diff options
author | Mark Brown <broonie@kernel.org> | 2020-04-22 08:51:44 +0100 |
---|---|---|
committer | Mark Brown <broonie@kernel.org> | 2020-04-22 08:51:44 +0100 |
commit | 41d91ec3de8a90167159275bde7ed65768723556 (patch) | |
tree | 6b3609b4317591e3f61edd11e230ad5e3289de09 /Documentation/driver-api/io_ordering.rst | |
parent | 1e060a453c8604311fb45ae2f84f67ed673329b4 (diff) | |
parent | ff5d18cb04f4ecccbcf05b7f83ab6df2a0d95c16 (diff) |
Merge tag 'tegra-for-5.7-asoc' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra/linux into asoc-5.7
ASoC: tegra: Fixes for v5.7-rc3
This contains a couple of fixes that are needed to properly reconfigure
the audio clocks on older Tegra devices.
Diffstat (limited to 'Documentation/driver-api/io_ordering.rst')
-rw-r--r-- | Documentation/driver-api/io_ordering.rst | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/Documentation/driver-api/io_ordering.rst b/Documentation/driver-api/io_ordering.rst new file mode 100644 index 000000000000..2ab303ce9a0d --- /dev/null +++ b/Documentation/driver-api/io_ordering.rst @@ -0,0 +1,51 @@ +============================================== +Ordering I/O writes to memory-mapped addresses +============================================== + +On some platforms, so-called memory-mapped I/O is weakly ordered. On such +platforms, driver writers are responsible for ensuring that I/O writes to +memory-mapped addresses on their device arrive in the order intended. This is +typically done by reading a 'safe' device or bridge register, causing the I/O +chipset to flush pending writes to the device before any reads are posted. A +driver would usually use this technique immediately prior to the exit of a +critical section of code protected by spinlocks. This would ensure that +subsequent writes to I/O space arrived only after all prior writes (much like a +memory barrier op, mb(), only with respect to I/O). + +A more concrete example from a hypothetical device driver:: + + ... + CPU A: spin_lock_irqsave(&dev_lock, flags) + CPU A: val = readl(my_status); + CPU A: ... + CPU A: writel(newval, ring_ptr); + CPU A: spin_unlock_irqrestore(&dev_lock, flags) + ... + CPU B: spin_lock_irqsave(&dev_lock, flags) + CPU B: val = readl(my_status); + CPU B: ... + CPU B: writel(newval2, ring_ptr); + CPU B: spin_unlock_irqrestore(&dev_lock, flags) + ... + +In the case above, the device may receive newval2 before it receives newval, +which could cause problems. Fixing it is easy enough though:: + + ... + CPU A: spin_lock_irqsave(&dev_lock, flags) + CPU A: val = readl(my_status); + CPU A: ... + CPU A: writel(newval, ring_ptr); + CPU A: (void)readl(safe_register); /* maybe a config register? */ + CPU A: spin_unlock_irqrestore(&dev_lock, flags) + ... + CPU B: spin_lock_irqsave(&dev_lock, flags) + CPU B: val = readl(my_status); + CPU B: ... + CPU B: writel(newval2, ring_ptr); + CPU B: (void)readl(safe_register); /* maybe a config register? */ + CPU B: spin_unlock_irqrestore(&dev_lock, flags) + +Here, the reads from safe_register will cause the I/O chipset to flush any +pending writes before actually posting the read to the chipset, preventing +possible data corruption. |