -rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc -rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile -rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful -rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo u1001@f2-vm:/$ touch /mnt/my-file u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file u1001@f2-vm:/$ ls -al /mnt/my-file -rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file u1001@f2-vm:/$ ls -al /home/ubuntu/my-file -rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file u1001@f2-vm:/$ getfacl /mnt/my-file getfacl: Removing leading '/' from absolute path names # file: mnt/my-file # owner: u1001 # group: u1001 user::rw- user:u1001:rwx group::rw- mask::rwx other::r-- u1001@f2-vm:/$ getfacl /home/ubuntu/my-file getfacl: Removing leading '/' from absolute path names # file: home/ubuntu/my-file # owner: ubuntu # group: ubuntu user::rw- user:ubuntu:rwx group::rw- mask::rwx other::r--" * tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits) xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl xfs: support idmapped mounts ext4: support idmapped mounts fat: handle idmapped mounts tests: add mount_setattr() selftests fs: introduce MOUNT_ATTR_IDMAP fs: add mount_setattr() fs: add attr_flags_to_mnt_flags helper fs: split out functions to hold writers namespace: only take read lock in do_reconfigure_mnt() mount: make {lock,unlock}_mount_hash() static namespace: take lock_mount_hash() directly when changing flags nfs: do not export idmapped mounts overlayfs: do not mount on top of idmapped mounts ecryptfs: do not mount on top of idmapped mounts ima: handle idmapped mounts apparmor: handle idmapped mounts fs: make helpers idmap mount aware exec: handle idmapped mounts would_dump: handle idmapped mounts ...
Diffstat (limited to 'fs/nfs')
-rw-r--r--fs/nfs/dir.c25
-rw-r--r--fs/nfs/inode.c9
-rw-r--r--fs/nfs/internal.h14
-rw-r--r--fs/nfs/namespace.c15
-rw-r--r--fs/nfs/nfs3_fs.h3
-rw-r--r--fs/nfs/nfs3acl.c3
-rw-r--r--fs/nfs/nfs4proc.c3
7 files changed, 45 insertions, 27 deletions
diff --git a/fs/nfs/dir.c b/fs/nfs/dir.c
index ef827ae193d2..19a9f434442f 100644
--- a/fs/nfs/dir.c
+++ b/fs/nfs/dir.c
@@ -2095,8 +2095,8 @@ EXPORT_SYMBOL_GPL(nfs_instantiate);
* that the operation succeeded on the server, but an error in the
* reply path made it appear to have failed.
*/
-int nfs_create(struct inode *dir, struct dentry *dentry,
- umode_t mode, bool excl)
+int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, umode_t mode, bool excl)
{
struct iattr attr;
int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
@@ -2124,7 +2124,8 @@ EXPORT_SYMBOL_GPL(nfs_create);
* See comments for nfs_proc_create regarding failed operations.
*/
int
-nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
+nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, umode_t mode, dev_t rdev)
{
struct iattr attr;
int status;
@@ -2150,7 +2151,8 @@ EXPORT_SYMBOL_GPL(nfs_mknod);
/*
* See comments for nfs_proc_create regarding failed operations.
*/
-int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
+int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, umode_t mode)
{
struct iattr attr;
int error;
@@ -2295,7 +2297,8 @@ EXPORT_SYMBOL_GPL(nfs_unlink);
* now have a new file handle and can instantiate an in-core NFS inode
* and move the raw page into its mapping.
*/
-int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
+int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, const char *symname)
{
struct page *page;
char *kaddr;
@@ -2398,9 +2401,9 @@ EXPORT_SYMBOL_GPL(nfs_link);
* If these conditions are met, we can drop the dentries before doing
* the rename.
*/
-int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
- struct inode *new_dir, struct dentry *new_dentry,
- unsigned int flags)
+int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
+ struct dentry *old_dentry, struct inode *new_dir,
+ struct dentry *new_dentry, unsigned int flags)
{
struct inode *old_inode = d_inode(old_dentry);
struct inode *new_inode = d_inode(new_dentry);
@@ -2939,7 +2942,9 @@ static int nfs_execute_ok(struct inode *inode, int mask)
return ret;
}
-int nfs_permission(struct inode *inode, int mask)
+int nfs_permission(struct user_namespace *mnt_userns,
+ struct inode *inode,
+ int mask)
{
const struct cred *cred = current_cred();
int res = 0;
@@ -2987,7 +2992,7 @@ out_notsup:
res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (res == 0)
- res = generic_permission(inode, mask);
+ res = generic_permission(&init_user_ns, inode, mask);
goto out;
}
EXPORT_SYMBOL_GPL(nfs_permission);
diff --git a/fs/nfs/inode.c b/fs/nfs/inode.c
index 522aa10a1a3e..447e95974386 100644
--- a/fs/nfs/inode.c
+++ b/fs/nfs/inode.c
@@ -594,7 +594,8 @@ EXPORT_SYMBOL_GPL(nfs_fhget);
#define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE|ATTR_OPEN)
int
-nfs_setattr(struct dentry *dentry, struct iattr *attr)
+nfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
+ struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct nfs_fattr *fattr;
@@ -787,8 +788,8 @@ static bool nfs_need_revalidate_inode(struct inode *inode)
return false;
}
-int nfs_getattr(const struct path *path, struct kstat *stat,
- u32 request_mask, unsigned int query_flags)
+int nfs_getattr(struct user_namespace *mnt_userns, const struct path *path,
+ struct kstat *stat, u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct nfs_server *server = NFS_SERVER(inode);
@@ -857,7 +858,7 @@ out_no_revalidate:
/* Only return attributes that were revalidated. */
stat->result_mask &= request_mask;
out_no_update:
- generic_fillattr(inode, stat);
+ generic_fillattr(&init_user_ns, inode, stat);
stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
if (S_ISDIR(inode->i_mode))
stat->blksize = NFS_SERVER(inode)->dtsize;
diff --git a/fs/nfs/internal.h b/fs/nfs/internal.h
index 62d3189745cd..25fb43b69e5a 100644
--- a/fs/nfs/internal.h
+++ b/fs/nfs/internal.h
@@ -378,14 +378,18 @@ extern unsigned long nfs_access_cache_count(struct shrinker *shrink,
extern unsigned long nfs_access_cache_scan(struct shrinker *shrink,
struct shrink_control *sc);
struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int);
-int nfs_create(struct inode *, struct dentry *, umode_t, bool);
-int nfs_mkdir(struct inode *, struct dentry *, umode_t);
+int nfs_create(struct user_namespace *, struct inode *, struct dentry *,
+ umode_t, bool);
+int nfs_mkdir(struct user_namespace *, struct inode *, struct dentry *,
+ umode_t);
int nfs_rmdir(struct inode *, struct dentry *);
int nfs_unlink(struct inode *, struct dentry *);
-int nfs_symlink(struct inode *, struct dentry *, const char *);
+int nfs_symlink(struct user_namespace *, struct inode *, struct dentry *,
+ const char *);
int nfs_link(struct dentry *, struct inode *, struct dentry *);
-int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
-int nfs_rename(struct inode *, struct dentry *,
+int nfs_mknod(struct user_namespace *, struct inode *, struct dentry *, umode_t,
+ dev_t);
+int nfs_rename(struct user_namespace *, struct inode *, struct dentry *,
struct inode *, struct dentry *, unsigned int);
/* file.c */
diff --git a/fs/nfs/namespace.c b/fs/nfs/namespace.c
index 2bcbe38afe2e..93e60e921f92 100644
--- a/fs/nfs/namespace.c
+++ b/fs/nfs/namespace.c
@@ -208,20 +208,23 @@ out_fc:
}
static int
-nfs_namespace_getattr(const struct path *path, struct kstat *stat,
- u32 request_mask, unsigned int query_flags)
+nfs_namespace_getattr(struct user_namespace *mnt_userns,
+ const struct path *path, struct kstat *stat,
+ u32 request_mask, unsigned int query_flags)
{
if (NFS_FH(d_inode(path->dentry))->size != 0)
- return nfs_getattr(path, stat, request_mask, query_flags);
- generic_fillattr(d_inode(path->dentry), stat);
+ return nfs_getattr(mnt_userns, path, stat, request_mask,
+ query_flags);
+ generic_fillattr(&init_user_ns, d_inode(path->dentry), stat);
return 0;
}
static int
-nfs_namespace_setattr(struct dentry *dentry, struct iattr *attr)
+nfs_namespace_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
+ struct iattr *attr)
{
if (NFS_FH(d_inode(dentry))->size != 0)
- return nfs_setattr(dentry, attr);
+ return nfs_setattr(mnt_userns, dentry, attr);
return -EACCES;
}
diff --git a/fs/nfs/nfs3_fs.h b/fs/nfs/nfs3_fs.h
index 1b950b66b3bb..c8a192802dda 100644
--- a/fs/nfs/nfs3_fs.h
+++ b/fs/nfs/nfs3_fs.h
@@ -12,7 +12,8 @@
*/
#ifdef CONFIG_NFS_V3_ACL
extern struct posix_acl *nfs3_get_acl(struct inode *inode, int type);
-extern int nfs3_set_acl(struct inode *inode, struct posix_acl *acl, int type);
+extern int nfs3_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
+ struct posix_acl *acl, int type);
extern int nfs3_proc_setacls(struct inode *inode, struct posix_acl *acl,
struct posix_acl *dfacl);
extern ssize_t nfs3_listxattr(struct dentry *, char *, size_t);
diff --git a/fs/nfs/nfs3acl.c b/fs/nfs/nfs3acl.c
index c6c863382f37..5604e807fc01 100644
--- a/fs/nfs/nfs3acl.c
+++ b/fs/nfs/nfs3acl.c
@@ -251,7 +251,8 @@ int nfs3_proc_setacls(struct inode *inode, struct posix_acl *acl,
}
-int nfs3_set_acl(struct inode *inode, struct posix_acl *acl, int type)
+int nfs3_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
+ struct posix_acl *acl, int type)
{
struct posix_acl *orig = acl, *dfacl = NULL, *alloc;
int status;
diff --git a/fs/nfs/nfs4proc.c b/fs/nfs/nfs4proc.c
index 2f4679a62712..a07530cf673d 100644
--- a/fs/nfs/nfs4proc.c
+++ b/fs/nfs/nfs4proc.c
@@ -7491,6 +7491,7 @@ nfs4_release_lockowner(struct nfs_server *server, struct nfs4_lock_state *lsp)
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
static int nfs4_xattr_set_nfs4_acl(const struct xattr_handler *handler,
+ struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
@@ -7513,6 +7514,7 @@ static bool nfs4_xattr_list_nfs4_acl(struct dentry *dentry)
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static int nfs4_xattr_set_nfs4_label(const struct xattr_handler *handler,
+ struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
@@ -7563,6 +7565,7 @@ nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len)
#ifdef CONFIG_NFS_V4_2
static int nfs4_xattr_set_nfs4_user(const struct xattr_handler *handler,
+ struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)