summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-12-14 18:29:11 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2020-12-14 18:29:11 -0800
commitadb35e8dc98ba9bda99ff79ac6a05b8fcde2a762 (patch)
treeceb0334110d80b5a756764c3d089257c83faaec9
parent533369b145d8d1bc44b8ed7f0dd0ecffb16384cc (diff)
parent5b78f2dc315354c05300795064f587366a02c6ff (diff)
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner: - migrate_disable/enable() support which originates from the RT tree and is now a prerequisite for the new preemptible kmap_local() API which aims to replace kmap_atomic(). - A fair amount of topology and NUMA related improvements - Improvements for the frequency invariant calculations - Enhanced robustness for the global CPU priority tracking and decision making - The usual small fixes and enhancements all over the place * tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits) sched/fair: Trivial correction of the newidle_balance() comment sched/fair: Clear SMT siblings after determining the core is not idle sched: Fix kernel-doc markup x86: Print ratio freq_max/freq_base used in frequency invariance calculations x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC x86, sched: Calculate frequency invariance for AMD systems irq_work: Optimize irq_work_single() smp: Cleanup smp_call_function*() irq_work: Cleanup sched: Limit the amount of NUMA imbalance that can exist at fork time sched/numa: Allow a floating imbalance between NUMA nodes sched: Avoid unnecessary calculation of load imbalance at clone time sched/numa: Rename nr_running and break out the magic number sched: Make migrate_disable/enable() independent of RT sched/topology: Condition EAS enablement on FIE support arm64: Rebuild sched domains on invariance status changes sched/topology,schedutil: Wrap sched domains rebuild sched/uclamp: Allow to reset a task uclamp constraint value sched/core: Fix typos in comments Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug ...
-rw-r--r--Documentation/scheduler/sched-domains.rst26
-rw-r--r--arch/arm64/kernel/topology.c10
-rw-r--r--arch/mips/kernel/process.c5
-rw-r--r--arch/mips/kernel/smp.c25
-rw-r--r--arch/s390/pci/pci_irq.c4
-rw-r--r--arch/x86/include/asm/topology.h5
-rw-r--r--arch/x86/kernel/cpuid.c7
-rw-r--r--arch/x86/kernel/smpboot.c79
-rw-r--r--arch/x86/lib/msr-smp.c7
-rw-r--r--block/blk-mq.c4
-rw-r--r--drivers/acpi/cppc_acpi.c7
-rw-r--r--drivers/cpuidle/coupled.c3
-rw-r--r--drivers/gpu/drm/i915/i915_request.c4
-rw-r--r--drivers/net/ethernet/cavium/liquidio/lio_core.c9
-rw-r--r--fs/proc/array.c4
-rw-r--r--include/linux/cpuhotplug.h1
-rw-r--r--include/linux/cpumask.h6
-rw-r--r--include/linux/irq_work.h33
-rw-r--r--include/linux/irqflags.h8
-rw-r--r--include/linux/kernel.h21
-rw-r--r--include/linux/preempt.h83
-rw-r--r--include/linux/sched.h5
-rw-r--r--include/linux/sched/hotplug.h2
-rw-r--r--include/linux/sched/mm.h5
-rw-r--r--include/linux/sched/topology.h8
-rw-r--r--include/linux/smp.h19
-rw-r--r--include/linux/stop_machine.h5
-rw-r--r--include/uapi/linux/sched/types.h2
-rw-r--r--kernel/bpf/stackmap.c2
-rw-r--r--kernel/cgroup/cpuset.c33
-rw-r--r--kernel/cpu.c9
-rw-r--r--kernel/debug/debug_core.c6
-rw-r--r--kernel/exit.c16
-rw-r--r--kernel/irq_work.c45
-rw-r--r--kernel/kthread.c21
-rw-r--r--kernel/printk/printk.c6
-rw-r--r--kernel/rcu/tree.c3
-rw-r--r--kernel/sched/core.c1104
-rw-r--r--kernel/sched/cpudeadline.c4
-rw-r--r--kernel/sched/cpufreq_schedutil.c9
-rw-r--r--kernel/sched/cpupri.c52
-rw-r--r--kernel/sched/cpupri.h8
-rw-r--r--kernel/sched/deadline.c101
-rw-r--r--kernel/sched/fair.c121
-rw-r--r--kernel/sched/idle.c7
-rw-r--r--kernel/sched/membarrier.c147
-rw-r--r--kernel/sched/rt.c99
-rw-r--r--kernel/sched/sched.h150
-rw-r--r--kernel/sched/stop_task.c5
-rw-r--r--kernel/sched/topology.c61
-rw-r--r--kernel/smp.c52
-rw-r--r--kernel/stop_machine.c27
-rw-r--r--kernel/time/tick-sched.c6
-rw-r--r--kernel/trace/bpf_trace.c2
-rw-r--r--kernel/workqueue.c4
-rw-r--r--lib/cpumask.c18
-rw-r--r--lib/dump_stack.c2
-rw-r--r--lib/smp_processor_id.c5
-rw-r--r--net/core/dev.c3
59 files changed, 1906 insertions, 619 deletions
diff --git a/Documentation/scheduler/sched-domains.rst b/Documentation/scheduler/sched-domains.rst
index 5c4b7f4f0062..8582fa5e9170 100644
--- a/Documentation/scheduler/sched-domains.rst
+++ b/Documentation/scheduler/sched-domains.rst
@@ -65,21 +65,17 @@ of the SMP domain will span the entire machine, with each group having the
cpumask of a node. Or, you could do multi-level NUMA or Opteron, for example,
might have just one domain covering its one NUMA level.
-The implementor should read comments in include/linux/sched.h:
-struct sched_domain fields, SD_FLAG_*, SD_*_INIT to get an idea of
-the specifics and what to tune.
+The implementor should read comments in include/linux/sched/sd_flags.h:
+SD_* to get an idea of the specifics and what to tune for the SD flags
+of a sched_domain.
-Architectures may retain the regular override the default SD_*_INIT flags
-while using the generic domain builder in kernel/sched/core.c if they wish to
-retain the traditional SMT->SMP->NUMA topology (or some subset of that). This
-can be done by #define'ing ARCH_HASH_SCHED_TUNE.
-
-Alternatively, the architecture may completely override the generic domain
-builder by #define'ing ARCH_HASH_SCHED_DOMAIN, and exporting your
-arch_init_sched_domains function. This function will attach domains to all
-CPUs using cpu_attach_domain.
+Architectures may override the generic domain builder and the default SD flags
+for a given topology level by creating a sched_domain_topology_level array and
+calling set_sched_topology() with this array as the parameter.
The sched-domains debugging infrastructure can be enabled by enabling
-CONFIG_SCHED_DEBUG. This enables an error checking parse of the sched domains
-which should catch most possible errors (described above). It also prints out
-the domain structure in a visual format.
+CONFIG_SCHED_DEBUG and adding 'sched_debug' to your cmdline. If you forgot to
+tweak your cmdline, you can also flip the /sys/kernel/debug/sched_debug
+knob. This enables an error checking parse of the sched domains which should
+catch most possible errors (described above). It also prints out the domain
+structure in a visual format.
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c
index b8026ec684ba..c8308befdb1e 100644
--- a/arch/arm64/kernel/topology.c
+++ b/arch/arm64/kernel/topology.c
@@ -223,6 +223,7 @@ static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
static int __init init_amu_fie(void)
{
+ bool invariance_status = topology_scale_freq_invariant();
cpumask_var_t valid_cpus;
bool have_policy = false;
int ret = 0;
@@ -269,6 +270,15 @@ static int __init init_amu_fie(void)
if (!topology_scale_freq_invariant())
static_branch_disable(&amu_fie_key);
+ /*
+ * Task scheduler behavior depends on frequency invariance support,
+ * either cpufreq or counter driven. If the support status changes as
+ * a result of counter initialisation and use, retrigger the build of
+ * scheduling domains to ensure the information is propagated properly.
+ */
+ if (invariance_status != topology_scale_freq_invariant())
+ rebuild_sched_domains_energy();
+
free_valid_mask:
free_cpumask_var(valid_cpus);
diff --git a/arch/mips/kernel/process.c b/arch/mips/kernel/process.c
index 75ebd8d7bd5d..d7e288f3a1e7 100644
--- a/arch/mips/kernel/process.c
+++ b/arch/mips/kernel/process.c
@@ -702,7 +702,6 @@ unsigned long arch_align_stack(unsigned long sp)
return sp & ALMASK;
}
-static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
static struct cpumask backtrace_csd_busy;
static void handle_backtrace(void *info)
@@ -711,6 +710,9 @@ static void handle_backtrace(void *info)
cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
}
+static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
+ CSD_INIT(handle_backtrace, NULL);
+
static void raise_backtrace(cpumask_t *mask)
{
call_single_data_t *csd;
@@ -730,7 +732,6 @@ static void raise_backtrace(cpumask_t *mask)
}
csd = &per_cpu(backtrace_csd, cpu);
- csd->func = handle_backtrace;
smp_call_function_single_async(cpu, csd);
}
}
diff --git a/arch/mips/kernel/smp.c b/arch/mips/kernel/smp.c
index 48d84d5fcc36..74b9102fd06e 100644
--- a/arch/mips/kernel/smp.c
+++ b/arch/mips/kernel/smp.c
@@ -687,36 +687,23 @@ EXPORT_SYMBOL(flush_tlb_one);
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
-static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
-
-void tick_broadcast(const struct cpumask *mask)
-{
- call_single_data_t *csd;
- int cpu;
-
- for_each_cpu(cpu, mask) {
- csd = &per_cpu(tick_broadcast_csd, cpu);
- smp_call_function_single_async(cpu, csd);
- }
-}
-
static void tick_broadcast_callee(void *info)
{
tick_receive_broadcast();
}
-static int __init tick_broadcast_init(void)
+static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
+ CSD_INIT(tick_broadcast_callee, NULL);
+
+void tick_broadcast(const struct cpumask *mask)
{
call_single_data_t *csd;
int cpu;
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ for_each_cpu(cpu, mask) {
csd = &per_cpu(tick_broadcast_csd, cpu);
- csd->func = tick_broadcast_callee;
+ smp_call_function_single_async(cpu, csd);
}
-
- return 0;
}
-early_initcall(tick_broadcast_init);
#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
diff --git a/arch/s390/pci/pci_irq.c b/arch/s390/pci/pci_irq.c
index 75217fb63d7b..9dd5ad1b553d 100644
--- a/arch/s390/pci/pci_irq.c
+++ b/arch/s390/pci/pci_irq.c
@@ -179,9 +179,7 @@ static void zpci_handle_fallback_irq(void)
if (atomic_inc_return(&cpu_data->scheduled) > 1)
continue;
- cpu_data->csd.func = zpci_handle_remote_irq;
- cpu_data->csd.info = &cpu_data->scheduled;
- cpu_data->csd.flags = 0;
+ INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
smp_call_function_single_async(cpu, &cpu_data->csd);
}
}
diff --git a/arch/x86/include/asm/topology.h b/arch/x86/include/asm/topology.h
index f4234575f3fd..488a8e848754 100644
--- a/arch/x86/include/asm/topology.h
+++ b/arch/x86/include/asm/topology.h
@@ -218,4 +218,9 @@ static inline void arch_set_max_freq_ratio(bool turbo_disabled)
}
#endif
+#ifdef CONFIG_ACPI_CPPC_LIB
+void init_freq_invariance_cppc(void);
+#define init_freq_invariance_cppc init_freq_invariance_cppc
+#endif
+
#endif /* _ASM_X86_TOPOLOGY_H */
diff --git a/arch/x86/kernel/cpuid.c b/arch/x86/kernel/cpuid.c
index 3492aa36bf09..6f7b8cc1bc9f 100644
--- a/arch/x86/kernel/cpuid.c
+++ b/arch/x86/kernel/cpuid.c
@@ -74,10 +74,9 @@ static ssize_t cpuid_read(struct file *file, char __user *buf,
init_completion(&cmd.done);
for (; count; count -= 16) {
- call_single_data_t csd = {
- .func = cpuid_smp_cpuid,
- .info = &cmd,
- };
+ call_single_data_t csd;
+
+ INIT_CSD(&csd, cpuid_smp_cpuid, &cmd);
cmd.regs.eax = pos;
cmd.regs.ecx = pos >> 32;
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c
index 99bdcebaedfc..9278ed7b564e 100644
--- a/arch/x86/kernel/smpboot.c
+++ b/arch/x86/kernel/smpboot.c
@@ -82,6 +82,10 @@
#include <asm/hw_irq.h>
#include <asm/stackprotector.h>
+#ifdef CONFIG_ACPI_CPPC_LIB
+#include <acpi/cppc_acpi.h>
+#endif
+
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
@@ -148,7 +152,7 @@ static inline void smpboot_restore_warm_reset_vector(void)
*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
}
-static void init_freq_invariance(bool secondary);
+static void init_freq_invariance(bool secondary, bool cppc_ready);
/*
* Report back to the Boot Processor during boot time or to the caller processor
@@ -186,7 +190,7 @@ static void smp_callin(void)
*/
set_cpu_sibling_map(raw_smp_processor_id());
- init_freq_invariance(true);
+ init_freq_invariance(true, false);
/*
* Get our bogomips.
@@ -1341,7 +1345,7 @@ void __init native_smp_prepare_cpus(unsigned int max_cpus)
set_sched_topology(x86_topology);
set_cpu_sibling_map(0);
- init_freq_invariance(false);
+ init_freq_invariance(false, false);
smp_sanity_check();
switch (apic_intr_mode) {
@@ -2028,6 +2032,48 @@ out:
return true;
}
+#ifdef CONFIG_ACPI_CPPC_LIB
+static bool amd_set_max_freq_ratio(void)
+{
+ struct cppc_perf_caps perf_caps;
+ u64 highest_perf, nominal_perf;
+ u64 perf_ratio;
+ int rc;
+
+ rc = cppc_get_perf_caps(0, &perf_caps);
+ if (rc) {
+ pr_debug("Could not retrieve perf counters (%d)\n", rc);
+ return false;
+ }
+
+ highest_perf = perf_caps.highest_perf;
+ nominal_perf = perf_caps.nominal_perf;
+
+ if (!highest_perf || !nominal_perf) {
+ pr_debug("Could not retrieve highest or nominal performance\n");
+ return false;
+ }
+
+ perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
+ /* midpoint between max_boost and max_P */
+ perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
+ if (!perf_ratio) {
+ pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
+ return false;
+ }
+
+ arch_turbo_freq_ratio = perf_ratio;
+ arch_set_max_freq_ratio(false);
+
+ return true;
+}
+#else
+static bool amd_set_max_freq_ratio(void)
+{
+ return false;
+}
+#endif
+
static void init_counter_refs(void)
{
u64 aperf, mperf;
@@ -2039,7 +2085,7 @@ static void init_counter_refs(void)
this_cpu_write(arch_prev_mperf, mperf);
}
-static void init_freq_invariance(bool secondary)
+static void init_freq_invariance(bool secondary, bool cppc_ready)
{
bool ret = false;
@@ -2055,15 +2101,38 @@ static void init_freq_invariance(bool secondary)
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
ret = intel_set_max_freq_ratio();
+ else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
+ if (!cppc_ready) {
+ return;
+ }
+ ret = amd_set_max_freq_ratio();
+ }
if (ret) {
init_counter_refs();
static_branch_enable(&arch_scale_freq_key);
+ pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
} else {
pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
}
}
+#ifdef CONFIG_ACPI_CPPC_LIB
+static DEFINE_MUTEX(freq_invariance_lock);
+
+void init_freq_invariance_cppc(void)
+{
+ static bool secondary;
+
+ mutex_lock(&freq_invariance_lock);
+
+ init_freq_invariance(secondary, true);
+ secondary = true;
+
+ mutex_unlock(&freq_invariance_lock);
+}
+#endif
+
static void disable_freq_invariance_workfn(struct work_struct *work)
{
static_branch_disable(&arch_scale_freq_key);
@@ -2113,7 +2182,7 @@ error:
schedule_work(&disable_freq_invariance_work);
}
#else
-static inline void init_freq_invariance(bool secondary)
+static inline void init_freq_invariance(bool secondary, bool cppc_ready)
{
}
#endif /* CONFIG_X86_64 */
diff --git a/arch/x86/lib/msr-smp.c b/arch/x86/lib/msr-smp.c
index fee8b9c0520c..75a0915b0d01 100644
--- a/arch/x86/lib/msr-smp.c
+++ b/arch/x86/lib/msr-smp.c
@@ -169,12 +169,11 @@ static void __wrmsr_safe_on_cpu(void *info)
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
{
struct msr_info_completion rv;
- call_single_data_t csd = {
- .func = __rdmsr_safe_on_cpu,
- .info = &rv,
- };
+ call_single_data_t csd;
int err;
+ INIT_CSD(&csd, __rdmsr_safe_on_cpu, &rv);
+
memset(&rv, 0, sizeof(rv));
init_completion(&rv.done);
rv.msr.msr_no = msr_no;
diff --git a/block/blk-mq.c b/block/blk-mq.c
index 55bcee5dc032..d35b3c0c876a 100644
--- a/block/blk-mq.c
+++ b/block/blk-mq.c
@@ -671,9 +671,7 @@ bool blk_mq_complete_request_remote(struct request *rq)
return false;
if (blk_mq_complete_need_ipi(rq)) {
- rq->csd.func = __blk_mq_complete_request_remote;
- rq->csd.info = rq;
- rq->csd.flags = 0;
+ INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
} else {
if (rq->q->nr_hw_queues > 1)
diff --git a/drivers/acpi/cppc_acpi.c b/drivers/acpi/cppc_acpi.c
index 7a99b19bb893..a852dc4927f7 100644
--- a/drivers/acpi/cppc_acpi.c
+++ b/drivers/acpi/cppc_acpi.c
@@ -39,6 +39,7 @@
#include <linux/ktime.h>
#include <linux/rwsem.h>
#include <linux/wait.h>
+#include <linux/topology.h>
#include <acpi/cppc_acpi.h>
@@ -688,6 +689,10 @@ static bool is_cppc_supported(int revision, int num_ent)
* }
*/
+#ifndef init_freq_invariance_cppc
+static inline void init_freq_invariance_cppc(void) { }
+#endif
+
/**
* acpi_cppc_processor_probe - Search for per CPU _CPC objects.
* @pr: Ptr to acpi_processor containing this CPU's logical ID.
@@ -850,6 +855,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
goto out_free;
}
+ init_freq_invariance_cppc();
+
kfree(output.pointer);
return 0;
diff --git a/drivers/cpuidle/coupled.c b/drivers/cpuidle/coupled.c
index 04003b90dc49..74068742cef3 100644
--- a/drivers/cpuidle/coupled.c
+++ b/drivers/cpuidle/coupled.c
@@ -674,8 +674,7 @@ have_coupled:
coupled->refcnt++;
csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
- csd->func = cpuidle_coupled_handle_poke;
- csd->info = (void *)(unsigned long)dev->cpu;
+ INIT_CSD(csd, cpuidle_coupled_handle_poke, (void *)(unsigned long)dev->cpu);
return 0;
}
diff --git a/drivers/gpu/drm/i915/i915_request.c b/drivers/gpu/drm/i915/i915_request.c
index 0e813819b041..5385b081a376 100644
--- a/drivers/gpu/drm/i915/i915_request.c
+++ b/drivers/gpu/drm/i915/i915_request.c
@@ -197,7 +197,7 @@ __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
llist_for_each_entry_safe(cb, cn,
llist_del_all(&rq->execute_cb),
- work.llnode)
+ work.node.llist)
fn(&cb->work);
}
@@ -460,7 +460,7 @@ __await_execution(struct i915_request *rq,
* callback first, then checking the ACTIVE bit, we serialise with
* the completed/retired request.
*/
- if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
+ if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
if (i915_request_is_active(signal) ||
__request_in_flight(signal))
__notify_execute_cb_imm(signal);
diff --git a/drivers/net/ethernet/cavium/liquidio/lio_core.c b/drivers/net/ethernet/cavium/liquidio/lio_core.c
index 9ef172976b35..37d064193f0f 100644
--- a/drivers/net/ethernet/cavium/liquidio/lio_core.c
+++ b/drivers/net/ethernet/cavium/liquidio/lio_core.c
@@ -729,13 +729,8 @@ static void liquidio_napi_drv_callback(void *arg)
droq->cpu_id == this_cpu) {
napi_schedule_irqoff(&droq->napi);
} else {
- call_single_data_t *csd = &droq->csd;
-
- csd->func = napi_schedule_wrapper;
- csd->info = &droq->napi;
- csd->flags = 0;
-
- smp_call_function_single_async(droq->cpu_id, csd);
+ INIT_CSD(&droq->csd, napi_schedule_wrapper, &droq->napi);
+ smp_call_function_single_async(droq->cpu_id, &droq->csd);
}
}
diff --git a/fs/proc/array.c b/fs/proc/array.c
index 277f654f289e..a23c3e220a5f 100644
--- a/fs/proc/array.c
+++ b/fs/proc/array.c
@@ -383,9 +383,9 @@ static inline void task_context_switch_counts(struct seq_file *m,
static void task_cpus_allowed(struct seq_file *m, struct task_struct *task)
{
seq_printf(m, "Cpus_allowed:\t%*pb\n",
- cpumask_pr_args(task->cpus_ptr));
+ cpumask_pr_args(&task->cpus_mask));
seq_printf(m, "Cpus_allowed_list:\t%*pbl\n",
- cpumask_pr_args(task->cpus_ptr));
+ cpumask_pr_args(&task->cpus_mask));
}
static inline void task_core_dumping(struct seq_file *m, struct mm_struct *mm)
diff --git a/include/linux/cpuhotplug.h b/include/linux/cpuhotplug.h
index bc56287a1ed1..0042ef362511 100644
--- a/include/linux/cpuhotplug.h
+++ b/include/linux/cpuhotplug.h
@@ -152,6 +152,7 @@ enum cpuhp_state {
CPUHP_AP_ONLINE,
CPUHP_TEARDOWN_CPU,
CPUHP_AP_ONLINE_IDLE,
+ CPUHP_AP_SCHED_WAIT_EMPTY,
CPUHP_AP_SMPBOOT_THREADS,
CPUHP_AP_X86_VDSO_VMA_ONLINE,
CPUHP_AP_IRQ_AFFINITY_ONLINE,
diff --git a/include/linux/cpumask.h b/include/linux/cpumask.h
index f0d895d6ac39..383684e30f12 100644
--- a/include/linux/cpumask.h
+++ b/include/linux/cpumask.h
@@ -199,6 +199,11 @@ static inline int cpumask_any_and_distribute(const struct cpumask *src1p,
return cpumask_next_and(-1, src1p, src2p);
}
+static inline int cpumask_any_distribute(const struct cpumask *srcp)
+{
+ return cpumask_first(srcp);
+}
+
#define for_each_cpu(cpu, mask) \
for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
#define for_each_cpu_not(cpu, mask) \
@@ -252,6 +257,7 @@ int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
unsigned int cpumask_local_spread(unsigned int i, int node);
int cpumask_any_and_distribute(const struct cpumask *src1p,
const struct cpumask *src2p);
+int cpumask_any_distribute(const struct cpumask *srcp);
/**
* for_each_cpu - iterate over every cpu in a mask
diff --git a/include/linux/irq_work.h b/include/linux/irq_work.h
index 30823780c192..ec2a47a81e42 100644
--- a/include/linux/irq_work.h
+++ b/include/linux/irq_work.h
@@ -14,28 +14,37 @@
*/
struct irq_work {
- union {
- struct __call_single_node node;
- struct {
- struct llist_node llnode;
- atomic_t flags;
- };
- };
+ struct __call_single_node node;
void (*func)(struct irq_work *);
};
+#define __IRQ_WORK_INIT(_func, _flags) (struct irq_work){ \
+ .node = { .u_flags = (_flags), }, \
+ .func = (_func), \
+}
+
+#define IRQ_WORK_INIT(_func) __IRQ_WORK_INIT(_func, 0)
+#define IRQ_WORK_INIT_LAZY(_func) __IRQ_WORK_INIT(_func, IRQ_WORK_LAZY)
+#define IRQ_WORK_INIT_HARD(_func) __IRQ_WORK_INIT(_func, IRQ_WORK_HARD_IRQ)
+
+#define DEFINE_IRQ_WORK(name, _f) \
+ struct irq_work name = IRQ_WORK_INIT(_f)
+
static inline
void init_irq_work(struct irq_work *work, void (*func)(struct irq_work *))
{
- atomic_set(&work->flags, 0);
- work->func = func;
+ *work = IRQ_WORK_INIT(func);
}
-#define DEFINE_IRQ_WORK(name, _f) struct irq_work name = { \
- .flags = ATOMIC_INIT(0), \
- .func = (_f) \
+static inline bool irq_work_is_pending(struct irq_work *work)
+{
+ return atomic_read(&work->node.a_flags) & IRQ_WORK_PENDING;
}
+static inline bool irq_work_is_busy(struct irq_work *work)
+{
+ return atomic_read(&work->node.a_flags) & IRQ_WORK_BUSY;
+}
bool irq_work_queue(struct irq_work *work);
bool irq_work_queue_on(struct irq_work *work, int cpu);
diff --git a/include/linux/irqflags.h b/include/linux/irqflags.h
index 3ed4e8771b64..8de0e1373de7 100644
--- a/include/linux/irqflags.h
+++ b/include/linux/irqflags.h
@@ -107,14 +107,14 @@ do { \
current->irq_config = 0; \
} while (0)
-# define lockdep_irq_work_enter(__work) \
+# define lockdep_irq_work_enter(_flags) \
do { \
- if (!(atomic_read(&__work->flags) & IRQ_WORK_HARD_IRQ))\
+ if (!((_flags) & IRQ_WORK_HARD_IRQ)) \
current->irq_config = 1; \
} while (0)
-# define lockdep_irq_work_exit(__work) \
+# define lockdep_irq_work_exit(_flags) \
do { \
- if (!(atomic_read(&__work->flags) & IRQ_WORK_HARD_IRQ))\
+ if (!((_flags) & IRQ_WORK_HARD_IRQ)) \
current->irq_config = 0; \
} while (0)
diff --git a/include/linux/kernel.h b/include/linux/kernel.h
index 4b5fd3da5fe8..dbf6018fc312 100644
--- a/include/linux/kernel.h
+++ b/include/linux/kernel.h
@@ -204,6 +204,7 @@ extern int _cond_resched(void);
extern void ___might_sleep(const char *file, int line, int preempt_offset);
extern void __might_sleep(const char *file, int line, int preempt_offset);
extern void __cant_sleep(const char *file, int line, int preempt_offset);
+extern void __cant_migrate(const char *file, int line);
/**
* might_sleep - annotation for functions that can sleep
@@ -227,6 +228,18 @@ extern void __cant_sleep(const char *file, int line, int preempt_offset);
# define cant_sleep() \
do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
# define sched_annotate_sleep() (current->task_state_change = 0)
+
+/**
+ * cant_migrate - annotation for functions that cannot migrate
+ *
+ * Will print a stack trace if executed in code which is migratable
+ */
+# define cant_migrate() \
+ do { \
+ if (IS_ENABLED(CONFIG_SMP)) \
+ __cant_migrate(__FILE__, __LINE__); \
+ } while (0)
+
/**
* non_block_start - annotate the start of section where sleeping is prohibited
*
@@ -251,6 +264,7 @@ extern void __cant_sleep(const char *file, int line, int preempt_offset);
int preempt_offset) { }
# define might_sleep() do { might_resched(); } while (0)
# define cant_sleep() do { } while (0)
+# define cant_migrate() do { } while (0)
# define sched_annotate_sleep() do { } while (0)
# define non_block_start() do { } while (0)
# define non_block_end() do { } while (0)
@@ -258,13 +272,6 @@ extern void __cant_sleep(const char *file, int line, int preempt_offset);
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
-#ifndef CONFIG_PREEMPT_RT
-# define cant_migrate() cant_sleep()
-#else
- /* Placeholder for now */
-# define cant_migrate() do { } while (0)
-#endif
-
/**
* abs - return absolute value of an argument
* @x: the value. If it is unsigned type, it is converted to signed type first.
diff --git a/include/linux/preempt.h b/include/linux/preempt.h
index 7d9c1c0e149c..6df63cbe8bb0 100644
--- a/include/linux/preempt.h
+++ b/include/linux/preempt.h
@@ -322,34 +322,71 @@ static inline void preempt_notifier_init(struct preempt_notifier *notifier,
#endif
-/**
- * migrate_disable - Prevent migration of the current task
+#ifdef CONFIG_SMP
+
+/*
+ * Migrate-Disable and why it is undesired.
*
- * Maps to preempt_disable() which also disables preemption. Use
- * migrate_disable() to annotate that the intent is to prevent migration,
- * but not necessarily preemption.
+ * When a preempted task becomes elegible to run under the ideal model (IOW it
+ * becomes one of the M highest priority tasks), it might still have to wait
+ * for the preemptee's migrate_disable() section to complete. Thereby suffering
+ * a reduction in bandwidth in the exact duration of the migrate_disable()
+ * section.
*
- * Can be invoked nested like preempt_disable() and needs the corresponding
- * number of migrate_enable() invocations.
- */
-static __always_inline void migrate_disable(void)
-{
- preempt_disable();
-}
-
-/**
- * migrate_enable - Allow migration of the current task
+ * Per this argument, the change from preempt_disable() to migrate_disable()
+ * gets us:
+ *
+ * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
+ * it would have had to wait for the lower priority task.
+ *
+ * - a lower priority tasks; which under preempt_disable() could've instantly
+ * migrated away when another CPU becomes available, is now constrained
+ * by the ability to push the higher priority task away, which might itself be
+ * in a migrate_disable() section, reducing it's available bandwidth.
+ *
+ * IOW it trades latency / moves the interference term, but it stays in the
+ * system, and as long as it remains unbounded, the system is not fully
+ * deterministic.
+ *
+ *
+ * The reason we have it anyway.
*
- * Counterpart to migrate_disable().
+ * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
+ * number of primitives into becoming preemptible, they would also allow
+ * migration. This turns out to break a bunch of per-cpu usage. To this end,
+ * all these primitives employ migirate_disable() to restore this implicit
+ * assumption.
*
- * As migrate_disable() can be invoked nested, only the outermost invocation
- * reenables migration.
+ * This is a 'temporary' work-around at best. The correct solution is getting
+ * rid of the above assumptions and reworking the code to employ explicit
+ * per-cpu locking or short preempt-disable regions.
+ *
+ * The end goal must be to get rid of migrate_disable(), alternatively we need
+ * a schedulability theory that does not depend on abritrary migration.
+ *
+ *
+ * Notes on the implementation.
+ *
+ * The implementation is particularly tricky since existing code patterns
+ * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
+ * This means that it cannot use cpus_read_lock() to serialize against hotplug,
+ * nor can it easily migrate itself into a pending affinity mask change on
+ * migrate_enable().
+ *
+ *
+ * Note: even non-work-conserving schedulers like semi-partitioned depends on
+ * migration, so migrate_disable() is not only a problem for
+ * work-conserving schedulers.
*
- * Currently mapped to preempt_enable().
*/
-static __always_inline void migrate_enable(void)
-{
- preempt_enable();
-}
+extern void migrate_disable(void);
+extern void migrate_enable(void);
+
+#else
+
+static inline void migrate_disable(void) { }
+static inline void migrate_enable(void) { }
+
+#endif /* CONFIG_SMP */
#endif /* __LINUX_PREEMPT_H */
diff --git a/include/linux/sched.h b/include/linux/sched.h
index bd4225b73a1f..7b6fc4a1a963 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -723,6 +723,11 @@ struct task_struct {
int nr_cpus_allowed;
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
+ void *migration_pending;
+#ifdef CONFIG_SMP
+ unsigned short migration_disabled;
+#endif
+ unsigned short migration_flags;
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
diff --git a/include/linux/sched/hotplug.h b/include/linux/sched/hotplug.h
index 9a62ffdd296f..412cdaba33eb 100644
--- a/include/linux/sched/hotplug.h
+++ b/include/linux/sched/hotplug.h
@@ -11,8 +11,10 @@ extern int sched_cpu_activate(unsigned int cpu);
extern int sched_cpu_deactivate(unsigned int cpu);
#ifdef CONFIG_HOTPLUG_CPU
+extern int sched_cpu_wait_empty(unsigned int cpu);
extern int sched_cpu_dying(unsigned int cpu);
#else
+# define sched_cpu_wait_empty NULL
# define sched_cpu_dying NULL
#endif
diff --git a/include/linux/sched/mm.h b/include/linux/sched/mm.h
index d5ece7a9a403..a91fb3ad9ec7 100644
--- a/include/linux/sched/mm.h
+++ b/include/linux/sched/mm.h
@@ -347,6 +347,8 @@ static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
extern void membarrier_exec_mmap(struct mm_struct *mm);
+extern void membarrier_update_current_mm(struct mm_struct *next_mm);
+
#else
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
@@ -361,6 +363,9 @@ static inline void membarrier_exec_mmap(struct mm_struct *mm)
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
}
+static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
+{
+}
#endif
#endif /* _LINUX_SCHED_MM_H */
diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
index 9ef7bf686a9f..8f0f778b7c91 100644
--- a/include/linux/sched/topology.h
+++ b/include/linux/sched/topology.h
@@ -225,6 +225,14 @@ static inline bool cpus_share_cache(int this_cpu, int that_cpu)
#endif /* !CONFIG_SMP */
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+extern void rebuild_sched_domains_energy(void);
+#else
+static inline void rebuild_sched_domains_energy(void)
+{
+}
+#endif
+
#ifndef arch_scale_cpu_capacity
/**
* arch_scale_cpu_capacity - get the capacity scale factor of a given CPU.
diff --git a/include/linux/smp.h b/include/linux/smp.h
index 9f13966d3d92..70c6f6284dcf 100644
--- a/include/linux/smp.h
+++ b/include/linux/smp.h
@@ -21,24 +21,23 @@ typedef bool (*smp_cond_func_t)(int cpu, void *info);
* structure shares (partial) layout with struct irq_work
*/
struct __call_single_data {
- union {
- struct __call_single_node node;
- struct {
- struct llist_node llist;
- unsigned int flags;
-#ifdef CONFIG_64BIT
- u16 src, dst;
-#endif
- };
- };
+ struct __call_single_node node;
smp_call_func_t func;
void *info;
};
+#define CSD_INIT(_func, _info) \
+ (struct __call_single_data){ .func = (_func), .info = (_info), }
+
/* Use __aligned() to avoid to use 2 cache lines for 1 csd */
typedef struct __call_single_data call_single_data_t
__aligned(sizeof(struct __call_single_data));
+#define INIT_CSD(_csd, _func, _info) \
+do { \
+ *(_csd) = CSD_INIT((_func), (_info)); \
+} while (0)
+
/*
* Enqueue a llist_node on the call_single_queue; be very careful, read
* flush_smp_call_function_queue() in detail.
diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h
index 76d8b09384a7..30577c3aecf8 100644
--- a/include/linux/stop_machine.h
+++ b/include/linux/stop_machine.h
@@ -24,6 +24,7 @@ typedef int (*cpu_stop_fn_t)(void *arg);
struct cpu_stop_work {
struct list_head list; /* cpu_stopper->works */
cpu_stop_fn_t fn;
+ unsigned long caller;
void *arg;
struct cpu_stop_done *done;
};
@@ -36,6 +37,8 @@ void stop_machine_park(int cpu);
void stop_machine_unpark(int cpu);
void stop_machine_yield(const struct cpumask *cpumask);
+extern void print_stop_info(const char *log_lvl, struct task_struct *task);
+
#else /* CONFIG_SMP */
#include <linux/workqueue.h>
@@ -80,6 +83,8 @@ static inline bool stop_one_cpu_nowait(unsigned int cpu,
return false;
}
+static inline void print_stop_info(const char *log_lvl, struct task_struct *task) { }
+
#endif /* CONFIG_SMP */
/*
diff --git a/include/uapi/linux/sched/types.h b/include/uapi/linux/sched/types.h
index c852153ddb0d..f2c4589d4dbf 100644
--- a/include/uapi/linux/sched/types.h
+++ b/include/uapi/linux/sched/types.h
@@ -96,6 +96,8 @@ struct sched_param {
* on a CPU with a capacity big enough to fit the specified value.
* A task with a max utilization value smaller than 1024 is more likely
* scheduled on a CPU with no more capacity than the specified value.
+ *
+ * A task utilization boundary can be reset by setting the attribute to -1.
*/
struct sched_attr {
__u32 size;
diff --git a/kernel/bpf/stackmap.c b/kernel/bpf/stackmap.c
index 06065fa27124..599041cd0c8a 100644
--- a/kernel/bpf/stackmap.c
+++ b/kernel/bpf/stackmap.c
@@ -298,7 +298,7 @@ static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
if (irqs_disabled()) {
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
work = this_cpu_ptr(&up_read_work);
- if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) {
+ if (irq_work_is_busy(&work->irq_work)) {
/* cannot queue more up_read, fallback */
irq_work_busy = true;
}
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 57b5b5d0a5fd..53c70c470a38 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -983,25 +983,48 @@ partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
*/
static void rebuild_sched_domains_locked(void)
{
+ struct cgroup_subsys_state *pos_css;
struct sched_domain_attr *attr;
cpumask_var_t *doms;
+ struct cpuset *cs;
int ndoms;
lockdep_assert_cpus_held();
percpu_rwsem_assert_held(&cpuset_rwsem);
/*
- * We have raced with CPU hotplug. Don't do anything to avoid
+ * If we have raced with CPU hotplug, return early to avoid
* passing doms with offlined cpu to partition_sched_domains().
- * Anyways, hotplug work item will rebuild sched domains.
+ * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
+ *
+ * With no CPUs in any subpartitions, top_cpuset's effective CPUs
+ * should be the same as the active CPUs, so checking only top_cpuset
+ * is enough to detect racing CPU offlines.
*/
if (!top_cpuset.nr_subparts_cpus &&
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
return;
- if (top_cpuset.nr_subparts_cpus &&
- !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
- return;
+ /*
+ * With subpartition CPUs, however, the effective CPUs of a partition
+ * root should be only a subset of the active CPUs. Since a CPU in any
+ * partition root could be offlined, all must be checked.
+ */
+ if (top_cpuset.nr_subparts_cpus) {
+ rcu_read_lock();
+ cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
+ if (!is_partition_root(cs)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+ if (!cpumask_subset(cs->effective_cpus,
+ cpu_active_mask)) {
+ rcu_read_unlock();
+ return;
+ }
+ }
+ rcu_read_unlock();
+ }
/* Generate domain masks and attrs */
ndoms = generate_sched_domains(&doms, &attr);
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 2b8d7a5db383..4e11e91010e1 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -1606,7 +1606,7 @@ static struct cpuhp_step cpuhp_hp_states[] = {
.name = "ap:online",
},
/*
- * Handled on controll processor until the plugged processor manages
+ * Handled on control processor until the plugged processor manages
* this itself.
*/
[CPUHP_TEARDOWN_CPU] = {
@@ -1615,6 +1615,13 @@ static struct cpuhp_step cpuhp_hp_states[] = {
.teardown.single = takedown_cpu,
.cant_stop = true,
},
+
+ [CPUHP_AP_SCHED_WAIT_EMPTY] = {
+ .name = "sched:waitempty",
+ .startup.single = NULL,
+ .teardown.single = sched_cpu_wait_empty,
+ },
+
/* Handle smpboot threads park/unpark */
[CPUHP_AP_SMPBOOT_THREADS] = {
.name = "smpboot/threads:online",
diff --git a/kernel/debug/debug_core.c b/kernel/debug/debug_core.c
index 1e75a8923a8d..af6e8b4fb359 100644
--- a/kernel/debug/debug_core.c
+++ b/kernel/debug/debug_core.c
@@ -225,8 +225,6 @@ NOKPROBE_SYMBOL(kgdb_skipexception);
* Default (weak) implementation for kgdb_roundup_cpus
*/
-static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
-
void __weak kgdb_call_nmi_hook(void *ignored)
{
/*
@@ -241,6 +239,9 @@ void __weak kgdb_call_nmi_hook(void *ignored)
}
NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
+static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
+ CSD_INIT(kgdb_call_nmi_hook, NULL);
+
void __weak kgdb_roundup_cpus(void)
{
call_single_data_t *csd;
@@ -267,7 +268,6 @@ void __weak kgdb_roundup_cpus(void)
continue;
kgdb_info[cpu].rounding_up = true;
- csd->func = kgdb_call_nmi_hook;
ret = smp_call_function_single_async(cpu, csd);
if (ret)
kgdb_info[cpu].rounding_up = false;
diff --git a/kernel/exit.c b/kernel/exit.c
index 1f236ed375f8..3594291a8542 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -478,10 +478,24 @@ static void exit_mm(void)
BUG_ON(mm != current->active_mm);
/* more a memory barrier than a real lock */
task_lock(current);
+ /*
+ * When a thread stops operating on an address space, the loop
+ * in membarrier_private_expedited() may not observe that
+ * tsk->mm, and the loop in membarrier_global_expedited() may
+ * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
+ * rq->membarrier_state, so those would not issue an IPI.
+ * Membarrier requires a memory barrier after accessing
+ * user-space memory, before clearing tsk->mm or the
+ * rq->membarrier_state.
+ */
+ smp_mb__after_spinlock();
+ local_irq_disable();
current->mm = NULL;
- mmap_read_unlock(mm);
+ membarrier_update_current_mm(NULL);
enter_lazy_tlb(mm, current);
+ local_irq_enable();
task_unlock(current);
+ mmap_read_unlock(mm);
mm_update_next_owner(mm);
mmput(mm);
if (test_thread_flag(TIF_MEMDIE))
diff --git a/kernel/irq_work.c b/kernel/irq_work.c
index eca83965b631..e8da1e71583a 100644
--- a/kernel/irq_work.c
+++ b/kernel/irq_work.c
@@ -31,10 +31,10 @@ static bool irq_work_claim(struct irq_work *work)
{
int oflags;
- oflags = atomic_fetch_or(IRQ_WORK_CLAIMED | CSD_TYPE_IRQ_WORK, &work->flags);
+ oflags = atomic_fetch_or(IRQ_WORK_CLAIMED | CSD_TYPE_IRQ_WORK, &work->node.a_flags);
/*
* If the work is already pending, no need to raise the IPI.
- * The pairing atomic_fetch_andnot() in irq_work_run() makes sure
+ * The pairing smp_mb() in irq_work_single() makes sure
* everything we did before is visible.
*/
if (oflags & IRQ_WORK_PENDING)
@@ -53,12 +53,12 @@ void __weak arch_irq_work_raise(void)
static void __irq_work_queue_local(struct irq_work *work)
{
/* If the work is "lazy", handle it from next tick if any */
- if (atomic_read(&work->flags) & IRQ_WORK_LAZY) {
- if (llist_add(&work->llnode, this_cpu_ptr(&lazy_list)) &&
+ if (atomic_read(&work->node.a_flags) & IRQ_WORK_LAZY) {
+ if (llist_add(&work->node.llist, this_cpu_ptr(&lazy_list)) &&
tick_nohz_tick_stopped())
arch_irq_work_raise();
} else {
- if (llist_add(&work->llnode, this_cpu_ptr(&raised_list)))
+ if (llist_add(&work->node.llist, this_cpu_ptr(&raised_list)))
arch_irq_work_raise();
}
}
@@ -102,7 +102,7 @@ bool irq_work_queue_on(struct irq_work *work, int cpu)
if (cpu != smp_processor_id()) {
/* Arch remote IPI send/receive backend aren't NMI safe */
WARN_ON_ONCE(in_nmi());
- __smp_call_single_queue(cpu, &work->llnode);
+ __smp_call_single_queue(cpu, &work->node.llist);
} else {
__irq_work_queue_local(work);
}
@@ -136,23 +136,28 @@ void irq_work_single(void *arg)
int flags;
/*
- * Clear the PENDING bit, after this point the @work
- * can be re-used.
- * Make it immediately visible so that other CPUs trying
- * to claim that work don't rely on us to handle their data
- * while we are in the middle of the func.
+ * Clear the PENDING bit, after this point the @work can be re-used.
+ * The PENDING bit acts as a lock, and we own it, so we can clear it
+ * without atomic ops.
*/
- flags = atomic_fetch_andnot(IRQ_WORK_PENDING, &work->flags);
+ flags = atomic_read(&work->node.a_flags);
+ flags &= ~IRQ_WORK_PENDING;
+ atomic_set(&work->node.a_flags, flags);
+
+ /*
+ * See irq_work_claim().
+ */
+ smp_mb();
- lockdep_irq_work_enter(work);
+ lockdep_irq_work_enter(flags);
work->func(work);
- lockdep_irq_work_exit(work);
+ lockdep_irq_work_exit(flags);
+
/*
- * Clear the BUSY bit and return to the free state if
- * no-one else claimed it meanwhile.
+ * Clear the BUSY bit, if set, and return to the free state if no-one
+ * else claimed it meanwhile.
*/
- flags &= ~IRQ_WORK_PENDING;
- (void)atomic_cmpxchg(&work->flags, flags, flags & ~IRQ_WORK_BUSY);
+ (void)atomic_cmpxchg(&work->node.a_flags, flags, flags & ~IRQ_WORK_BUSY);
}
static void irq_work_run_list(struct llist_head *list)
@@ -166,7 +171,7 @@ static void irq_work_run_list(struct llist_head *list)
return;
llnode = llist_del_all(list);
- llist_for_each_entry_safe(work, tmp, llnode, llnode)
+ llist_for_each_entry_safe(work, tmp, llnode, node.llist)
irq_work_single(work);
}
@@ -198,7 +203,7 @@ void irq_work_sync(struct irq_work *work)
{
lockdep_assert_irqs_enabled();
- while (atomic_read(&work->flags) & IRQ_WORK_BUSY)
+ while (irq_work_is_busy(work))
cpu_relax();
}
EXPORT_SYMBOL_GPL(irq_work_sync);
diff --git a/kernel/kthread.c b/kernel/kthread.c
index 933a625621b8..e6aa66551241 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -1249,6 +1249,7 @@ void kthread_use_mm(struct mm_struct *mm)
tsk->active_mm = mm;
}
tsk->mm = mm;
+ membarrier_update_current_mm(mm);
switch_mm_irqs_off(active_mm, mm, tsk);
local_irq_enable();
task_unlock(tsk);
@@ -1256,8 +1257,19 @@ void kthread_use_mm(struct mm_struct *mm)
finish_arch_post_lock_switch();
#endif
+ /*
+ * When a kthread starts operating on an address space, the loop
+ * in membarrier_{private,global}_expedited() may not observe
+ * that tsk->mm, and not issue an IPI. Membarrier requires a
+ * memory barrier after storing to tsk->mm, before accessing
+ * user-space memory. A full memory barrier for membarrier
+ * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
+ * mmdrop(), or explicitly with smp_mb().
+ */
if (active_mm != mm)
mmdrop(active_mm);
+ else
+ smp_mb();
to_kthread(tsk)->oldfs = force_uaccess_begin();
}
@@ -1277,9 +1289,18 @@ void kthread_unuse_mm(struct mm_struct *mm)
force_uaccess_end(to_kthread(tsk)->oldfs);
task_lock(tsk);
+ /*
+ * When a kthread stops operating on an address space, the loop
+ * in membarrier_{private,global}_expedited() may not observe
+ * that tsk->mm, and not issue an IPI. Membarrier requires a
+ * memory barrier after accessing user-space memory, before
+ * clearing tsk->mm.
+ */
+ smp_mb__after_spinlock();
sync_mm_rss(mm);
local_irq_disable();
tsk->mm = NULL;
+ membarrier_update_current_mm(NULL);
/* active_mm is still 'mm' */
enter_lazy_tlb(mm, tsk);
local_irq_enable();
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index bc1e3b5a97bd..28713dda3f6b 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -3025,10 +3025,8 @@ static void wake_up_klogd_work_func(struct irq_work *irq_work)
wake_up_interruptible(&log_wait);
}
-static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
- .func = wake_up_klogd_work_func,
- .flags = ATOMIC_INIT(IRQ_WORK_LAZY),
-};
+static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
+ IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
void wake_up_klogd(void)
{
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index b7124c119c0b..40e5e3dd253e 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -1322,8 +1322,6 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
if (IS_ENABLED(CONFIG_IRQ_WORK) &&
!rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
(rnp->ffmask & rdp->grpmask)) {
- init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
- atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
rdp->rcu_iw_pending = true;
rdp->rcu_iw_gp_seq = rnp->gp_seq;
irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
@@ -4023,6 +4021,7 @@ int rcutree_prepare_cpu(unsigned int cpu)
rdp->cpu_no_qs.b.norm = true;
rdp->core_needs_qs = false;
rdp->rcu_iw_pending = false;
+ rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index e0948cbb1d70..3636b80222ac 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -97,7 +97,7 @@ int sysctl_sched_rt_runtime = 950000;
*
* Normal scheduling state is serialized by rq->lock. __schedule() takes the
* local CPU's rq->lock, it optionally removes the task from the runqueue and
- * always looks at the local rq data structures to find the most elegible task
+ * always looks at the local rq data structures to find the most eligible task
* to run next.
*
* Task enqueue is also under rq->lock, possibly taken from another CPU.
@@ -320,14 +320,6 @@ void update_rq_clock(struct rq *rq)
update_rq_clock_task(rq, delta);
}
-static inline void
-rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
-{
- csd->flags = 0;
- csd->func = func;
- csd->info = rq;
-}
-
#ifdef CONFIG_SCHED_HRTICK
/*
* Use HR-timers to deliver accurate preemption points.
@@ -428,7 +420,7 @@ void hrtick_start(struct rq *rq, u64 delay)
static void hrtick_rq_init(struct rq *rq)
{
#ifdef CONFIG_SMP
- rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
+ INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
#endif
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
rq->hrtick_timer.function = hrtick;
@@ -518,7 +510,7 @@ static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
/*
* Atomically grab the task, if ->wake_q is !nil already it means
- * its already queued (either by us or someone else) and will get the
+ * it's already queued (either by us or someone else) and will get the
* wakeup due to that.
*
* In order to ensure that a pending wakeup will observe our pending
@@ -769,7 +761,7 @@ bool sched_can_stop_tick(struct rq *rq)
return false;
/*
- * If there are more than one RR tasks, we need the tick to effect the
+ * If there are more than one RR tasks, we need the tick to affect the
* actual RR behaviour.
*/
if (rq->rt.rr_nr_running) {
@@ -1187,14 +1179,14 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
* accounting was performed at enqueue time and we can just return
* here.
*
- * Need to be careful of the following enqeueue/dequeue ordering
+ * Need to be careful of the following enqueue/dequeue ordering
* problem too
*
* enqueue(taskA)
* // sched_uclamp_used gets enabled
* enqueue(taskB)
* dequeue(taskA)
- * // Must not decrement bukcet->tasks here
+ * // Must not decrement bucket->tasks here
* dequeue(taskB)
*
* where we could end up with stale data in uc_se and
@@ -1413,17 +1405,24 @@ done:
static int uclamp_validate(struct task_struct *p,
const struct sched_attr *attr)
{
- unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
- unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
+ int util_min = p->uclamp_req[UCLAMP_MIN].value;
+ int util_max = p->uclamp_req[UCLAMP_MAX].value;
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
- lower_bound = attr->sched_util_min;
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
- upper_bound = attr->sched_util_max;
+ if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
+ util_min = attr->sched_util_min;
- if (lower_bound > upper_bound)
- return -EINVAL;
- if (upper_bound > SCHED_CAPACITY_SCALE)
+ if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
+ return -EINVAL;
+ }
+
+ if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
+ util_max = attr->sched_util_max;
+
+ if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
+ return -EINVAL;
+ }
+
+ if (util_min != -1 && util_max != -1 && util_min > util_max)
return -EINVAL;
/*
@@ -1438,20 +1437,41 @@ static int uclamp_validate(struct task_struct *p,
return 0;
}
+static bool uclamp_reset(const struct sched_attr *attr,
+ enum uclamp_id clamp_id,
+ struct uclamp_se *uc_se)
+{
+ /* Reset on sched class change for a non user-defined clamp value. */
+ if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
+ !uc_se->user_defined)
+ return true;
+
+ /* Reset on sched_util_{min,max} == -1. */
+ if (clamp_id == UCLAMP_MIN &&
+ attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
+ attr->sched_util_min == -1) {
+ return true;
+ }
+
+ if (clamp_id == UCLAMP_MAX &&
+ attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
+ attr->sched_util_max == -1) {
+ return true;
+ }
+
+ return false;
+}
+
static void __setscheduler_uclamp(struct task_struct *p,
const struct sched_attr *attr)
{
enum uclamp_id clamp_id;
- /*
- * On scheduling class change, reset to default clamps for tasks
- * without a task-specific value.
- */
for_each_clamp_id(clamp_id) {
struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
+ unsigned int value;
- /* Keep using defined clamps across class changes */
- if (uc_se->user_defined)
+ if (!uclamp_reset(attr, clamp_id, uc_se))
continue;
/*
@@ -1459,21 +1479,25 @@ static void __setscheduler_uclamp(struct task_struct *p,
* at runtime.
*/
if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
- __uclamp_update_util_min_rt_default(p);
+ value = sysctl_sched_uclamp_util_min_rt_default;
else
- uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
+ value = uclamp_none(clamp_id);
+
+ uclamp_se_set(uc_se, value, false);
}
if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
return;
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
+ if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
+ attr->sched_util_min != -1) {
uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
attr->sched_util_min, true);
}
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
+ if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
+ attr->sched_util_max != -1) {
uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
attr->sched_util_max, true);
}
@@ -1696,6 +1720,76 @@ void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
#ifdef CONFIG_SMP
+static void
+__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
+
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask,
+ u32 flags);
+
+static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
+{
+ if (likely(!p->migration_disabled))
+ return;
+
+ if (p->cpus_ptr != &p->cpus_mask)
+ return;
+
+ /*
+ * Violates locking rules! see comment in __do_set_cpus_allowed().
+ */
+ __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
+}
+
+void migrate_disable(void)
+{
+ struct task_struct *p = current;
+
+ if (p->migration_disabled) {
+ p->migration_disabled++;
+ return;
+ }
+
+ preempt_disable();
+ this_rq()->nr_pinned++;
+ p->migration_disabled = 1;
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(migrate_disable);
+
+void migrate_enable(void)
+{
+ struct task_struct *p = current;
+
+ if (p->migration_disabled > 1) {
+ p->migration_disabled--;
+ return;
+ }
+
+ /*
+ * Ensure stop_task runs either before or after this, and that
+ * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
+ */
+ preempt_disable();
+ if (p->cpus_ptr != &p->cpus_mask)
+ __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
+ /*
+ * Mustn't clear migration_disabled() until cpus_ptr points back at the
+ * regular cpus_mask, otherwise things that race (eg.
+ * select_fallback_rq) get confused.
+ */
+ barrier();
+ p->migration_disabled = 0;
+ this_rq()->nr_pinned--;
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(migrate_enable);
+
+static inline bool rq_has_pinned_tasks(struct rq *rq)
+{
+ return rq->nr_pinned;
+}
+
/*
* Per-CPU kthreads are allowed to run on !active && online CPUs, see
* __set_cpus_allowed_ptr() and select_fallback_rq().
@@ -1705,7 +1799,7 @@ static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
return false;
- if (is_per_cpu_kthread(p))
+ if (is_per_cpu_kthread(p) || is_migration_disabled(p))
return cpu_online(cpu);
return cpu_active(cpu);
@@ -1750,8 +1844,16 @@ static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
}
struct migration_arg {
- struct task_struct *task;
- int dest_cpu;
+ struct task_struct *task;
+ int dest_cpu;
+ struct set_affinity_pending *pending;
+};
+
+struct set_affinity_pending {
+ refcount_t refs;
+ struct completion done;
+ struct cpu_stop_work stop_work;
+ struct migration_arg arg;
};
/*
@@ -1783,16 +1885,19 @@ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
*/
static int migration_cpu_stop(void *data)
{
+ struct set_affinity_pending *pending;
struct migration_arg *arg = data;
struct task_struct *p = arg->task;
+ int dest_cpu = arg->dest_cpu;
struct rq *rq = this_rq();
+ bool complete = false;
struct rq_flags rf;
/*
* The original target CPU might have gone down and we might
* be on another CPU but it doesn't matter.
*/
- local_irq_disable();
+ local_irq_save(rf.flags);
/*
* We need to explicitly wake pending tasks before running
* __migrate_task() such that we will not miss enforcing cpus_ptr
@@ -1802,21 +1907,137 @@ static int migration_cpu_stop(void *data)
raw_spin_lock(&p->pi_lock);
rq_lock(rq, &rf);
+
+ pending = p->migration_pending;
/*
* If task_rq(p) != rq, it cannot be migrated here, because we're
* holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
* we're holding p->pi_lock.
*/
if (task_rq(p) == rq) {
+ if (is_migration_disabled(p))
+ goto out;
+
+ if (pending) {
+ p->migration_pending = NULL;
+ complete = true;
+ }
+
+ /* migrate_enable() -- we must not race against SCA */
+ if (dest_cpu < 0) {
+ /*
+ * When this was migrate_enable() but we no longer
+ * have a @pending, a concurrent SCA 'fixed' things
+ * and we should be valid again. Nothing to do.
+ */
+ if (!pending) {
+ WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
+ goto out;
+ }
+
+ dest_cpu = cpumask_any_distribute(&p->cpus_mask);
+ }
+
if (task_on_rq_queued(p))
- rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
+ rq = __migrate_task(rq, &rf, p, dest_cpu);
else
- p->wake_cpu = arg->dest_cpu;
+ p->wake_cpu = dest_cpu;
+
+ } else if (dest_cpu < 0 || pending) {
+ /*
+ * This happens when we get migrated between migrate_enable()'s
+ * preempt_enable() and scheduling the stopper task. At that
+ * point we're a regular task again and not current anymore.
+ *
+ * A !PREEMPT kernel has a giant hole here, which makes it far
+ * more likely.
+ */
+
+ /*
+ * The task moved before the stopper got to run. We're holding
+ * ->pi_lock, so the allowed mask is stable - if it got
+ * somewhere allowed, we're done.
+ */
+ if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
+ p->migration_pending = NULL;
+ complete = true;
+ goto out;
+ }
+
+ /*
+ * When this was migrate_enable() but we no longer have an
+ * @pending, a concurrent SCA 'fixed' things and we should be
+ * valid again. Nothing to do.
+ */
+ if (!pending) {
+ WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
+ goto out;
+ }
+
+ /*
+ * When migrate_enable() hits a rq mis-match we can't reliably
+ * determine is_migration_disabled() and so have to chase after
+ * it.
+ */
+ task_rq_unlock(rq, p, &rf);
+ stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
+ &pending->arg, &pending->stop_work);
+ return 0;
}
- rq_unlock(rq, &rf);
- raw_spin_unlock(&p->pi_lock);
+out:
+ task_rq_unlock(rq, p, &rf);
+
+ if (complete)
+ complete_all(&pending->done);
+
+ /* For pending->{arg,stop_work} */
+ pending = arg->pending;
+ if (pending && refcount_dec_and_test(&pending->refs))
+ wake_up_var(&pending->refs);
- local_irq_enable();
+ return 0;
+}
+
+int push_cpu_stop(void *arg)
+{
+ struct rq *lowest_rq = NULL, *rq = this_rq();
+ struct task_struct *p = arg;
+
+ raw_spin_lock_irq(&p->pi_lock);
+ raw_spin_lock(&rq->lock);
+
+ if (task_rq(p) != rq)
+ goto out_unlock;
+
+ if (is_migration_disabled(p)) {
+ p->migration_flags |= MDF_PUSH;
+ goto out_unlock;
+ }
+
+ p->migration_flags &= ~MDF_PUSH;
+
+ if (p->sched_class->find_lock_rq)
+ lowest_rq = p->sched_class->find_lock_rq(p, rq);
+
+ if (!lowest_rq)
+ goto out_unlock;
+
+ // XXX validate p is still the highest prio task
+ if (task_rq(p) == rq) {
+ deactivate_task(rq, p, 0);
+ set_task_cpu(p, lowest_rq->cpu);
+ activate_task(lowest_rq, p, 0);
+ resched_curr(lowest_rq);
+ }
+
+ double_unlock_balance(rq, lowest_rq);
+
+out_unlock:
+ rq->push_busy = false;
+ raw_spin_unlock(&rq->lock);
+ raw_spin_unlock_irq(&p->pi_lock);
+
+ put_task_struct(p);
return 0;
}
@@ -1824,18 +2045,39 @@ static int migration_cpu_stop(void *data)
* sched_class::set_cpus_allowed must do the below, but is not required to
* actually call this function.
*/
-void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
{
+ if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
+ p->cpus_ptr = new_mask;
+ return;
+ }
+
cpumask_copy(&p->cpus_mask, new_mask);
p->nr_cpus_allowed = cpumask_weight(new_mask);
}
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+static void
+__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
{
struct rq *rq = task_rq(p);
bool queued, running;
- lockdep_assert_held(&p->pi_lock);
+ /*
+ * This here violates the locking rules for affinity, since we're only
+ * supposed to change these variables while holding both rq->lock and
+ * p->pi_lock.
+ *
+ * HOWEVER, it magically works, because ttwu() is the only code that
+ * accesses these variables under p->pi_lock and only does so after
+ * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
+ * before finish_task().
+ *
+ * XXX do further audits, this smells like something putrid.
+ */
+ if (flags & SCA_MIGRATE_DISABLE)
+ SCHED_WARN_ON(!p->on_cpu);
+ else
+ lockdep_assert_held(&p->pi_lock);
queued = task_on_rq_queued(p);
running = task_current(rq, p);
@@ -1851,7 +2093,7 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
if (running)
put_prev_task(rq, p);
- p->sched_class->set_cpus_allowed(p, new_mask);
+ p->sched_class->set_cpus_allowed(p, new_mask, flags);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
@@ -1859,6 +2101,208 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
set_next_task(rq, p);
}
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ __do_set_cpus_allowed(p, new_mask, 0);
+}
+
+/*
+ * This function is wildly self concurrent; here be dragons.
+ *
+ *
+ * When given a valid mask, __set_cpus_allowed_ptr() must block until the
+ * designated task is enqueued on an allowed CPU. If that task is currently
+ * running, we have to kick it out using the CPU stopper.
+ *
+ * Migrate-Disable comes along and tramples all over our nice sandcastle.
+ * Consider:
+ *
+ * Initial conditions: P0->cpus_mask = [0, 1]
+ *
+ * P0@CPU0 P1
+ *
+ * migrate_disable();
+ * <preempted>
+ * set_cpus_allowed_ptr(P0, [1]);
+ *
+ * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
+ * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
+ * This means we need the following scheme:
+ *
+ * P0@CPU0 P1
+ *
+ * migrate_disable();
+ * <preempted>
+ * set_cpus_allowed_ptr(P0, [1]);
+ * <blocks>
+ * <resumes>
+ * migrate_enable();
+ * __set_cpus_allowed_ptr();
+ * <wakes local stopper>
+ * `--> <woken on migration completion>
+ *
+ * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
+ * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
+ * task p are serialized by p->pi_lock, which we can leverage: the one that
+ * should come into effect at the end of the Migrate-Disable region is the last
+ * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
+ * but we still need to properly signal those waiting tasks at the appropriate
+ * moment.
+ *
+ * This is implemented using struct set_affinity_pending. The first
+ * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
+ * setup an instance of that struct and install it on the targeted task_struct.
+ * Any and all further callers will reuse that instance. Those then wait for
+ * a completion signaled at the tail of the CPU stopper callback (1), triggered
+ * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
+ *
+ *
+ * (1) In the cases covered above. There is one more where the completion is
+ * signaled within affine_move_task() itself: when a subsequent affinity request
+ * cancels the need for an active migration. Consider:
+ *
+ * Initial conditions: P0->cpus_mask = [0, 1]
+ *
+ * P0@CPU0 P1 P2
+ *
+ * migrate_disable();
+ * <preempted>
+ * set_cpus_allowed_ptr(P0, [1]);
+ * <blocks>
+ * set_cpus_allowed_ptr(P0, [0, 1]);
+ * <signal completion>
+ * <awakes>
+ *
+ * Note that the above is safe vs a concurrent migrate_enable(), as any
+ * pending affinity completion is preceded by an uninstallation of
+ * p->migration_pending done with p->pi_lock held.
+ */
+static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
+ int dest_cpu, unsigned int flags)
+{
+ struct set_affinity_pending my_pending = { }, *pending = NULL;
+ struct migration_arg arg = {
+ .task = p,
+ .dest_cpu = dest_cpu,
+ };
+ bool complete = false;
+
+ /* Can the task run on the task's current CPU? If so, we're done */
+ if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
+ struct task_struct *push_task = NULL;
+
+ if ((flags & SCA_MIGRATE_ENABLE) &&
+ (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
+ rq->push_busy = true;
+ push_task = get_task_struct(p);
+ }
+
+ pending = p->migration_pending;
+ if (pending) {
+ refcount_inc(&pending->refs);
+ p->migration_pending = NULL;
+ complete = true;
+ }
+ task_rq_unlock(rq, p, rf);
+
+ if (push_task) {
+ stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
+ p, &rq->push_work);
+ }
+
+ if (complete)
+ goto do_complete;
+
+ return 0;
+ }
+
+ if (!(flags & SCA_MIGRATE_ENABLE)) {
+ /* serialized by p->pi_lock */
+ if (!p->migration_pending) {
+ /* Install the request */
+ refcount_set(&my_pending.refs, 1);
+ init_completion(&my_pending.done);
+ p->migration_pending = &my_pending;
+ } else {
+ pending = p->migration_pending;
+ refcount_inc(&pending->refs);
+ }
+ }
+ pending = p->migration_pending;
+ /*
+ * - !MIGRATE_ENABLE:
+ * we'll have installed a pending if there wasn't one already.
+ *
+ * - MIGRATE_ENABLE:
+ * we're here because the current CPU isn't matching anymore,
+ * the only way that can happen is because of a concurrent
+ * set_cpus_allowed_ptr() call, which should then still be
+ * pending completion.
+ *
+ * Either way, we really should have a @pending here.
+ */
+ if (WARN_ON_ONCE(!pending)) {
+ task_rq_unlock(rq, p, rf);
+ return -EINVAL;
+ }
+
+ if (flags & SCA_MIGRATE_ENABLE) {
+
+ refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
+ p->migration_flags &= ~MDF_PUSH;
+ task_rq_unlock(rq, p, rf);
+
+ pending->arg = (struct migration_arg) {
+ .task = p,
+ .dest_cpu = -1,
+ .pending = pending,
+ };
+
+ stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
+ &pending->arg, &pending->stop_work);
+
+ return 0;
+ }
+
+ if (task_running(rq, p) || p->state == TASK_WAKING) {
+ /*
+ * Lessen races (and headaches) by delegating
+ * is_migration_disabled(p) checks to the stopper, which will
+ * run on the same CPU as said p.
+ */
+ task_rq_unlock(rq, p, rf);
+ stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
+
+ } else {
+
+ if (!is_migration_disabled(p)) {
+ if (task_on_rq_queued(p))
+ rq = move_queued_task(rq, rf, p, dest_cpu);
+
+ p->migration_pending = NULL;
+ complete = true;
+ }
+ task_rq_unlock(rq, p, rf);
+
+do_complete:
+ if (complete)
+ complete_all(&pending->done);
+ }
+
+ wait_for_completion(&pending->done);
+
+ if (refcount_dec_and_test(&pending->refs))
+ wake_up_var(&pending->refs);
+
+ /*
+ * Block the original owner of &pending until all subsequent callers
+ * have seen the completion and decremented the refcount
+ */
+ wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
+
+ return 0;
+}
+
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
@@ -1869,7 +2313,8 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
* call is not atomic; no spinlocks may be held.
*/
static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
+ const struct cpumask *new_mask,
+ u32 flags)
{
const struct cpumask *cpu_valid_mask = cpu_active_mask;
unsigned int dest_cpu;
@@ -1880,9 +2325,14 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
rq = task_rq_lock(p, &rf);
update_rq_clock(rq);
- if (p->flags & PF_KTHREAD) {
+ if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
/*
- * Kernel threads are allowed on online && !active CPUs
+ * Kernel threads are allowed on online && !active CPUs.
+ *
+ * Specifically, migration_disabled() tasks must not fail the
+ * cpumask_any_and_distribute() pick below, esp. so on
+ * SCA_MIGRATE_ENABLE, otherwise we'll not call
+ * set_cpus_allowed_common() and actually reset p->cpus_ptr.
*/
cpu_valid_mask = cpu_online_mask;
}
@@ -1891,13 +2341,22 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
* Must re-check here, to close a race against __kthread_bind(),
* sched_setaffinity() is not guaranteed to observe the flag.
*/
- if (check && (p->flags & PF_NO_SETAFFINITY)) {
+ if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
goto out;
}
- if (cpumask_equal(&p->cpus_mask, new_mask))
- goto out;
+ if (!(flags & SCA_MIGRATE_ENABLE)) {
+ if (cpumask_equal(&p->cpus_mask, new_mask))
+ goto out;
+
+ if (WARN_ON_ONCE(p == current &&
+ is_migration_disabled(p) &&
+ !cpumask_test_cpu(task_cpu(p), new_mask))) {
+ ret = -EBUSY;
+ goto out;
+ }
+ }
/*
* Picking a ~random cpu helps in cases where we are changing affinity
@@ -1910,7 +2369,7 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
goto out;
}
- do_set_cpus_allowed(p, new_mask);
+ __do_set_cpus_allowed(p, new_mask, flags);
if (p->flags & PF_KTHREAD) {
/*
@@ -1922,23 +2381,8 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
p->nr_cpus_allowed != 1);
}
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpumask_test_cpu(task_cpu(p), new_mask))
- goto out;
+ return affine_move_task(rq, p, &rf, dest_cpu, flags);
- if (task_running(rq, p) || p->state == TASK_WAKING) {
- struct migration_arg arg = { p, dest_cpu };
- /* Need help from migration thread: drop lock and wait. */
- task_rq_unlock(rq, p, &rf);
- stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
- return 0;
- } else if (task_on_rq_queued(p)) {
- /*
- * OK, since we're going to drop the lock immediately
- * afterwards anyway.
- */
- rq = move_queued_task(rq, &rf, p, dest_cpu);
- }
out:
task_rq_unlock(rq, p, &rf);
@@ -1947,7 +2391,7 @@ out:
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
- return __set_cpus_allowed_ptr(p, new_mask, false);
+ return __set_cpus_allowed_ptr(p, new_mask, 0);
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
@@ -1988,6 +2432,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
* Clearly, migrating tasks to offline CPUs is a fairly daft thing.
*/
WARN_ON_ONCE(!cpu_online(new_cpu));
+
+ WARN_ON_ONCE(is_migration_disabled(p));
#endif
trace_sched_migrate_task(p, new_cpu);
@@ -2318,6 +2764,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
}
fallthrough;
case possible:
+ /*
+ * XXX When called from select_task_rq() we only
+ * hold p->pi_lock and again violate locking order.
+ *
+ * More yuck to audit.
+ */
do_set_cpus_allowed(p, cpu_possible_mask);
state = fail;
break;
@@ -2348,12 +2800,12 @@ out:
* The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
*/
static inline
-int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
+int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
{
lockdep_assert_held(&p->pi_lock);
- if (p->nr_cpus_allowed > 1)
- cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
+ if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
+ cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
else
cpu = cpumask_any(p->cpus_ptr);
@@ -2375,6 +2827,7 @@ int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
+ static struct lock_class_key stop_pi_lock;
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
struct task_struct *old_stop = cpu_rq(cpu)->stop;
@@ -2390,6 +2843,20 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)
sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
stop->sched_class = &stop_sched_class;
+
+ /*
+ * The PI code calls rt_mutex_setprio() with ->pi_lock held to
+ * adjust the effective priority of a task. As a result,
+ * rt_mutex_setprio() can trigger (RT) balancing operations,
+ * which can then trigger wakeups of the stop thread to push
+ * around the current task.
+ *
+ * The stop task itself will never be part of the PI-chain, it
+ * never blocks, therefore that ->pi_lock recursion is safe.
+ * Tell lockdep about this by placing the stop->pi_lock in its
+ * own class.
+ */
+ lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
}
cpu_rq(cpu)->stop = stop;
@@ -2403,15 +2870,23 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)
}
}
-#else
+#else /* CONFIG_SMP */
static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask, bool check)
+ const struct cpumask *new_mask,
+ u32 flags)
{
return set_cpus_allowed_ptr(p, new_mask);
}
-#endif /* CONFIG_SMP */
+static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
+
+static inline bool rq_has_pinned_tasks(struct rq *rq)
+{
+ return false;
+}
+
+#endif /* !CONFIG_SMP */
static void
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
@@ -2465,7 +2940,7 @@ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
- * Our task @p is fully woken up and running; so its safe to
+ * Our task @p is fully woken up and running; so it's safe to
* drop the rq->lock, hereafter rq is only used for statistics.
*/
rq_unpin_lock(rq, rf);
@@ -2952,7 +3427,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
/*
* If the owning (remote) CPU is still in the middle of schedule() with
- * this task as prev, wait until its done referencing the task.
+ * this task as prev, wait until it's done referencing the task.
*
* Pairs with the smp_store_release() in finish_task().
*
@@ -2961,7 +3436,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
*/
smp_cond_load_acquire(&p->on_cpu, !VAL);
- cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
+ cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
if (task_cpu(p) != cpu) {
if (p->in_iowait) {
delayacct_blkio_end(p);
@@ -3103,6 +3578,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
init_numa_balancing(clone_flags, p);
#ifdef CONFIG_SMP
p->wake_entry.u_flags = CSD_TYPE_TTWU;
+ p->migration_pending = NULL;
#endif
}
@@ -3349,7 +3825,7 @@ void wake_up_new_task(struct task_struct *p)
*/
p->recent_used_cpu = task_cpu(p);
rseq_migrate(p);
- __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
+ __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
#endif
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
@@ -3361,7 +3837,7 @@ void wake_up_new_task(struct task_struct *p)
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
- * Nothing relies on rq->lock after this, so its fine to
+ * Nothing relies on rq->lock after this, so it's fine to
* drop it.
*/
rq_unpin_lock(rq, &rf);
@@ -3490,6 +3966,90 @@ static inline void finish_task(struct task_struct *prev)
#endif
}
+#ifdef CONFIG_SMP
+
+static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
+{
+ void (*func)(struct rq *rq);
+ struct callback_head *next;
+
+ lockdep_assert_held(&rq->lock);
+
+ while (head) {
+ func = (void (*)(struct rq *))head->func;
+ next = head->next;
+ head->next = NULL;
+ head = next;
+
+ func(rq);
+ }
+}
+
+static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
+{
+ struct callback_head *head = rq->balance_callback;
+
+ lockdep_assert_held(&rq->lock);
+ if (head) {
+ rq->balance_callback = NULL;
+ rq->balance_flags &= ~BALANCE_WORK;
+ }
+
+ return head;
+}
+
+static void __balance_callbacks(struct rq *rq)
+{
+ do_balance_callbacks(rq, splice_balance_callbacks(rq));
+}
+
+static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
+{
+ unsigned long flags;
+
+ if (unlikely(head)) {
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ do_balance_callbacks(rq, head);
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
+ }
+}
+
+static void balance_push(struct rq *rq);
+
+static inline void balance_switch(struct rq *rq)
+{
+ if (likely(!rq->balance_flags))
+ return;
+
+ if (rq->balance_flags & BALANCE_PUSH) {
+ balance_push(rq);
+ return;
+ }
+
+ __balance_callbacks(rq);
+}
+
+#else
+
+static inline void __balance_callbacks(struct rq *rq)
+{
+}
+
+static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
+{
+ return NULL;
+}
+
+static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
+{
+}
+
+static inline void balance_switch(struct rq *rq)
+{
+}
+
+#endif
+
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
{
@@ -3515,6 +4075,7 @@ static inline void finish_lock_switch(struct rq *rq)
* prev into current:
*/
spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+ balance_switch(rq);
raw_spin_unlock_irq(&rq->lock);
}
@@ -3656,43 +4217,6 @@ static struct rq *finish_task_switch(struct task_struct *prev)
return rq;
}
-#ifdef CONFIG_SMP
-
-/* rq->lock is NOT held, but preemption is disabled */
-static void __balance_callback(struct rq *rq)
-{
- struct callback_head *head, *next;
- void (*func)(struct rq *rq);
- unsigned long flags;
-
- raw_spin_lock_irqsave(&rq->lock, flags);
- head = rq->balance_callback;
- rq->balance_callback = NULL;
- while (head) {
- func = (void (*)(struct rq *))head->func;
- next = head->next;
- head->next = NULL;
- head = next;
-
- func(rq);
- }
- raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-static inline void balance_callback(struct rq *rq)
-{
- if (unlikely(rq->balance_callback))
- __balance_callback(rq);
-}
-
-#else
-
-static inline void balance_callback(struct rq *rq)
-{
-}
-
-#endif
-
/**
* schedule_tail - first thing a freshly forked thread must call.
* @prev: the thread we just switched away from.
@@ -3712,7 +4236,6 @@ asmlinkage __visible void schedule_tail(struct task_struct *prev)
*/
rq = finish_task_switch(prev);
- balance_callback(rq);
preempt_enable();
if (current->set_child_tid)
@@ -3841,7 +4364,7 @@ unsigned long nr_iowait_cpu(int cpu)
}
/*
- * IO-wait accounting, and how its mostly bollocks (on SMP).
+ * IO-wait accounting, and how it's mostly bollocks (on SMP).
*
* The idea behind IO-wait account is to account the idle time that we could
* have spend running if it were not for IO. That is, if we were to improve the
@@ -3893,7 +4416,7 @@ void sched_exec(void)
int dest_cpu;
raw_spin_lock_irqsave(&p->pi_lock, flags);
- dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
+ dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
if (dest_cpu == smp_processor_id())
goto unlock;
@@ -4337,7 +4860,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/*
* Optimization: we know that if all tasks are in the fair class we can
* call that function directly, but only if the @prev task wasn't of a
- * higher scheduling class, because otherwise those loose the
+ * higher scheduling class, because otherwise those lose the
* opportunity to pull in more work from other CPUs.
*/
if (likely(prev->sched_class <= &fair_sched_class &&
@@ -4521,6 +5044,7 @@ static void __sched notrace __schedule(bool preempt)
*/
++*switch_count;
+ migrate_disable_switch(rq, prev);
psi_sched_switch(prev, next, !task_on_rq_queued(prev));
trace_sched_switch(preempt, prev, next);
@@ -4529,10 +5053,11 @@ static void __sched notrace __schedule(bool preempt)
rq = context_switch(rq, prev, next, &rf);
} else {
rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
- rq_unlock_irq(rq, &rf);
- }
- balance_callback(rq);
+ rq_unpin_lock(rq, &rf);
+ __balance_callbacks(rq);
+ raw_spin_unlock_irq(&rq->lock);
+ }
}
void __noreturn do_task_dead(void)
@@ -4858,7 +5383,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
* right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
* ensure a task is de-boosted (pi_task is set to NULL) before the
* task is allowed to run again (and can exit). This ensures the pointer
- * points to a blocked task -- which guaratees the task is present.
+ * points to a blocked task -- which guarantees the task is present.
*/
p->pi_top_task = pi_task;
@@ -4944,9 +5469,11 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
out_unlock:
/* Avoid rq from going away on us: */
preempt_disable();
- __task_rq_unlock(rq, &rf);
- balance_callback(rq);
+ rq_unpin_lock(rq, &rf);
+ __balance_callbacks(rq);
+ raw_spin_unlock(&rq->lock);
+
preempt_enable();
}
#else
@@ -4975,7 +5502,7 @@ void set_user_nice(struct task_struct *p, long nice)
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
+ * it won't have any effect on scheduling until the task is
* SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
*/
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
@@ -5220,6 +5747,7 @@ static int __sched_setscheduler(struct task_struct *p,
int retval, oldprio, oldpolicy = -1, queued, running;
int new_effective_prio, policy = attr->sched_policy;
const struct sched_class *prev_class;
+ struct callback_head *head;
struct rq_flags rf;
int reset_on_fork;
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
@@ -5458,6 +5986,7 @@ change:
/* Avoid rq from going away on us: */
preempt_disable();
+ head = splice_balance_callbacks(rq);
task_rq_unlock(rq, p, &rf);
if (pi) {
@@ -5466,7 +5995,7 @@ change:
}
/* Run balance callbacks after we've adjusted the PI chain: */
- balance_callback(rq);
+ balance_callbacks(rq, head);
preempt_enable();
return 0;
@@ -5961,7 +6490,7 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
}
#endif
again:
- retval = __set_cpus_allowed_ptr(p, new_mask, true);
+ retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
if (!retval) {
cpuset_cpus_allowed(p, cpus_allowed);
@@ -6083,14 +6612,6 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
return ret;
}
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- *
- * Return: 0.
- */
static void do_sched_yield(void)
{
struct rq_flags rf;
@@ -6101,17 +6622,21 @@ static void do_sched_yield(void)
schedstat_inc(rq->yld_count);
current->sched_class->yield_task(rq);
- /*
- * Since we are going to call schedule() anyway, there's
- * no need to preempt or enable interrupts:
- */
preempt_disable();
- rq_unlock(rq, &rf);
+ rq_unlock_irq(rq, &rf);
sched_preempt_enable_no_resched();
schedule();
}
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * This function yields the current CPU to other tasks. If there are no
+ * other threads running on this CPU then this function will return.
+ *
+ * Return: 0.
+ */
SYSCALL_DEFINE0(sched_yield)
{
do_sched_yield();
@@ -6166,7 +6691,7 @@ EXPORT_SYMBOL(__cond_resched_lock);
*
* The scheduler is at all times free to pick the calling task as the most
* eligible task to run, if removing the yield() call from your code breaks
- * it, its already broken.
+ * it, it's already broken.
*
* Typical broken usage is:
*
@@ -6454,6 +6979,7 @@ void sched_show_task(struct task_struct *p)
(unsigned long)task_thread_info(p)->flags);
print_worker_info(KERN_INFO, p);
+ print_stop_info(KERN_INFO, p);
show_stack(p, NULL, KERN_INFO);
put_task_stack(p);
}
@@ -6539,12 +7065,12 @@ void init_idle(struct task_struct *idle, int cpu)
#ifdef CONFIG_SMP
/*
- * Its possible that init_idle() gets called multiple times on a task,
+ * It's possible that init_idle() gets called multiple times on a task,
* in that case do_set_cpus_allowed() will not do the right thing.
*
* And since this is boot we can forgo the serialization.
*/
- set_cpus_allowed_common(idle, cpumask_of(cpu));
+ set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
#endif
/*
* We're having a chicken and egg problem, even though we are
@@ -6695,119 +7221,126 @@ void idle_task_exit(void)
/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
}
-/*
- * Since this CPU is going 'away' for a while, fold any nr_active delta
- * we might have. Assumes we're called after migrate_tasks() so that the
- * nr_active count is stable. We need to take the teardown thread which
- * is calling this into account, so we hand in adjust = 1 to the load
- * calculation.
- *
- * Also see the comment "Global load-average calculations".
- */
-static void calc_load_migrate(struct rq *rq)
+static int __balance_push_cpu_stop(void *arg)
{
- long delta = calc_load_fold_active(rq, 1);
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
-}
+ struct task_struct *p = arg;
+ struct rq *rq = this_rq();
+ struct rq_flags rf;
+ int cpu;
-static struct task_struct *__pick_migrate_task(struct rq *rq)
-{
- const struct sched_class *class;
- struct task_struct *next;
+ raw_spin_lock_irq(&p->pi_lock);
+ rq_lock(rq, &rf);
- for_each_class(class) {
- next = class->pick_next_task(rq);
- if (next) {
- next->sched_class->put_prev_task(rq, next);
- return next;
- }
+ update_rq_clock(rq);
+
+ if (task_rq(p) == rq && task_on_rq_queued(p)) {
+ cpu = select_fallback_rq(rq->cpu, p);
+ rq = __migrate_task(rq, &rf, p, cpu);
}
- /* The idle class should always have a runnable task */
- BUG();
+ rq_unlock(rq, &rf);
+ raw_spin_unlock_irq(&p->pi_lock);
+
+ put_task_struct(p);
+
+ return 0;
}
+static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
+
/*
- * Migrate all tasks from the rq, sleeping tasks will be migrated by
- * try_to_wake_up()->select_task_rq().
- *
- * Called with rq->lock held even though we'er in stop_machine() and
- * there's no concurrency possible, we hold the required locks anyway
- * because of lock validation efforts.
+ * Ensure we only run per-cpu kthreads once the CPU goes !active.
*/
-static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
+static void balance_push(struct rq *rq)
{
- struct rq *rq = dead_rq;
- struct task_struct *next, *stop = rq->stop;
- struct rq_flags orf = *rf;
- int dest_cpu;
+ struct task_struct *push_task = rq->curr;
+
+ lockdep_assert_held(&rq->lock);
+ SCHED_WARN_ON(rq->cpu != smp_processor_id());
/*
- * Fudge the rq selection such that the below task selection loop
- * doesn't get stuck on the currently eligible stop task.
- *
- * We're currently inside stop_machine() and the rq is either stuck
- * in the stop_machine_cpu_stop() loop, or we're executing this code,
- * either way we should never end up calling schedule() until we're
- * done here.
+ * Both the cpu-hotplug and stop task are in this case and are
+ * required to complete the hotplug process.
*/
- rq->stop = NULL;
+ if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
+ /*
+ * If this is the idle task on the outgoing CPU try to wake
+ * up the hotplug control thread which might wait for the
+ * last task to vanish. The rcuwait_active() check is
+ * accurate here because the waiter is pinned on this CPU
+ * and can't obviously be running in parallel.
+ *
+ * On RT kernels this also has to check whether there are
+ * pinned and scheduled out tasks on the runqueue. They
+ * need to leave the migrate disabled section first.
+ */
+ if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
+ rcuwait_active(&rq->hotplug_wait)) {
+ raw_spin_unlock(&rq->lock);
+ rcuwait_wake_up(&rq->hotplug_wait);
+ raw_spin_lock(&rq->lock);
+ }
+ return;
+ }
+ get_task_struct(push_task);
/*
- * put_prev_task() and pick_next_task() sched
- * class method both need to have an up-to-date
- * value of rq->clock[_task]
+ * Temporarily drop rq->lock such that we can wake-up the stop task.
+ * Both preemption and IRQs are still disabled.
*/
- update_rq_clock(rq);
+ raw_spin_unlock(&rq->lock);
+ stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
+ this_cpu_ptr(&push_work));
+ /*
+ * At this point need_resched() is true and we'll take the loop in
+ * schedule(). The next pick is obviously going to be the stop task
+ * which is_per_cpu_kthread() and will push this task away.
+ */
+ raw_spin_lock(&rq->lock);
+}
- for (;;) {
- /*
- * There's this thread running, bail when that's the only
- * remaining thread:
- */
- if (rq->nr_running == 1)
- break;
+static void balance_push_set(int cpu, bool on)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
- next = __pick_migrate_task(rq);
+ rq_lock_irqsave(rq, &rf);
+ if (on)
+ rq->balance_flags |= BALANCE_PUSH;
+ else
+ rq->balance_flags &= ~BALANCE_PUSH;
+ rq_unlock_irqrestore(rq, &rf);
+}
- /*
- * Rules for changing task_struct::cpus_mask are holding
- * both pi_lock and rq->lock, such that holding either
- * stabilizes the mask.
- *
- * Drop rq->lock is not quite as disastrous as it usually is
- * because !cpu_active at this point, which means load-balance
- * will not interfere. Also, stop-machine.
- */
- rq_unlock(rq, rf);
- raw_spin_lock(&next->pi_lock);
- rq_relock(rq, rf);
+/*
+ * Invoked from a CPUs hotplug control thread after the CPU has been marked
+ * inactive. All tasks which are not per CPU kernel threads are either
+ * pushed off this CPU now via balance_push() or placed on a different CPU
+ * during wakeup. Wait until the CPU is quiescent.
+ */
+static void balance_hotplug_wait(void)
+{
+ struct rq *rq = this_rq();
- /*
- * Since we're inside stop-machine, _nothing_ should have
- * changed the task, WARN if weird stuff happened, because in
- * that case the above rq->lock drop is a fail too.
- */
- if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
- raw_spin_unlock(&next->pi_lock);
- continue;
- }
+ rcuwait_wait_event(&rq->hotplug_wait,
+ rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
+ TASK_UNINTERRUPTIBLE);
+}
- /* Find suitable destination for @next, with force if needed. */
- dest_cpu = select_fallback_rq(dead_rq->cpu, next);
- rq = __migrate_task(rq, rf, next, dest_cpu);
- if (rq != dead_rq) {
- rq_unlock(rq, rf);
- rq = dead_rq;
- *rf = orf;
- rq_relock(rq, rf);
- }
- raw_spin_unlock(&next->pi_lock);
- }
+#else
+
+static inline void balance_push(struct rq *rq)
+{
+}
- rq->stop = stop;
+static inline void balance_push_set(int cpu, bool on)
+{
+}
+
+static inline void balance_hotplug_wait(void)
+{
}
+
#endif /* CONFIG_HOTPLUG_CPU */
void set_rq_online(struct rq *rq)
@@ -6893,6 +7426,8 @@ int sched_cpu_activate(unsigned int cpu)
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
+ balance_push_set(cpu, false);
+
#ifdef CONFIG_SCHED_SMT
/*
* When going up, increment the number of cores with SMT present.
@@ -6928,6 +7463,8 @@ int sched_cpu_activate(unsigned int cpu)
int sched_cpu_deactivate(unsigned int cpu)
{
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
int ret;
set_cpu_active(cpu, false);
@@ -6940,6 +7477,16 @@ int sched_cpu_deactivate(unsigned int cpu)
*/
synchronize_rcu();
+ balance_push_set(cpu, true);
+
+ rq_lock_irqsave(rq, &rf);
+ if (rq->rd) {
+ update_rq_clock(rq);
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_offline(rq);
+ }
+ rq_unlock_irqrestore(rq, &rf);
+
#ifdef CONFIG_SCHED_SMT
/*
* When going down, decrement the number of cores with SMT present.
@@ -6953,6 +7500,7 @@ int sched_cpu_deactivate(unsigned int cpu)
ret = cpuset_cpu_inactive(cpu);
if (ret) {
+ balance_push_set(cpu, false);
set_cpu_active(cpu, true);
return ret;
}
@@ -6976,6 +7524,41 @@ int sched_cpu_starting(unsigned int cpu)
}
#ifdef CONFIG_HOTPLUG_CPU
+
+/*
+ * Invoked immediately before the stopper thread is invoked to bring the
+ * CPU down completely. At this point all per CPU kthreads except the
+ * hotplug thread (current) and the stopper thread (inactive) have been
+ * either parked or have been unbound from the outgoing CPU. Ensure that
+ * any of those which might be on the way out are gone.
+ *
+ * If after this point a bound task is being woken on this CPU then the
+ * responsible hotplug callback has failed to do it's job.
+ * sched_cpu_dying() will catch it with the appropriate fireworks.
+ */
+int sched_cpu_wait_empty(unsigned int cpu)
+{
+ balance_hotplug_wait();
+ return 0;
+}
+
+/*
+ * Since this CPU is going 'away' for a while, fold any nr_active delta we
+ * might have. Called from the CPU stopper task after ensuring that the
+ * stopper is the last running task on the CPU, so nr_active count is
+ * stable. We need to take the teardown thread which is calling this into
+ * account, so we hand in adjust = 1 to the load calculation.
+ *
+ * Also see the comment "Global load-average calculations".
+ */
+static void calc_load_migrate(struct rq *rq)
+{
+ long delta = calc_load_fold_active(rq, 1);
+
+ if (delta)
+ atomic_long_add(delta, &calc_load_tasks);
+}
+
int sched_cpu_dying(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
@@ -6985,12 +7568,7 @@ int sched_cpu_dying(unsigned int cpu)
sched_tick_stop(cpu);
rq_lock_irqsave(rq, &rf);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- migrate_tasks(rq, &rf);
- BUG_ON(rq->nr_running != 1);
+ BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
rq_unlock_irqrestore(rq, &rf);
calc_load_migrate(rq);
@@ -7195,7 +7773,10 @@ void __init sched_init(void)
rq->last_blocked_load_update_tick = jiffies;
atomic_set(&rq->nohz_flags, 0);
- rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
+ INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
+#endif
+#ifdef CONFIG_HOTPLUG_CPU
+ rcuwait_init(&rq->hotplug_wait);
#endif
#endif /* CONFIG_SMP */
hrtick_rq_init(rq);
@@ -7334,6 +7915,39 @@ void __cant_sleep(const char *file, int line, int preempt_offset)
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL_GPL(__cant_sleep);
+
+#ifdef CONFIG_SMP
+void __cant_migrate(const char *file, int line)
+{
+ static unsigned long prev_jiffy;
+
+ if (irqs_disabled())
+ return;
+
+ if (is_migration_disabled(current))
+ return;
+
+ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
+ return;
+
+ if (preempt_count() > 0)
+ return;
+
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+ return;
+ prev_jiffy = jiffies;
+
+ pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
+ pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
+ in_atomic(), irqs_disabled(), is_migration_disabled(current),
+ current->pid, current->comm);
+
+ debug_show_held_locks(current);
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+EXPORT_SYMBOL_GPL(__cant_migrate);
+#endif
#endif
#ifdef CONFIG_MAGIC_SYSRQ
@@ -7667,7 +8281,7 @@ static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
return -EINVAL;
#endif
/*
- * Serialize against wake_up_new_task() such that if its
+ * Serialize against wake_up_new_task() such that if it's
* running, we're sure to observe its full state.
*/
raw_spin_lock_irq(&task->pi_lock);
diff --git a/kernel/sched/cpudeadline.c b/kernel/sched/cpudeadline.c
index 8cb06c8c7eb1..ceb03d76c0cc 100644
--- a/kernel/sched/cpudeadline.c
+++ b/kernel/sched/cpudeadline.c
@@ -120,7 +120,7 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
const struct sched_dl_entity *dl_se = &p->dl;
if (later_mask &&
- cpumask_and(later_mask, cp->free_cpus, p->cpus_ptr)) {
+ cpumask_and(later_mask, cp->free_cpus, &p->cpus_mask)) {
unsigned long cap, max_cap = 0;
int cpu, max_cpu = -1;
@@ -151,7 +151,7 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
WARN_ON(best_cpu != -1 && !cpu_present(best_cpu));
- if (cpumask_test_cpu(best_cpu, p->cpus_ptr) &&
+ if (cpumask_test_cpu(best_cpu, &p->cpus_mask) &&
dl_time_before(dl_se->deadline, cp->elements[0].dl)) {
if (later_mask)
cpumask_set_cpu(best_cpu, later_mask);
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 97d318b0cd0c..d90cad7a374f 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -899,16 +899,9 @@ struct cpufreq_governor *cpufreq_default_governor(void)
cpufreq_governor_init(schedutil_gov);
#ifdef CONFIG_ENERGY_MODEL
-extern bool sched_energy_update;
-extern struct mutex sched_energy_mutex;
-
static void rebuild_sd_workfn(struct work_struct *work)
{
- mutex_lock(&sched_energy_mutex);
- sched_energy_update = true;
- rebuild_sched_domains();
- sched_energy_update = false;
- mutex_unlock(&sched_energy_mutex);
+ rebuild_sched_domains_energy();
}
static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
index 0033731a0797..ec9be789c7e2 100644
--- a/kernel/sched/cpupri.c
+++ b/kernel/sched/cpupri.c
@@ -11,7 +11,7 @@
* This code tracks the priority of each CPU so that global migration
* decisions are easy to calculate. Each CPU can be in a state as follows:
*
- * (INVALID), IDLE, NORMAL, RT1, ... RT99
+ * (INVALID), NORMAL, RT1, ... RT99, HIGHER
*
* going from the lowest priority to the highest. CPUs in the INVALID state
* are not eligible for routing. The system maintains this state with
@@ -19,24 +19,48 @@
* in that class). Therefore a typical application without affinity
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
* searches). For tasks with affinity restrictions, the algorithm has a
- * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
+ * worst case complexity of O(min(101, nr_domcpus)), though the scenario that
* yields the worst case search is fairly contrived.
*/
#include "sched.h"
-/* Convert between a 140 based task->prio, and our 102 based cpupri */
+/*
+ * p->rt_priority p->prio newpri cpupri
+ *
+ * -1 -1 (CPUPRI_INVALID)
+ *
+ * 99 0 (CPUPRI_NORMAL)
+ *
+ * 1 98 98 1
+ * ...
+ * 49 50 50 49
+ * 50 49 49 50
+ * ...
+ * 99 0 0 99
+ *
+ * 100 100 (CPUPRI_HIGHER)
+ */
static int convert_prio(int prio)
{
int cpupri;
- if (prio == CPUPRI_INVALID)
- cpupri = CPUPRI_INVALID;
- else if (prio == MAX_PRIO)
- cpupri = CPUPRI_IDLE;
- else if (prio >= MAX_RT_PRIO)
- cpupri = CPUPRI_NORMAL;
- else
- cpupri = MAX_RT_PRIO - prio + 1;
+ switch (prio) {
+ case CPUPRI_INVALID:
+ cpupri = CPUPRI_INVALID; /* -1 */
+ break;
+
+ case 0 ... 98:
+ cpupri = MAX_RT_PRIO-1 - prio; /* 1 ... 99 */
+ break;
+
+ case MAX_RT_PRIO-1:
+ cpupri = CPUPRI_NORMAL; /* 0 */
+ break;
+
+ case MAX_RT_PRIO:
+ cpupri = CPUPRI_HIGHER; /* 100 */
+ break;
+ }
return cpupri;
}
@@ -73,11 +97,11 @@ static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
if (skip)
return 0;
- if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
+ if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
return 0;
if (lowest_mask) {
- cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
+ cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
/*
* We have to ensure that we have at least one bit
@@ -177,7 +201,7 @@ int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
* cpupri_set - update the CPU priority setting
* @cp: The cpupri context
* @cpu: The target CPU
- * @newpri: The priority (INVALID-RT99) to assign to this CPU
+ * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
*
* Note: Assumes cpu_rq(cpu)->lock is locked
*
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
index efbb492bb94c..d6cba0020064 100644
--- a/kernel/sched/cpupri.h
+++ b/kernel/sched/cpupri.h
@@ -1,11 +1,11 @@
/* SPDX-License-Identifier: GPL-2.0 */
-#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO + 2)
+#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO+1)
#define CPUPRI_INVALID -1
-#define CPUPRI_IDLE 0
-#define CPUPRI_NORMAL 1
-/* values 2-101 are RT priorities 0-99 */
+#define CPUPRI_NORMAL 0
+/* values 1-99 are for RT1-RT99 priorities */
+#define CPUPRI_HIGHER 100
struct cpupri_vec {
atomic_t count;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 1d3c97268ec0..75686c6d4436 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -119,6 +119,17 @@ static inline unsigned long dl_bw_capacity(int i)
return __dl_bw_capacity(i);
}
}
+
+static inline bool dl_bw_visited(int cpu, u64 gen)
+{
+ struct root_domain *rd = cpu_rq(cpu)->rd;
+
+ if (rd->visit_gen == gen)
+ return true;
+
+ rd->visit_gen = gen;
+ return false;
+}
#else
static inline struct dl_bw *dl_bw_of(int i)
{
@@ -134,6 +145,11 @@ static inline unsigned long dl_bw_capacity(int i)
{
return SCHED_CAPACITY_SCALE;
}
+
+static inline bool dl_bw_visited(int cpu, u64 gen)
+{
+ return false;
+}
#endif
static inline
@@ -565,7 +581,7 @@ static int push_dl_task(struct rq *rq);
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
- return dl_task(prev);
+ return rq->online && dl_task(prev);
}
static DEFINE_PER_CPU(struct callback_head, dl_push_head);
@@ -1397,6 +1413,8 @@ static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
if (dl_rq->earliest_dl.curr == 0 ||
dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
+ if (dl_rq->earliest_dl.curr == 0)
+ cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
dl_rq->earliest_dl.curr = deadline;
cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
}
@@ -1414,6 +1432,7 @@ static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
dl_rq->earliest_dl.curr = 0;
dl_rq->earliest_dl.next = 0;
cpudl_clear(&rq->rd->cpudl, rq->cpu);
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
} else {
struct rb_node *leftmost = dl_rq->root.rb_leftmost;
struct sched_dl_entity *entry;
@@ -1670,13 +1689,13 @@ static void yield_task_dl(struct rq *rq)
static int find_later_rq(struct task_struct *task);
static int
-select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_dl(struct task_struct *p, int cpu, int flags)
{
struct task_struct *curr;
bool select_rq;
struct rq *rq;
- if (sd_flag != SD_BALANCE_WAKE)
+ if (!(flags & WF_TTWU))
goto out;
rq = cpu_rq(cpu);
@@ -1918,7 +1937,7 @@ static void task_fork_dl(struct task_struct *p)
static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
- cpumask_test_cpu(cpu, p->cpus_ptr))
+ cpumask_test_cpu(cpu, &p->cpus_mask))
return 1;
return 0;
}
@@ -2008,8 +2027,8 @@ static int find_later_rq(struct task_struct *task)
return this_cpu;
}
- best_cpu = cpumask_first_and(later_mask,
- sched_domain_span(sd));
+ best_cpu = cpumask_any_and_distribute(later_mask,
+ sched_domain_span(sd));
/*
* Last chance: if a CPU being in both later_mask
* and current sd span is valid, that becomes our
@@ -2031,7 +2050,7 @@ static int find_later_rq(struct task_struct *task)
if (this_cpu != -1)
return this_cpu;
- cpu = cpumask_any(later_mask);
+ cpu = cpumask_any_distribute(later_mask);
if (cpu < nr_cpu_ids)
return cpu;
@@ -2068,7 +2087,7 @@ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
/* Retry if something changed. */
if (double_lock_balance(rq, later_rq)) {
if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
+ !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
task_running(rq, task) ||
!dl_task(task) ||
!task_on_rq_queued(task))) {
@@ -2135,6 +2154,9 @@ static int push_dl_task(struct rq *rq)
return 0;
retry:
+ if (is_migration_disabled(next_task))
+ return 0;
+
if (WARN_ON(next_task == rq->curr))
return 0;
@@ -2212,7 +2234,7 @@ static void push_dl_tasks(struct rq *rq)
static void pull_dl_task(struct rq *this_rq)
{
int this_cpu = this_rq->cpu, cpu;
- struct task_struct *p;
+ struct task_struct *p, *push_task;
bool resched = false;
struct rq *src_rq;
u64 dmin = LONG_MAX;
@@ -2242,6 +2264,7 @@ static void pull_dl_task(struct rq *this_rq)
continue;
/* Might drop this_rq->lock */
+ push_task = NULL;
double_lock_balance(this_rq, src_rq);
/*
@@ -2273,17 +2296,27 @@ static void pull_dl_task(struct rq *this_rq)
src_rq->curr->dl.deadline))
goto skip;
- resched = true;
-
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- dmin = p->dl.deadline;
+ if (is_migration_disabled(p)) {
+ push_task = get_push_task(src_rq);
+ } else {
+ deactivate_task(src_rq, p, 0);
+ set_task_cpu(p, this_cpu);
+ activate_task(this_rq, p, 0);
+ dmin = p->dl.deadline;
+ resched = true;
+ }
/* Is there any other task even earlier? */
}
skip:
double_unlock_balance(this_rq, src_rq);
+
+ if (push_task) {
+ raw_spin_unlock(&this_rq->lock);
+ stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
+ push_task, &src_rq->push_work);
+ raw_spin_lock(&this_rq->lock);
+ }
}
if (resched)
@@ -2307,7 +2340,8 @@ static void task_woken_dl(struct rq *rq, struct task_struct *p)
}
static void set_cpus_allowed_dl(struct task_struct *p,
- const struct cpumask *new_mask)
+ const struct cpumask *new_mask,
+ u32 flags)
{
struct root_domain *src_rd;
struct rq *rq;
@@ -2336,7 +2370,7 @@ static void set_cpus_allowed_dl(struct task_struct *p,
raw_spin_unlock(&src_dl_b->lock);
}
- set_cpus_allowed_common(p, new_mask);
+ set_cpus_allowed_common(p, new_mask, flags);
}
/* Assumes rq->lock is held */
@@ -2509,8 +2543,8 @@ static void prio_changed_dl(struct rq *rq, struct task_struct *p,
}
}
-const struct sched_class dl_sched_class
- __section("__dl_sched_class") = {
+DEFINE_SCHED_CLASS(dl) = {
+
.enqueue_task = enqueue_task_dl,
.dequeue_task = dequeue_task_dl,
.yield_task = yield_task_dl,
@@ -2529,6 +2563,7 @@ const struct sched_class dl_sched_class
.rq_online = rq_online_dl,
.rq_offline = rq_offline_dl,
.task_woken = task_woken_dl,
+ .find_lock_rq = find_lock_later_rq,
#endif
.task_tick = task_tick_dl,
@@ -2541,33 +2576,39 @@ const struct sched_class dl_sched_class
.update_curr = update_curr_dl,
};
+/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
+static u64 dl_generation;
+
int sched_dl_global_validate(void)
{
u64 runtime = global_rt_runtime();
u64 period = global_rt_period();
u64 new_bw = to_ratio(period, runtime);
+ u64 gen = ++dl_generation;
struct dl_bw *dl_b;
- int cpu, ret = 0;
+ int cpu, cpus, ret = 0;
unsigned long flags;
/*
* Here we want to check the bandwidth not being set to some
* value smaller than the currently allocated bandwidth in
* any of the root_domains.
- *
- * FIXME: Cycling on all the CPUs is overdoing, but simpler than
- * cycling on root_domains... Discussion on different/better
- * solutions is welcome!
*/
for_each_possible_cpu(cpu) {
rcu_read_lock_sched();
+
+ if (dl_bw_visited(cpu, gen))
+ goto next;
+
dl_b = dl_bw_of(cpu);
+ cpus = dl_bw_cpus(cpu);
raw_spin_lock_irqsave(&dl_b->lock, flags);
- if (new_bw < dl_b->total_bw)
+ if (new_bw * cpus < dl_b->total_bw)
ret = -EBUSY;
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
+next:
rcu_read_unlock_sched();
if (ret)
@@ -2593,6 +2634,7 @@ static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
void sched_dl_do_global(void)
{
u64 new_bw = -1;
+ u64 gen = ++dl_generation;
struct dl_bw *dl_b;
int cpu;
unsigned long flags;
@@ -2603,11 +2645,14 @@ void sched_dl_do_global(void)
if (global_rt_runtime() != RUNTIME_INF)
new_bw = to_ratio(global_rt_period(), global_rt_runtime());
- /*
- * FIXME: As above...
- */
for_each_possible_cpu(cpu) {
rcu_read_lock_sched();
+
+ if (dl_bw_visited(cpu, gen)) {
+ rcu_read_unlock_sched();
+ continue;
+ }
+
dl_b = dl_bw_of(cpu);
raw_spin_lock_irqsave(&dl_b->lock, flags);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index ae7ceba8fd4f..04a3ce20da67 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -906,6 +906,15 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
if (!schedstat_enabled())
return;
+ /*
+ * When the sched_schedstat changes from 0 to 1, some sched se
+ * maybe already in the runqueue, the se->statistics.wait_start
+ * will be 0.So it will let the delta wrong. We need to avoid this
+ * scenario.
+ */
+ if (unlikely(!schedstat_val(se->statistics.wait_start)))
+ return;
+
delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
if (entity_is_task(se)) {
@@ -1550,7 +1559,8 @@ struct task_numa_env {
static unsigned long cpu_load(struct rq *rq);
static unsigned long cpu_runnable(struct rq *rq);
static unsigned long cpu_util(int cpu);
-static inline long adjust_numa_imbalance(int imbalance, int nr_running);
+static inline long adjust_numa_imbalance(int imbalance,
+ int dst_running, int dst_weight);
static inline enum
numa_type numa_classify(unsigned int imbalance_pct,
@@ -1930,7 +1940,8 @@ static void task_numa_find_cpu(struct task_numa_env *env,
src_running = env->src_stats.nr_running - 1;
dst_running = env->dst_stats.nr_running + 1;
imbalance = max(0, dst_running - src_running);
- imbalance = adjust_numa_imbalance(imbalance, dst_running);
+ imbalance = adjust_numa_imbalance(imbalance, dst_running,
+ env->dst_stats.weight);
/* Use idle CPU if there is no imbalance */
if (!imbalance) {
@@ -4779,25 +4790,37 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
- break;
+ goto done;
- if (dequeue) {
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
- } else {
- update_load_avg(qcfs_rq, se, 0);
- se_update_runnable(se);
- }
+ dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
- if (qcfs_rq->load.weight)
- dequeue = 0;
+ if (qcfs_rq->load.weight) {
+ /* Avoid re-evaluating load for this entity: */
+ se = parent_entity(se);
+ break;
+ }
}
- if (!se)
- sub_nr_running(rq, task_delta);
+ for_each_sched_entity(se) {
+ struct cfs_rq *qcfs_rq = cfs_rq_of(se);
+ /* throttled entity or throttle-on-deactivate */
+ if (!se->on_rq)
+ goto done;
+ update_load_avg(qcfs_rq, se, 0);
+ se_update_runnable(se);
+
+ qcfs_rq->h_nr_running -= task_delta;
+ qcfs_rq->idle_h_nr_running -= idle_task_delta;
+ }
+
+ /* At this point se is NULL and we are at root level*/
+ sub_nr_running(rq, task_delta);
+
+done:
/*
* Note: distribution will already see us throttled via the
* throttled-list. rq->lock protects completion.
@@ -5105,9 +5128,6 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
return;
distribute_cfs_runtime(cfs_b);
-
- raw_spin_lock_irqsave(&cfs_b->lock, flags);
- raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
}
/*
@@ -5805,6 +5825,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)
if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;
+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;
+
return nr_cpumask_bits;
}
@@ -6063,10 +6086,11 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int
break;
}
}
- cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
if (idle)
return core;
+
+ cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
}
/*
@@ -6307,7 +6331,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
}
/**
- * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
+ * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
* @cpu: the CPU to get the utilization of
*
* The unit of the return value must be the one of capacity so we can compare
@@ -6683,7 +6707,7 @@ fail:
/*
* select_task_rq_fair: Select target runqueue for the waking task in domains
- * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
+ * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
* SD_BALANCE_FORK, or SD_BALANCE_EXEC.
*
* Balances load by selecting the idlest CPU in the idlest group, or under
@@ -6694,15 +6718,17 @@ fail:
* preempt must be disabled.
*/
static int
-select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
+select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
{
+ int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
struct sched_domain *tmp, *sd = NULL;
int cpu = smp_processor_id();
int new_cpu = prev_cpu;
int want_affine = 0;
- int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
+ /* SD_flags and WF_flags share the first nibble */
+ int sd_flag = wake_flags & 0xF;
- if (sd_flag & SD_BALANCE_WAKE) {
+ if (wake_flags & WF_TTWU) {
record_wakee(p);
if (sched_energy_enabled()) {
@@ -6739,9 +6765,8 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (unlikely(sd)) {
/* Slow path */
new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
- } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
+ } else if (wake_flags & WF_TTWU) { /* XXX always ? */
/* Fast path */
-
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
if (want_affine)
@@ -8758,6 +8783,16 @@ static bool update_pick_idlest(struct sched_group *idlest,
}
/*
+ * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
+ * This is an approximation as the number of running tasks may not be
+ * related to the number of busy CPUs due to sched_setaffinity.
+ */
+static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
+{
+ return (dst_running < (dst_weight >> 2));
+}
+
+/*
* find_idlest_group() finds and returns the least busy CPU group within the
* domain.
*
@@ -8775,9 +8810,6 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
.group_type = group_overloaded,
};
- imbalance = scale_load_down(NICE_0_LOAD) *
- (sd->imbalance_pct-100) / 100;
-
do {
int local_group;
@@ -8831,6 +8863,11 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
switch (local_sgs.group_type) {
case group_overloaded:
case group_fully_busy:
+
+ /* Calculate allowed imbalance based on load */
+ imbalance = scale_load_down(NICE_0_LOAD) *
+ (sd->imbalance_pct-100) / 100;
+
/*
* When comparing groups across NUMA domains, it's possible for
* the local domain to be very lightly loaded relative to the
@@ -8887,7 +8924,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
* a real need of migration, periodic load balance will
* take care of it.
*/
- if (local_sgs.idle_cpus)
+ if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
return NULL;
}
@@ -8989,16 +9026,19 @@ next_group:
}
}
-static inline long adjust_numa_imbalance(int imbalance, int nr_running)
+#define NUMA_IMBALANCE_MIN 2
+
+static inline long adjust_numa_imbalance(int imbalance,
+ int dst_running, int dst_weight)
{
- unsigned int imbalance_min;
+ if (!allow_numa_imbalance(dst_running, dst_weight))
+ return imbalance;
/*
* Allow a small imbalance based on a simple pair of communicating
- * tasks that remain local when the source domain is almost idle.
+ * tasks that remain local when the destination is lightly loaded.
*/
- imbalance_min = 2;
- if (nr_running <= imbalance_min)
+ if (imbalance <= NUMA_IMBALANCE_MIN)
return 0;
return imbalance;
@@ -9101,9 +9141,10 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
}
/* Consider allowing a small imbalance between NUMA groups */
- if (env->sd->flags & SD_NUMA)
+ if (env->sd->flags & SD_NUMA) {
env->imbalance = adjust_numa_imbalance(env->imbalance,
- busiest->sum_nr_running);
+ busiest->sum_nr_running, busiest->group_weight);
+ }
return;
}
@@ -10068,6 +10109,10 @@ static inline int find_new_ilb(void)
for_each_cpu_and(ilb, nohz.idle_cpus_mask,
housekeeping_cpumask(HK_FLAG_MISC)) {
+
+ if (ilb == smp_processor_id())
+ continue;
+
if (idle_cpu(ilb))
return ilb;
}
@@ -10505,7 +10550,7 @@ static inline void nohz_newidle_balance(struct rq *this_rq) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
- * idle_balance is called by schedule() if this_cpu is about to become
+ * newidle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*
* Returns:
@@ -11179,8 +11224,8 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task
/*
* All the scheduling class methods:
*/
-const struct sched_class fair_sched_class
- __section("__fair_sched_class") = {
+DEFINE_SCHED_CLASS(fair) = {
+
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index c6932b8f4467..305727ea0677 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -364,6 +364,7 @@ void play_idle_precise(u64 duration_ns, u64 latency_ns)
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
WARN_ON_ONCE(!duration_ns);
+ WARN_ON_ONCE(current->mm);
rcu_sleep_check();
preempt_disable();
@@ -401,7 +402,7 @@ void cpu_startup_entry(enum cpuhp_state state)
#ifdef CONFIG_SMP
static int
-select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_idle(struct task_struct *p, int cpu, int flags)
{
return task_cpu(p); /* IDLE tasks as never migrated */
}
@@ -483,8 +484,8 @@ static void update_curr_idle(struct rq *rq)
/*
* Simple, special scheduling class for the per-CPU idle tasks:
*/
-const struct sched_class idle_sched_class
- __section("__idle_sched_class") = {
+DEFINE_SCHED_CLASS(idle) = {
+
/* no enqueue/yield_task for idle tasks */
/* dequeue is not valid, we print a debug message there: */
diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c
index 9d8df34bea75..08ae45ad9261 100644
--- a/kernel/sched/membarrier.c
+++ b/kernel/sched/membarrier.c
@@ -7,6 +7,134 @@
#include "sched.h"
/*
+ * For documentation purposes, here are some membarrier ordering
+ * scenarios to keep in mind:
+ *
+ * A) Userspace thread execution after IPI vs membarrier's memory
+ * barrier before sending the IPI
+ *
+ * Userspace variables:
+ *
+ * int x = 0, y = 0;
+ *
+ * The memory barrier at the start of membarrier() on CPU0 is necessary in
+ * order to enforce the guarantee that any writes occurring on CPU0 before
+ * the membarrier() is executed will be visible to any code executing on
+ * CPU1 after the IPI-induced memory barrier:
+ *
+ * CPU0 CPU1
+ *
+ * x = 1
+ * membarrier():
+ * a: smp_mb()
+ * b: send IPI IPI-induced mb
+ * c: smp_mb()
+ * r2 = y
+ * y = 1
+ * barrier()
+ * r1 = x
+ *
+ * BUG_ON(r1 == 0 && r2 == 0)
+ *
+ * The write to y and load from x by CPU1 are unordered by the hardware,
+ * so it's possible to have "r1 = x" reordered before "y = 1" at any
+ * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
+ * can be reordered after (a) (although not after (c)), so we get r1 == 0
+ * and r2 == 0. This violates the guarantee that membarrier() is
+ * supposed by provide.
+ *
+ * The timing of the memory barrier at (a) has to ensure that it executes
+ * before the IPI-induced memory barrier on CPU1.
+ *
+ * B) Userspace thread execution before IPI vs membarrier's memory
+ * barrier after completing the IPI
+ *
+ * Userspace variables:
+ *
+ * int x = 0, y = 0;
+ *
+ * The memory barrier at the end of membarrier() on CPU0 is necessary in
+ * order to enforce the guarantee that any writes occurring on CPU1 before
+ * the membarrier() is executed will be visible to any code executing on
+ * CPU0 after the membarrier():
+ *
+ * CPU0 CPU1
+ *
+ * x = 1
+ * barrier()
+ * y = 1
+ * r2 = y
+ * membarrier():
+ * a: smp_mb()
+ * b: send IPI IPI-induced mb
+ * c: smp_mb()
+ * r1 = x
+ * BUG_ON(r1 == 0 && r2 == 1)
+ *
+ * The writes to x and y are unordered by the hardware, so it's possible to
+ * have "r2 = 1" even though the write to x doesn't execute until (b). If
+ * the memory barrier at (c) is omitted then "r1 = x" can be reordered
+ * before (b) (although not before (a)), so we get "r1 = 0". This violates
+ * the guarantee that membarrier() is supposed to provide.
+ *
+ * The timing of the memory barrier at (c) has to ensure that it executes
+ * after the IPI-induced memory barrier on CPU1.
+ *
+ * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * d: switch to kthread (includes mb)
+ * b: read rq->curr->mm == NULL
+ * e: switch to user (includes mb)
+ * c: smp_mb()
+ *
+ * Using the scenario from (A), we can show that (a) needs to be paired
+ * with (e). Using the scenario from (B), we can show that (c) needs to
+ * be paired with (d).
+ *
+ * D) exit_mm vs membarrier
+ *
+ * Two thread groups are created, A and B. Thread group B is created by
+ * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
+ * Let's assume we have a single thread within each thread group (Thread A
+ * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * exit_mm():
+ * d: smp_mb()
+ * e: current->mm = NULL
+ * b: read rq->curr->mm == NULL
+ * c: smp_mb()
+ *
+ * Using scenario (B), we can show that (c) needs to be paired with (d).
+ *
+ * E) kthread_{use,unuse}_mm vs membarrier
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * kthread_unuse_mm()
+ * d: smp_mb()
+ * e: current->mm = NULL
+ * b: read rq->curr->mm == NULL
+ * kthread_use_mm()
+ * f: current->mm = mm
+ * g: smp_mb()
+ * c: smp_mb()
+ *
+ * Using the scenario from (A), we can show that (a) needs to be paired
+ * with (g). Using the scenario from (B), we can show that (c) needs to
+ * be paired with (d).
+ */
+
+/*
* Bitmask made from a "or" of all commands within enum membarrier_cmd,
* except MEMBARRIER_CMD_QUERY.
*/
@@ -101,6 +229,18 @@ void membarrier_exec_mmap(struct mm_struct *mm)
this_cpu_write(runqueues.membarrier_state, 0);
}
+void membarrier_update_current_mm(struct mm_struct *next_mm)
+{
+ struct rq *rq = this_rq();
+ int membarrier_state = 0;
+
+ if (next_mm)
+ membarrier_state = atomic_read(&next_mm->membarrier_state);
+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
+ return;
+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
+}
+
static int membarrier_global_expedited(void)
{
int cpu;
@@ -139,12 +279,11 @@ static int membarrier_global_expedited(void)
continue;
/*
- * Skip the CPU if it runs a kernel thread. The scheduler
- * leaves the prior task mm in place as an optimization when
- * scheduling a kthread.
+ * Skip the CPU if it runs a kernel thread which is not using
+ * a task mm.
*/
p = rcu_dereference(cpu_rq(cpu)->curr);
- if (p->flags & PF_KTHREAD)
+ if (!p->mm)
continue;
__cpumask_set_cpu(cpu, tmpmask);
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 49ec096a8aa1..dbe4629cf7ba 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -89,8 +89,8 @@ void init_rt_rq(struct rt_rq *rt_rq)
__set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- rt_rq->highest_prio.next = MAX_RT_PRIO;
+ rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
+ rt_rq->highest_prio.next = MAX_RT_PRIO-1;
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks);
@@ -161,7 +161,7 @@ void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
{
struct rq *rq = cpu_rq(cpu);
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
+ rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
rt_rq->rt_nr_boosted = 0;
rt_rq->rq = rq;
rt_rq->tg = tg;
@@ -265,7 +265,7 @@ static void pull_rt_task(struct rq *this_rq);
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
/* Try to pull RT tasks here if we lower this rq's prio */
- return rq->rt.highest_prio.curr > prev->prio;
+ return rq->online && rq->rt.highest_prio.curr > prev->prio;
}
static inline int rt_overloaded(struct rq *rq)
@@ -393,8 +393,9 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
rq->rt.highest_prio.next = p->prio;
- } else
- rq->rt.highest_prio.next = MAX_RT_PRIO;
+ } else {
+ rq->rt.highest_prio.next = MAX_RT_PRIO-1;
+ }
}
#else
@@ -1147,8 +1148,9 @@ dec_rt_prio(struct rt_rq *rt_rq, int prio)
sched_find_first_bit(array->bitmap);
}
- } else
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
+ } else {
+ rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
+ }
dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
@@ -1428,14 +1430,14 @@ static void yield_task_rt(struct rq *rq)
static int find_lowest_rq(struct task_struct *task);
static int
-select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_rt(struct task_struct *p, int cpu, int flags)
{
struct task_struct *curr;
struct rq *rq;
bool test;
/* For anything but wake ups, just return the task_cpu */
- if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+ if (!(flags & (WF_TTWU | WF_FORK)))
goto out;
rq = cpu_rq(cpu);
@@ -1658,7 +1660,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
- cpumask_test_cpu(cpu, p->cpus_ptr))
+ cpumask_test_cpu(cpu, &p->cpus_mask))
return 1;
return 0;
@@ -1752,8 +1754,8 @@ static int find_lowest_rq(struct task_struct *task)
return this_cpu;
}
- best_cpu = cpumask_first_and(lowest_mask,
- sched_domain_span(sd));
+ best_cpu = cpumask_any_and_distribute(lowest_mask,
+ sched_domain_span(sd));
if (best_cpu < nr_cpu_ids) {
rcu_read_unlock();
return best_cpu;
@@ -1770,7 +1772,7 @@ static int find_lowest_rq(struct task_struct *task)
if (this_cpu != -1)
return this_cpu;
- cpu = cpumask_any(lowest_mask);
+ cpu = cpumask_any_distribute(lowest_mask);
if (cpu < nr_cpu_ids)
return cpu;
@@ -1811,7 +1813,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
* Also make sure that it wasn't scheduled on its rq.
*/
if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
+ !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
task_running(rq, task) ||
!rt_task(task) ||
!task_on_rq_queued(task))) {
@@ -1859,7 +1861,7 @@ static struct task_struct *pick_next_pushable_task(struct rq *rq)
* running task can migrate over to a CPU that is running a task
* of lesser priority.
*/
-static int push_rt_task(struct rq *rq)
+static int push_rt_task(struct rq *rq, bool pull)
{
struct task_struct *next_task;
struct rq *lowest_rq;
@@ -1873,6 +1875,34 @@ static int push_rt_task(struct rq *rq)
return 0;
retry:
+ if (is_migration_disabled(next_task)) {
+ struct task_struct *push_task = NULL;
+ int cpu;
+
+ if (!pull || rq->push_busy)
+ return 0;
+
+ cpu = find_lowest_rq(rq->curr);
+ if (cpu == -1 || cpu == rq->cpu)
+ return 0;
+
+ /*
+ * Given we found a CPU with lower priority than @next_task,
+ * therefore it should be running. However we cannot migrate it
+ * to this other CPU, instead attempt to push the current
+ * running task on this CPU away.
+ */
+ push_task = get_push_task(rq);
+ if (push_task) {
+ raw_spin_unlock(&rq->lock);
+ stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
+ push_task, &rq->push_work);
+ raw_spin_lock(&rq->lock);
+ }
+
+ return 0;
+ }
+
if (WARN_ON(next_task == rq->curr))
return 0;
@@ -1927,12 +1957,10 @@ retry:
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
activate_task(lowest_rq, next_task, 0);
- ret = 1;
-
resched_curr(lowest_rq);
+ ret = 1;
double_unlock_balance(rq, lowest_rq);
-
out:
put_task_struct(next_task);
@@ -1942,7 +1970,7 @@ out:
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
+ while (push_rt_task(rq, false))
;
}
@@ -2095,7 +2123,8 @@ void rto_push_irq_work_func(struct irq_work *work)
*/
if (has_pushable_tasks(rq)) {
raw_spin_lock(&rq->lock);
- push_rt_tasks(rq);
+ while (push_rt_task(rq, true))
+ ;
raw_spin_unlock(&rq->lock);
}
@@ -2120,7 +2149,7 @@ static void pull_rt_task(struct rq *this_rq)
{
int this_cpu = this_rq->cpu, cpu;
bool resched = false;
- struct task_struct *p;
+ struct task_struct *p, *push_task;
struct rq *src_rq;
int rt_overload_count = rt_overloaded(this_rq);
@@ -2167,6 +2196,7 @@ static void pull_rt_task(struct rq *this_rq)
* double_lock_balance, and another CPU could
* alter this_rq
*/
+ push_task = NULL;
double_lock_balance(this_rq, src_rq);
/*
@@ -2194,11 +2224,14 @@ static void pull_rt_task(struct rq *this_rq)
if (p->prio < src_rq->curr->prio)
goto skip;
- resched = true;
-
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
+ if (is_migration_disabled(p)) {
+ push_task = get_push_task(src_rq);
+ } else {
+ deactivate_task(src_rq, p, 0);
+ set_task_cpu(p, this_cpu);
+ activate_task(this_rq, p, 0);
+ resched = true;
+ }
/*
* We continue with the search, just in
* case there's an even higher prio task
@@ -2208,6 +2241,13 @@ static void pull_rt_task(struct rq *this_rq)
}
skip:
double_unlock_balance(this_rq, src_rq);
+
+ if (push_task) {
+ raw_spin_unlock(&this_rq->lock);
+ stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
+ push_task, &src_rq->push_work);
+ raw_spin_lock(&this_rq->lock);
+ }
}
if (resched)
@@ -2429,8 +2469,8 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
return 0;
}
-const struct sched_class rt_sched_class
- __section("__rt_sched_class") = {
+DEFINE_SCHED_CLASS(rt) = {
+
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
@@ -2449,6 +2489,7 @@ const struct sched_class rt_sched_class
.rq_offline = rq_offline_rt,
.task_woken = task_woken_rt,
.switched_from = switched_from_rt,
+ .find_lock_rq = find_lock_lowest_rq,
#endif
.task_tick = task_tick_rt,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index df80bfcea92e..f5acb6c5ce49 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -67,7 +67,6 @@
#include <linux/tsacct_kern.h>
#include <asm/tlb.h>
-#include <asm-generic/vmlinux.lds.h>
#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
@@ -257,30 +256,6 @@ struct rt_bandwidth {
void __dl_clear_params(struct task_struct *p);
-/*
- * To keep the bandwidth of -deadline tasks and groups under control
- * we need some place where:
- * - store the maximum -deadline bandwidth of the system (the group);
- * - cache the fraction of that bandwidth that is currently allocated.
- *
- * This is all done in the data structure below. It is similar to the
- * one used for RT-throttling (rt_bandwidth), with the main difference
- * that, since here we are only interested in admission control, we
- * do not decrease any runtime while the group "executes", neither we
- * need a timer to replenish it.
- *
- * With respect to SMP, the bandwidth is given on a per-CPU basis,
- * meaning that:
- * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
- * - dl_total_bw array contains, in the i-eth element, the currently
- * allocated bandwidth on the i-eth CPU.
- * Moreover, groups consume bandwidth on each CPU, while tasks only
- * consume bandwidth on the CPU they're running on.
- * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
- * that will be shown the next time the proc or cgroup controls will
- * be red. It on its turn can be changed by writing on its own
- * control.
- */
struct dl_bandwidth {
raw_spinlock_t dl_runtime_lock;
u64 dl_runtime;
@@ -292,6 +267,24 @@ static inline int dl_bandwidth_enabled(void)
return sysctl_sched_rt_runtime >= 0;
}
+/*
+ * To keep the bandwidth of -deadline tasks under control
+ * we need some place where:
+ * - store the maximum -deadline bandwidth of each cpu;
+ * - cache the fraction of bandwidth that is currently allocated in
+ * each root domain;
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, bandwidth is given on a per root domain basis,
+ * meaning that:
+ * - bw (< 100%) is the deadline bandwidth of each CPU;
+ * - total_bw is the currently allocated bandwidth in each root domain;
+ */
struct dl_bw {
raw_spinlock_t lock;
u64 bw;
@@ -801,6 +794,15 @@ struct root_domain {
struct dl_bw dl_bw;
struct cpudl cpudl;
+ /*
+ * Indicate whether a root_domain's dl_bw has been checked or
+ * updated. It's monotonously increasing value.
+ *
+ * Also, some corner cases, like 'wrap around' is dangerous, but given
+ * that u64 is 'big enough'. So that shouldn't be a concern.
+ */
+ u64 visit_gen;
+
#ifdef HAVE_RT_PUSH_IPI
/*
* For IPI pull requests, loop across the rto_mask.
@@ -973,6 +975,7 @@ struct rq {
unsigned long cpu_capacity_orig;
struct callback_head *balance_callback;
+ unsigned char balance_flags;
unsigned char nohz_idle_balance;
unsigned char idle_balance;
@@ -1003,6 +1006,10 @@ struct rq {
/* This is used to determine avg_idle's max value */
u64 max_idle_balance_cost;
+
+#ifdef CONFIG_HOTPLUG_CPU
+ struct rcuwait hotplug_wait;
+#endif
#endif /* CONFIG_SMP */
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
@@ -1048,6 +1055,12 @@ struct rq {
/* Must be inspected within a rcu lock section */
struct cpuidle_state *idle_state;
#endif
+
+#ifdef CONFIG_SMP
+ unsigned int nr_pinned;
+#endif
+ unsigned int push_busy;
+ struct cpu_stop_work push_work;
};
#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1075,6 +1088,16 @@ static inline int cpu_of(struct rq *rq)
#endif
}
+#define MDF_PUSH 0x01
+
+static inline bool is_migration_disabled(struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+ return p->migration_disabled;
+#else
+ return false;
+#endif
+}
#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);
@@ -1221,6 +1244,9 @@ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
rf->clock_update_flags = 0;
#endif
+#ifdef CONFIG_SMP
+ SCHED_WARN_ON(rq->balance_callback);
+#endif
}
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
@@ -1382,6 +1408,9 @@ init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
#ifdef CONFIG_SMP
+#define BALANCE_WORK 0x01
+#define BALANCE_PUSH 0x02
+
static inline void
queue_balance_callback(struct rq *rq,
struct callback_head *head,
@@ -1389,12 +1418,13 @@ queue_balance_callback(struct rq *rq,
{
lockdep_assert_held(&rq->lock);
- if (unlikely(head->next))
+ if (unlikely(head->next || (rq->balance_flags & BALANCE_PUSH)))
return;
head->func = (void (*)(struct callback_head *))func;
head->next = rq->balance_callback;
rq->balance_callback = head;
+ rq->balance_flags |= BALANCE_WORK;
}
#define rcu_dereference_check_sched_domain(p) \
@@ -1714,13 +1744,20 @@ static inline int task_on_rq_migrating(struct task_struct *p)
return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}
-/*
- * wake flags
- */
-#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
-#define WF_FORK 0x02 /* Child wakeup after fork */
-#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
-#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
+/* Wake flags. The first three directly map to some SD flag value */
+#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
+#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
+#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
+
+#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
+#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
+#define WF_ON_CPU 0x40 /* Wakee is on_cpu */
+
+#ifdef CONFIG_SMP
+static_assert(WF_EXEC == SD_BALANCE_EXEC);
+static_assert(WF_FORK == SD_BALANCE_FORK);
+static_assert(WF_TTWU == SD_BALANCE_WAKE);
+#endif
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
@@ -1796,16 +1833,19 @@ struct sched_class {
#ifdef CONFIG_SMP
int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
- int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+ int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
void (*set_cpus_allowed)(struct task_struct *p,
- const struct cpumask *newmask);
+ const struct cpumask *newmask,
+ u32 flags);
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
+
+ struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
#endif
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
@@ -1833,7 +1873,7 @@ struct sched_class {
#ifdef CONFIG_FAIR_GROUP_SCHED
void (*task_change_group)(struct task_struct *p, int type);
#endif
-} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
+};
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
@@ -1847,6 +1887,20 @@ static inline void set_next_task(struct rq *rq, struct task_struct *next)
next->sched_class->set_next_task(rq, next, false);
}
+
+/*
+ * Helper to define a sched_class instance; each one is placed in a separate
+ * section which is ordered by the linker script:
+ *
+ * include/asm-generic/vmlinux.lds.h
+ *
+ * Also enforce alignment on the instance, not the type, to guarantee layout.
+ */
+#define DEFINE_SCHED_CLASS(name) \
+const struct sched_class name##_sched_class \
+ __aligned(__alignof__(struct sched_class)) \
+ __section("__" #name "_sched_class")
+
/* Defined in include/asm-generic/vmlinux.lds.h */
extern struct sched_class __begin_sched_classes[];
extern struct sched_class __end_sched_classes[];
@@ -1889,13 +1943,35 @@ static inline bool sched_fair_runnable(struct rq *rq)
extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
extern struct task_struct *pick_next_task_idle(struct rq *rq);
+#define SCA_CHECK 0x01
+#define SCA_MIGRATE_DISABLE 0x02
+#define SCA_MIGRATE_ENABLE 0x04
+
#ifdef CONFIG_SMP
extern void update_group_capacity(struct sched_domain *sd, int cpu);
extern void trigger_load_balance(struct rq *rq);
-extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
+
+static inline struct task_struct *get_push_task(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ lockdep_assert_held(&rq->lock);
+
+ if (rq->push_busy)
+ return NULL;
+
+ if (p->nr_cpus_allowed == 1)
+ return NULL;
+
+ rq->push_busy = true;
+ return get_task_struct(p);
+}
+
+extern int push_cpu_stop(void *arg);
#endif
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index ceb5b6b12561..55f39125c0e1 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -11,7 +11,7 @@
#ifdef CONFIG_SMP
static int
-select_task_rq_stop(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_stop(struct task_struct *p, int cpu, int flags)
{
return task_cpu(p); /* stop tasks as never migrate */
}
@@ -109,8 +109,7 @@ static void update_curr_stop(struct rq *rq)
/*
* Simple, special scheduling class for the per-CPU stop tasks:
*/
-const struct sched_class stop_sched_class
- __section("__stop_sched_class") = {
+DEFINE_SCHED_CLASS(stop) = {
.enqueue_task = enqueue_task_stop,
.dequeue_task = dequeue_task_stop,
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index dd7770226086..5d3675c7a76b 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -211,6 +211,15 @@ unsigned int sysctl_sched_energy_aware = 1;
DEFINE_MUTEX(sched_energy_mutex);
bool sched_energy_update;
+void rebuild_sched_domains_energy(void)
+{
+ mutex_lock(&sched_energy_mutex);
+ sched_energy_update = true;
+ rebuild_sched_domains();
+ sched_energy_update = false;
+ mutex_unlock(&sched_energy_mutex);
+}
+
#ifdef CONFIG_PROC_SYSCTL
int sched_energy_aware_handler(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
@@ -223,13 +232,8 @@ int sched_energy_aware_handler(struct ctl_table *table, int write,
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!ret && write) {
state = static_branch_unlikely(&sched_energy_present);
- if (state != sysctl_sched_energy_aware) {
- mutex_lock(&sched_energy_mutex);
- sched_energy_update = 1;
- rebuild_sched_domains();
- sched_energy_update = 0;
- mutex_unlock(&sched_energy_mutex);
- }
+ if (state != sysctl_sched_energy_aware)
+ rebuild_sched_domains_energy();
}
return ret;
@@ -324,6 +328,7 @@ static void sched_energy_set(bool has_eas)
* 3. no SMT is detected.
* 4. the EM complexity is low enough to keep scheduling overheads low;
* 5. schedutil is driving the frequency of all CPUs of the rd;
+ * 6. frequency invariance support is present;
*
* The complexity of the Energy Model is defined as:
*
@@ -372,6 +377,14 @@ static bool build_perf_domains(const struct cpumask *cpu_map)
goto free;
}
+ if (!arch_scale_freq_invariant()) {
+ if (sched_debug()) {
+ pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
+ cpumask_pr_args(cpu_map));
+ }
+ goto free;
+ }
+
for_each_cpu(i, cpu_map) {
/* Skip already covered CPUs. */
if (find_pd(pd, i))
@@ -516,6 +529,7 @@ static int init_rootdomain(struct root_domain *rd)
init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
#endif
+ rd->visit_gen = 0;
init_dl_bw(&rd->dl_bw);
if (cpudl_init(&rd->cpudl) != 0)
goto free_rto_mask;
@@ -674,6 +688,7 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct sched_domain *tmp;
+ int numa_distance = 0;
/* Remove the sched domains which do not contribute to scheduling. */
for (tmp = sd; tmp; ) {
@@ -705,6 +720,38 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
sd->child = NULL;
}
+ for (tmp = sd; tmp; tmp = tmp->parent)
+ numa_distance += !!(tmp->flags & SD_NUMA);
+
+ /*
+ * FIXME: Diameter >=3 is misrepresented.
+ *
+ * Smallest diameter=3 topology is:
+ *
+ * node 0 1 2 3
+ * 0: 10 20 30 40
+ * 1: 20 10 20 30
+ * 2: 30 20 10 20
+ * 3: 40 30 20 10
+ *
+ * 0 --- 1 --- 2 --- 3
+ *
+ * NUMA-3 0-3 N/A N/A 0-3
+ * groups: {0-2},{1-3} {1-3},{0-2}
+ *
+ * NUMA-2 0-2 0-3 0-3 1-3
+ * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
+ *
+ * NUMA-1 0-1 0-2 1-3 2-3
+ * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
+ *
+ * NUMA-0 0 1 2 3
+ *
+ * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
+ * group span isn't a subset of the domain span.
+ */
+ WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n");
+
sched_domain_debug(sd, cpu);
rq_attach_root(rq, rd);
diff --git a/kernel/smp.c b/kernel/smp.c
index 4d17501433be..1b6070bf97bb 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -27,7 +27,7 @@
#include "smpboot.h"
#include "sched/smp.h"
-#define CSD_TYPE(_csd) ((_csd)->flags & CSD_FLAG_TYPE_MASK)
+#define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
struct call_function_data {
call_single_data_t __percpu *csd;
@@ -130,7 +130,7 @@ static __always_inline int csd_lock_wait_getcpu(call_single_data_t *csd)
csd_type = CSD_TYPE(csd);
if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
- return csd->dst; /* Other CSD_TYPE_ values might not have ->dst. */
+ return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
return -1;
}
@@ -146,7 +146,7 @@ static __always_inline bool csd_lock_wait_toolong(call_single_data_t *csd, u64 t
bool firsttime;
u64 ts2, ts_delta;
call_single_data_t *cpu_cur_csd;
- unsigned int flags = READ_ONCE(csd->flags);
+ unsigned int flags = READ_ONCE(csd->node.u_flags);
if (!(flags & CSD_FLAG_LOCK)) {
if (!unlikely(*bug_id))
@@ -224,14 +224,14 @@ static void csd_lock_record(call_single_data_t *csd)
static __always_inline void csd_lock_wait(call_single_data_t *csd)
{
- smp_cond_load_acquire(&csd->flags, !(VAL & CSD_FLAG_LOCK));
+ smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
}
#endif
static __always_inline void csd_lock(call_single_data_t *csd)
{
csd_lock_wait(csd);
- csd->flags |= CSD_FLAG_LOCK;
+ csd->node.u_flags |= CSD_FLAG_LOCK;
/*
* prevent CPU from reordering the above assignment
@@ -243,12 +243,12 @@ static __always_inline void csd_lock(call_single_data_t *csd)
static __always_inline void csd_unlock(call_single_data_t *csd)
{
- WARN_ON(!(csd->flags & CSD_FLAG_LOCK));
+ WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
/*
* ensure we're all done before releasing data:
*/
- smp_store_release(&csd->flags, 0);
+ smp_store_release(&csd->node.u_flags, 0);
}
static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
@@ -300,7 +300,7 @@ static int generic_exec_single(int cpu, call_single_data_t *csd)
return -ENXIO;
}
- __smp_call_single_queue(cpu, &csd->llist);
+ __smp_call_single_queue(cpu, &csd->node.llist);
return 0;
}
@@ -353,7 +353,7 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
* We don't have to use the _safe() variant here
* because we are not invoking the IPI handlers yet.
*/
- llist_for_each_entry(csd, entry, llist) {
+ llist_for_each_entry(csd, entry, node.llist) {
switch (CSD_TYPE(csd)) {
case CSD_TYPE_ASYNC:
case CSD_TYPE_SYNC:
@@ -378,16 +378,16 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
* First; run all SYNC callbacks, people are waiting for us.
*/
prev = NULL;
- llist_for_each_entry_safe(csd, csd_next, entry, llist) {
+ llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
/* Do we wait until *after* callback? */
if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
smp_call_func_t func = csd->func;
void *info = csd->info;
if (prev) {
- prev->next = &csd_next->llist;
+ prev->next = &csd_next->node.llist;
} else {
- entry = &csd_next->llist;
+ entry = &csd_next->node.llist;
}
csd_lock_record(csd);
@@ -395,7 +395,7 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
csd_unlock(csd);
csd_lock_record(NULL);
} else {
- prev = &csd->llist;
+ prev = &csd->node.llist;
}
}
@@ -406,14 +406,14 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
* Second; run all !SYNC callbacks.
*/
prev = NULL;
- llist_for_each_entry_safe(csd, csd_next, entry, llist) {
+ llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
int type = CSD_TYPE(csd);
if (type != CSD_TYPE_TTWU) {
if (prev) {
- prev->next = &csd_next->llist;
+ prev->next = &csd_next->node.llist;
} else {
- entry = &csd_next->llist;
+ entry = &csd_next->node.llist;
}
if (type == CSD_TYPE_ASYNC) {
@@ -429,7 +429,7 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
}
} else {
- prev = &csd->llist;
+ prev = &csd->node.llist;
}
}
@@ -465,7 +465,7 @@ int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
{
call_single_data_t *csd;
call_single_data_t csd_stack = {
- .flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC,
+ .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
};
int this_cpu;
int err;
@@ -502,8 +502,8 @@ int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
csd->func = func;
csd->info = info;
#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
- csd->src = smp_processor_id();
- csd->dst = cpu;
+ csd->node.src = smp_processor_id();
+ csd->node.dst = cpu;
#endif
err = generic_exec_single(cpu, csd);
@@ -544,12 +544,12 @@ int smp_call_function_single_async(int cpu, call_single_data_t *csd)
preempt_disable();
- if (csd->flags & CSD_FLAG_LOCK) {
+ if (csd->node.u_flags & CSD_FLAG_LOCK) {
err = -EBUSY;
goto out;
}
- csd->flags = CSD_FLAG_LOCK;
+ csd->node.u_flags = CSD_FLAG_LOCK;
smp_wmb();
err = generic_exec_single(cpu, csd);
@@ -667,14 +667,14 @@ static void smp_call_function_many_cond(const struct cpumask *mask,
csd_lock(csd);
if (wait)
- csd->flags |= CSD_TYPE_SYNC;
+ csd->node.u_flags |= CSD_TYPE_SYNC;
csd->func = func;
csd->info = info;
#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
- csd->src = smp_processor_id();
- csd->dst = cpu;
+ csd->node.src = smp_processor_id();
+ csd->node.dst = cpu;
#endif
- if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
+ if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu)))
__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
}
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index 890b79cf0e7c..971d8acceaec 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -42,11 +42,27 @@ struct cpu_stopper {
struct list_head works; /* list of pending works */
struct cpu_stop_work stop_work; /* for stop_cpus */
+ unsigned long caller;
+ cpu_stop_fn_t fn;
};
static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
static bool stop_machine_initialized = false;
+void print_stop_info(const char *log_lvl, struct task_struct *task)
+{
+ /*
+ * If @task is a stopper task, it cannot migrate and task_cpu() is
+ * stable.
+ */
+ struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
+
+ if (task != stopper->thread)
+ return;
+
+ printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
+}
+
/* static data for stop_cpus */
static DEFINE_MUTEX(stop_cpus_mutex);
static bool stop_cpus_in_progress;
@@ -123,7 +139,7 @@ static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_done done;
- struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
+ struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
cpu_stop_init_done(&done, 1);
if (!cpu_stop_queue_work(cpu, &work))
@@ -331,7 +347,8 @@ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *
work1 = work2 = (struct cpu_stop_work){
.fn = multi_cpu_stop,
.arg = &msdata,
- .done = &done
+ .done = &done,
+ .caller = _RET_IP_,
};
cpu_stop_init_done(&done, 2);
@@ -367,7 +384,7 @@ int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *
bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf)
{
- *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
+ *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
return cpu_stop_queue_work(cpu, work_buf);
}
@@ -487,6 +504,8 @@ repeat:
int ret;
/* cpu stop callbacks must not sleep, make in_atomic() == T */
+ stopper->caller = work->caller;
+ stopper->fn = fn;
preempt_count_inc();
ret = fn(arg);
if (done) {
@@ -495,6 +514,8 @@ repeat:
cpu_stop_signal_done(done);
}
preempt_count_dec();
+ stopper->fn = NULL;
+ stopper->caller = 0;
WARN_ONCE(preempt_count(),
"cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
goto repeat;
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index a9e68936822d..030282994b3e 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -293,10 +293,8 @@ static void nohz_full_kick_func(struct irq_work *work)
/* Empty, the tick restart happens on tick_nohz_irq_exit() */
}
-static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
- .func = nohz_full_kick_func,
- .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
-};
+static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
+ IRQ_WORK_INIT_HARD(nohz_full_kick_func);
/*
* Kick this CPU if it's full dynticks in order to force it to
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index a125ea5e04cd..852226dd4b11 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -1096,7 +1096,7 @@ static int bpf_send_signal_common(u32 sig, enum pid_type type)
return -EINVAL;
work = this_cpu_ptr(&send_signal_work);
- if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
+ if (irq_work_is_busy(&work->irq_work))
return -EBUSY;
/* Add the current task, which is the target of sending signal,
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 437935e7a199..c71da2a59e12 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -4908,6 +4908,10 @@ static void unbind_workers(int cpu)
pool->flags |= POOL_DISASSOCIATED;
raw_spin_unlock_irq(&pool->lock);
+
+ for_each_pool_worker(worker, pool)
+ WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_active_mask) < 0);
+
mutex_unlock(&wq_pool_attach_mutex);
/*
diff --git a/lib/cpumask.c b/lib/cpumask.c
index 85da6ab4fbb5..35924025097b 100644
--- a/lib/cpumask.c
+++ b/lib/cpumask.c
@@ -267,3 +267,21 @@ int cpumask_any_and_distribute(const struct cpumask *src1p,
return next;
}
EXPORT_SYMBOL(cpumask_any_and_distribute);
+
+int cpumask_any_distribute(const struct cpumask *srcp)
+{
+ int next, prev;
+
+ /* NOTE: our first selection will skip 0. */
+ prev = __this_cpu_read(distribute_cpu_mask_prev);
+
+ next = cpumask_next(prev, srcp);
+ if (next >= nr_cpu_ids)
+ next = cpumask_first(srcp);
+
+ if (next < nr_cpu_ids)
+ __this_cpu_write(distribute_cpu_mask_prev, next);
+
+ return next;
+}
+EXPORT_SYMBOL(cpumask_any_distribute);
diff --git a/lib/dump_stack.c b/lib/dump_stack.c
index a00ee6eedc7c..f5a33b6f773f 100644
--- a/lib/dump_stack.c
+++ b/lib/dump_stack.c
@@ -12,6 +12,7 @@
#include <linux/atomic.h>
#include <linux/kexec.h>
#include <linux/utsname.h>
+#include <linux/stop_machine.h>
static char dump_stack_arch_desc_str[128];
@@ -57,6 +58,7 @@ void dump_stack_print_info(const char *log_lvl)
log_lvl, dump_stack_arch_desc_str);
print_worker_info(log_lvl, current);
+ print_stop_info(log_lvl, current);
}
/**
diff --git a/lib/smp_processor_id.c b/lib/smp_processor_id.c
index 525222e4f409..1c1dbd300325 100644
--- a/lib/smp_processor_id.c
+++ b/lib/smp_processor_id.c
@@ -26,6 +26,11 @@ unsigned int check_preemption_disabled(const char *what1, const char *what2)
if (current->nr_cpus_allowed == 1)
goto out;
+#ifdef CONFIG_SMP
+ if (current->migration_disabled)
+ goto out;
+#endif
+
/*
* It is valid to assume CPU-locality during early bootup:
*/
diff --git a/net/core/dev.c b/net/core/dev.c
index 38412e70f761..ac7a7ae4614a 100644
--- a/net/core/dev.c
+++ b/net/core/dev.c
@@ -11179,8 +11179,7 @@ static int __init net_dev_init(void)
INIT_LIST_HEAD(&sd->poll_list);
sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
- sd->csd.func = rps_trigger_softirq;
- sd->csd.info = sd;
+ INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
sd->cpu = i;
#endif