summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFeng Tang <feng.tang@intel.com>2022-09-13 14:54:20 +0800
committerVlastimil Babka <vbabka@suse.cz>2022-09-23 12:32:45 +0200
commit6edf2576a6cc46460c164831517a36064eb8109c (patch)
treee48909c81b540a92f112b48ddb69a03b0a23692a
parent1f04b07d976da0666dbc2b170634c5531974dfa1 (diff)
mm/slub: enable debugging memory wasting of kmalloc
kmalloc's API family is critical for mm, with one nature that it will round up the request size to a fixed one (mostly power of 2). Say when user requests memory for '2^n + 1' bytes, actually 2^(n+1) bytes could be allocated, so in worst case, there is around 50% memory space waste. The wastage is not a big issue for requests that get allocated/freed quickly, but may cause problems with objects that have longer life time. We've met a kernel boot OOM panic (v5.10), and from the dumped slab info: [ 26.062145] kmalloc-2k 814056KB 814056KB From debug we found there are huge number of 'struct iova_magazine', whose size is 1032 bytes (1024 + 8), so each allocation will waste 1016 bytes. Though the issue was solved by giving the right (bigger) size of RAM, it is still nice to optimize the size (either use a kmalloc friendly size or create a dedicated slab for it). And from lkml archive, there was another crash kernel OOM case [1] back in 2019, which seems to be related with the similar slab waste situation, as the log is similar: [ 4.332648] iommu: Adding device 0000:20:02.0 to group 16 [ 4.338946] swapper/0 invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=0, oom_score_adj=0 ... [ 4.857565] kmalloc-2048 59164KB 59164KB The crash kernel only has 256M memory, and 59M is pretty big here. (Note: the related code has been changed and optimised in recent kernel [2], these logs are just picked to demo the problem, also a patch changing its size to 1024 bytes has been merged) So add an way to track each kmalloc's memory waste info, and leverage the existing SLUB debug framework (specifically SLUB_STORE_USER) to show its call stack of original allocation, so that user can evaluate the waste situation, identify some hot spots and optimize accordingly, for a better utilization of memory. The waste info is integrated into existing interface: '/sys/kernel/debug/slab/kmalloc-xx/alloc_traces', one example of 'kmalloc-4k' after boot is: 126 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] waste=233856/1856 age=280763/281414/282065 pid=1330 cpus=32 nodes=1 __kmem_cache_alloc_node+0x11f/0x4e0 __kmalloc_node+0x4e/0x140 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] ixgbe_init_interrupt_scheme+0x2ae/0xc90 [ixgbe] ixgbe_probe+0x165f/0x1d20 [ixgbe] local_pci_probe+0x78/0xc0 work_for_cpu_fn+0x26/0x40 ... which means in 'kmalloc-4k' slab, there are 126 requests of 2240 bytes which got a 4KB space (wasting 1856 bytes each and 233856 bytes in total), from ixgbe_alloc_q_vector(). And when system starts some real workload like multiple docker instances, there could are more severe waste. [1]. https://lkml.org/lkml/2019/8/12/266 [2]. https://lore.kernel.org/lkml/2920df89-9975-5785-f79b-257d3052dfaf@huawei.com/ [Thanks Hyeonggon for pointing out several bugs about sorting/format] [Thanks Vlastimil for suggesting way to reduce memory usage of orig_size and keep it only for kmalloc objects] Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: John Garry <john.garry@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
-rw-r--r--Documentation/mm/slub.rst33
-rw-r--r--include/linux/slab.h2
-rw-r--r--mm/slab_common.c3
-rw-r--r--mm/slub.c154
4 files changed, 142 insertions, 50 deletions
diff --git a/Documentation/mm/slub.rst b/Documentation/mm/slub.rst
index 43063ade737a..4e1578186b4f 100644
--- a/Documentation/mm/slub.rst
+++ b/Documentation/mm/slub.rst
@@ -400,21 +400,30 @@ information:
allocated objects. The output is sorted by frequency of each trace.
Information in the output:
- Number of objects, allocating function, minimal/average/maximal jiffies since alloc,
- pid range of the allocating processes, cpu mask of allocating cpus, and stack trace.
+ Number of objects, allocating function, possible memory wastage of
+ kmalloc objects(total/per-object), minimal/average/maximal jiffies
+ since alloc, pid range of the allocating processes, cpu mask of
+ allocating cpus, numa node mask of origins of memory, and stack trace.
Example:::
- 1085 populate_error_injection_list+0x97/0x110 age=166678/166680/166682 pid=1 cpus=1::
- __slab_alloc+0x6d/0x90
- kmem_cache_alloc_trace+0x2eb/0x300
- populate_error_injection_list+0x97/0x110
- init_error_injection+0x1b/0x71
- do_one_initcall+0x5f/0x2d0
- kernel_init_freeable+0x26f/0x2d7
- kernel_init+0xe/0x118
- ret_from_fork+0x22/0x30
-
+ 338 pci_alloc_dev+0x2c/0xa0 waste=521872/1544 age=290837/291891/293509 pid=1 cpus=106 nodes=0-1
+ __kmem_cache_alloc_node+0x11f/0x4e0
+ kmalloc_trace+0x26/0xa0
+ pci_alloc_dev+0x2c/0xa0
+ pci_scan_single_device+0xd2/0x150
+ pci_scan_slot+0xf7/0x2d0
+ pci_scan_child_bus_extend+0x4e/0x360
+ acpi_pci_root_create+0x32e/0x3b0
+ pci_acpi_scan_root+0x2b9/0x2d0
+ acpi_pci_root_add.cold.11+0x110/0xb0a
+ acpi_bus_attach+0x262/0x3f0
+ device_for_each_child+0xb7/0x110
+ acpi_dev_for_each_child+0x77/0xa0
+ acpi_bus_attach+0x108/0x3f0
+ device_for_each_child+0xb7/0x110
+ acpi_dev_for_each_child+0x77/0xa0
+ acpi_bus_attach+0x108/0x3f0
2. free_traces::
diff --git a/include/linux/slab.h b/include/linux/slab.h
index 0fefdf528e0d..a713b0e5bbcd 100644
--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -29,6 +29,8 @@
#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
/* DEBUG: Poison objects */
#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
+/* Indicate a kmalloc slab */
+#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
/* Align objs on cache lines */
#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
/* Use GFP_DMA memory */
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 17996649cfe3..a2c8b937b14e 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -649,7 +649,8 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name,
if (!s)
panic("Out of memory when creating slab %s\n", name);
- create_boot_cache(s, name, size, flags, useroffset, usersize);
+ create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
+ usersize);
kasan_cache_create_kmalloc(s);
list_add(&s->list, &slab_caches);
s->refcount = 1;
diff --git a/mm/slub.c b/mm/slub.c
index d9650f2ca776..a8a3e7d6d6aa 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -194,11 +194,24 @@ DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
#endif /* CONFIG_SLUB_DEBUG */
+/* Structure holding parameters for get_partial() call chain */
+struct partial_context {
+ struct slab **slab;
+ gfp_t flags;
+ unsigned int orig_size;
+};
+
static inline bool kmem_cache_debug(struct kmem_cache *s)
{
return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
}
+static inline bool slub_debug_orig_size(struct kmem_cache *s)
+{
+ return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
+ (s->flags & SLAB_KMALLOC));
+}
+
void *fixup_red_left(struct kmem_cache *s, void *p)
{
if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
@@ -785,6 +798,39 @@ static void print_slab_info(const struct slab *slab)
folio_flags(folio, 0));
}
+/*
+ * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
+ * family will round up the real request size to these fixed ones, so
+ * there could be an extra area than what is requested. Save the original
+ * request size in the meta data area, for better debug and sanity check.
+ */
+static inline void set_orig_size(struct kmem_cache *s,
+ void *object, unsigned int orig_size)
+{
+ void *p = kasan_reset_tag(object);
+
+ if (!slub_debug_orig_size(s))
+ return;
+
+ p += get_info_end(s);
+ p += sizeof(struct track) * 2;
+
+ *(unsigned int *)p = orig_size;
+}
+
+static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
+{
+ void *p = kasan_reset_tag(object);
+
+ if (!slub_debug_orig_size(s))
+ return s->object_size;
+
+ p += get_info_end(s);
+ p += sizeof(struct track) * 2;
+
+ return *(unsigned int *)p;
+}
+
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
struct va_format vaf;
@@ -844,6 +890,9 @@ static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
if (s->flags & SLAB_STORE_USER)
off += 2 * sizeof(struct track);
+ if (slub_debug_orig_size(s))
+ off += sizeof(unsigned int);
+
off += kasan_metadata_size(s);
if (off != size_from_object(s))
@@ -977,7 +1026,8 @@ skip_bug_print:
*
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
- * C. Padding to reach required alignment boundary or at minimum
+ * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
+ * D. Padding to reach required alignment boundary or at minimum
* one word if debugging is on to be able to detect writes
* before the word boundary.
*
@@ -995,10 +1045,14 @@ static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
{
unsigned long off = get_info_end(s); /* The end of info */
- if (s->flags & SLAB_STORE_USER)
+ if (s->flags & SLAB_STORE_USER) {
/* We also have user information there */
off += 2 * sizeof(struct track);
+ if (s->flags & SLAB_KMALLOC)
+ off += sizeof(unsigned int);
+ }
+
off += kasan_metadata_size(s);
if (size_from_object(s) == off)
@@ -1293,7 +1347,7 @@ static inline int alloc_consistency_checks(struct kmem_cache *s,
}
static noinline int alloc_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *object)
+ struct slab *slab, void *object, int orig_size)
{
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!alloc_consistency_checks(s, slab, object))
@@ -1302,6 +1356,7 @@ static noinline int alloc_debug_processing(struct kmem_cache *s,
/* Success. Perform special debug activities for allocs */
trace(s, slab, object, 1);
+ set_orig_size(s, object, orig_size);
init_object(s, object, SLUB_RED_ACTIVE);
return 1;
@@ -1570,7 +1625,7 @@ static inline
void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
static inline int alloc_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *object) { return 0; }
+ struct slab *slab, void *object, int orig_size) { return 0; }
static inline void free_debug_processing(
struct kmem_cache *s, struct slab *slab,
@@ -2013,7 +2068,7 @@ static inline void remove_partial(struct kmem_cache_node *n,
* it to full list if it was the last free object.
*/
static void *alloc_single_from_partial(struct kmem_cache *s,
- struct kmem_cache_node *n, struct slab *slab)
+ struct kmem_cache_node *n, struct slab *slab, int orig_size)
{
void *object;
@@ -2023,7 +2078,7 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
slab->freelist = get_freepointer(s, object);
slab->inuse++;
- if (!alloc_debug_processing(s, slab, object)) {
+ if (!alloc_debug_processing(s, slab, object, orig_size)) {
remove_partial(n, slab);
return NULL;
}
@@ -2042,7 +2097,7 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
* and put the slab to the partial (or full) list.
*/
static void *alloc_single_from_new_slab(struct kmem_cache *s,
- struct slab *slab)
+ struct slab *slab, int orig_size)
{
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
@@ -2054,7 +2109,7 @@ static void *alloc_single_from_new_slab(struct kmem_cache *s,
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
- if (!alloc_debug_processing(s, slab, object))
+ if (!alloc_debug_processing(s, slab, object, orig_size))
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
@@ -2132,7 +2187,7 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
* Try to allocate a partial slab from a specific node.
*/
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
- struct slab **ret_slab, gfp_t gfpflags)
+ struct partial_context *pc)
{
struct slab *slab, *slab2;
void *object = NULL;
@@ -2152,11 +2207,12 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
void *t;
- if (!pfmemalloc_match(slab, gfpflags))
+ if (!pfmemalloc_match(slab, pc->flags))
continue;
if (kmem_cache_debug(s)) {
- object = alloc_single_from_partial(s, n, slab);
+ object = alloc_single_from_partial(s, n, slab,
+ pc->orig_size);
if (object)
break;
continue;
@@ -2167,7 +2223,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
break;
if (!object) {
- *ret_slab = slab;
+ *pc->slab = slab;
stat(s, ALLOC_FROM_PARTIAL);
object = t;
} else {
@@ -2191,14 +2247,13 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
/*
* Get a slab from somewhere. Search in increasing NUMA distances.
*/
-static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
- struct slab **ret_slab)
+static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
{
#ifdef CONFIG_NUMA
struct zonelist *zonelist;
struct zoneref *z;
struct zone *zone;
- enum zone_type highest_zoneidx = gfp_zone(flags);
+ enum zone_type highest_zoneidx = gfp_zone(pc->flags);
void *object;
unsigned int cpuset_mems_cookie;
@@ -2226,15 +2281,15 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
do {
cpuset_mems_cookie = read_mems_allowed_begin();
- zonelist = node_zonelist(mempolicy_slab_node(), flags);
+ zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
struct kmem_cache_node *n;
n = get_node(s, zone_to_nid(zone));
- if (n && cpuset_zone_allowed(zone, flags) &&
+ if (n && cpuset_zone_allowed(zone, pc->flags) &&
n->nr_partial > s->min_partial) {
- object = get_partial_node(s, n, ret_slab, flags);
+ object = get_partial_node(s, n, pc);
if (object) {
/*
* Don't check read_mems_allowed_retry()
@@ -2255,8 +2310,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
/*
* Get a partial slab, lock it and return it.
*/
-static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
- struct slab **ret_slab)
+static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
{
void *object;
int searchnode = node;
@@ -2264,11 +2318,11 @@ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
if (node == NUMA_NO_NODE)
searchnode = numa_mem_id();
- object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
+ object = get_partial_node(s, get_node(s, searchnode), pc);
if (object || node != NUMA_NO_NODE)
return object;
- return get_any_partial(s, flags, ret_slab);
+ return get_any_partial(s, pc);
}
#ifdef CONFIG_PREEMPTION
@@ -2989,11 +3043,12 @@ static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
* already disabled (which is the case for bulk allocation).
*/
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
+ unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
void *freelist;
struct slab *slab;
unsigned long flags;
+ struct partial_context pc;
stat(s, ALLOC_SLOWPATH);
@@ -3107,7 +3162,10 @@ new_slab:
new_objects:
- freelist = get_partial(s, gfpflags, node, &slab);
+ pc.flags = gfpflags;
+ pc.slab = &slab;
+ pc.orig_size = orig_size;
+ freelist = get_partial(s, node, &pc);
if (freelist)
goto check_new_slab;
@@ -3123,7 +3181,7 @@ new_objects:
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
- freelist = alloc_single_from_new_slab(s, slab);
+ freelist = alloc_single_from_new_slab(s, slab, orig_size);
if (unlikely(!freelist))
goto new_objects;
@@ -3155,6 +3213,7 @@ check_new_slab:
*/
if (s->flags & SLAB_STORE_USER)
set_track(s, freelist, TRACK_ALLOC, addr);
+
return freelist;
}
@@ -3197,7 +3256,7 @@ retry_load_slab:
* pointer.
*/
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
+ unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
void *p;
@@ -3210,7 +3269,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
- p = ___slab_alloc(s, gfpflags, node, addr, c);
+ p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
@@ -3295,7 +3354,7 @@ redo:
if (!USE_LOCKLESS_FAST_PATH() ||
unlikely(!object || !slab || !node_match(slab, node))) {
- object = __slab_alloc(s, gfpflags, node, addr, c);
+ object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
} else {
void *next_object = get_freepointer_safe(s, object);
@@ -3793,7 +3852,7 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
* of re-populating per CPU c->freelist
*/
p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
- _RET_IP_, c);
+ _RET_IP_, c, s->object_size);
if (unlikely(!p[i]))
goto error;
@@ -4196,12 +4255,17 @@ static int calculate_sizes(struct kmem_cache *s)
}
#ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER)
+ if (flags & SLAB_STORE_USER) {
/*
* Need to store information about allocs and frees after
* the object.
*/
size += 2 * sizeof(struct track);
+
+ /* Save the original kmalloc request size */
+ if (flags & SLAB_KMALLOC)
+ size += sizeof(unsigned int);
+ }
#endif
kasan_cache_create(s, &size, &s->flags);
@@ -5146,6 +5210,7 @@ struct location {
depot_stack_handle_t handle;
unsigned long count;
unsigned long addr;
+ unsigned long waste;
long long sum_time;
long min_time;
long max_time;
@@ -5192,13 +5257,15 @@ static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
}
static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track)
+ const struct track *track,
+ unsigned int orig_size)
{
long start, end, pos;
struct location *l;
- unsigned long caddr, chandle;
+ unsigned long caddr, chandle, cwaste;
unsigned long age = jiffies - track->when;
depot_stack_handle_t handle = 0;
+ unsigned int waste = s->object_size - orig_size;
#ifdef CONFIG_STACKDEPOT
handle = READ_ONCE(track->handle);
@@ -5216,11 +5283,13 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
if (pos == end)
break;
- caddr = t->loc[pos].addr;
- chandle = t->loc[pos].handle;
- if ((track->addr == caddr) && (handle == chandle)) {
+ l = &t->loc[pos];
+ caddr = l->addr;
+ chandle = l->handle;
+ cwaste = l->waste;
+ if ((track->addr == caddr) && (handle == chandle) &&
+ (waste == cwaste)) {
- l = &t->loc[pos];
l->count++;
if (track->when) {
l->sum_time += age;
@@ -5245,6 +5314,9 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
end = pos;
else if (track->addr == caddr && handle < chandle)
end = pos;
+ else if (track->addr == caddr && handle == chandle &&
+ waste < cwaste)
+ end = pos;
else
start = pos;
}
@@ -5268,6 +5340,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
l->min_pid = track->pid;
l->max_pid = track->pid;
l->handle = handle;
+ l->waste = waste;
cpumask_clear(to_cpumask(l->cpus));
cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
nodes_clear(l->nodes);
@@ -5280,13 +5353,16 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
unsigned long *obj_map)
{
void *addr = slab_address(slab);
+ bool is_alloc = (alloc == TRACK_ALLOC);
void *p;
__fill_map(obj_map, s, slab);
for_each_object(p, s, addr, slab->objects)
if (!test_bit(__obj_to_index(s, addr, p), obj_map))
- add_location(t, s, get_track(s, p, alloc));
+ add_location(t, s, get_track(s, p, alloc),
+ is_alloc ? get_orig_size(s, p) :
+ s->object_size);
}
#endif /* CONFIG_DEBUG_FS */
#endif /* CONFIG_SLUB_DEBUG */
@@ -6156,6 +6232,10 @@ static int slab_debugfs_show(struct seq_file *seq, void *v)
else
seq_puts(seq, "<not-available>");
+ if (l->waste)
+ seq_printf(seq, " waste=%lu/%lu",
+ l->count * l->waste, l->waste);
+
if (l->sum_time != l->min_time) {
seq_printf(seq, " age=%ld/%llu/%ld",
l->min_time, div_u64(l->sum_time, l->count),