1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* tools/testing/selftests/kvm/include/x86_64/processor.h
*
* Copyright (C) 2018, Google LLC.
*/
#ifndef SELFTEST_KVM_PROCESSOR_H
#define SELFTEST_KVM_PROCESSOR_H
#include <assert.h>
#include <stdint.h>
#include <syscall.h>
#include <asm/msr-index.h>
#include <asm/prctl.h>
#include <linux/stringify.h>
#include "../kvm_util.h"
extern bool host_cpu_is_intel;
extern bool host_cpu_is_amd;
#define NMI_VECTOR 0x02
#define X86_EFLAGS_FIXED (1u << 1)
#define X86_CR4_VME (1ul << 0)
#define X86_CR4_PVI (1ul << 1)
#define X86_CR4_TSD (1ul << 2)
#define X86_CR4_DE (1ul << 3)
#define X86_CR4_PSE (1ul << 4)
#define X86_CR4_PAE (1ul << 5)
#define X86_CR4_MCE (1ul << 6)
#define X86_CR4_PGE (1ul << 7)
#define X86_CR4_PCE (1ul << 8)
#define X86_CR4_OSFXSR (1ul << 9)
#define X86_CR4_OSXMMEXCPT (1ul << 10)
#define X86_CR4_UMIP (1ul << 11)
#define X86_CR4_LA57 (1ul << 12)
#define X86_CR4_VMXE (1ul << 13)
#define X86_CR4_SMXE (1ul << 14)
#define X86_CR4_FSGSBASE (1ul << 16)
#define X86_CR4_PCIDE (1ul << 17)
#define X86_CR4_OSXSAVE (1ul << 18)
#define X86_CR4_SMEP (1ul << 20)
#define X86_CR4_SMAP (1ul << 21)
#define X86_CR4_PKE (1ul << 22)
struct xstate_header {
u64 xstate_bv;
u64 xcomp_bv;
u64 reserved[6];
} __attribute__((packed));
struct xstate {
u8 i387[512];
struct xstate_header header;
u8 extended_state_area[0];
} __attribute__ ((packed, aligned (64)));
#define XFEATURE_MASK_FP BIT_ULL(0)
#define XFEATURE_MASK_SSE BIT_ULL(1)
#define XFEATURE_MASK_YMM BIT_ULL(2)
#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
#define XFEATURE_MASK_OPMASK BIT_ULL(5)
#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
XFEATURE_MASK_ZMM_Hi256 | \
XFEATURE_MASK_Hi16_ZMM)
#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
XFEATURE_MASK_XTILE_CFG)
/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
enum cpuid_output_regs {
KVM_CPUID_EAX,
KVM_CPUID_EBX,
KVM_CPUID_ECX,
KVM_CPUID_EDX
};
/*
* Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
* passed by value with no overhead.
*/
struct kvm_x86_cpu_feature {
u32 function;
u16 index;
u8 reg;
u8 bit;
};
#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
({ \
struct kvm_x86_cpu_feature feature = { \
.function = fn, \
.index = idx, \
.reg = KVM_CPUID_##gpr, \
.bit = __bit, \
}; \
\
kvm_static_assert((fn & 0xc0000000) == 0 || \
(fn & 0xc0000000) == 0x40000000 || \
(fn & 0xc0000000) == 0x80000000 || \
(fn & 0xc0000000) == 0xc0000000); \
kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
feature; \
})
/*
* Basic Leafs, a.k.a. Intel defined
*/
#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
/*
* Extended Leafs, a.k.a. AMD defined
*/
#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
/*
* KVM defined paravirt features.
*/
#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
/* Bit 8 apparently isn't used?!?! */
#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
/*
* Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
* value/property as opposed to a single-bit feature. Again, pack the info
* into a 64-bit value to pass by value with no overhead.
*/
struct kvm_x86_cpu_property {
u32 function;
u8 index;
u8 reg;
u8 lo_bit;
u8 hi_bit;
};
#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
({ \
struct kvm_x86_cpu_property property = { \
.function = fn, \
.index = idx, \
.reg = KVM_CPUID_##gpr, \
.lo_bit = low_bit, \
.hi_bit = high_bit, \
}; \
\
kvm_static_assert(low_bit < high_bit); \
kvm_static_assert((fn & 0xc0000000) == 0 || \
(fn & 0xc0000000) == 0x40000000 || \
(fn & 0xc0000000) == 0x80000000 || \
(fn & 0xc0000000) == 0xc0000000); \
kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
property; \
})
#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
/*
* Intel's architectural PMU events are bizarre. They have a "feature" bit
* that indicates the feature is _not_ supported, and a property that states
* the length of the bit mask of unsupported features. A feature is supported
* if the size of the bit mask is larger than the "unavailable" bit, and said
* bit is not set.
*
* Wrap the "unavailable" feature to simplify checking whether or not a given
* architectural event is supported.
*/
struct kvm_x86_pmu_feature {
struct kvm_x86_cpu_feature anti_feature;
};
#define KVM_X86_PMU_FEATURE(name, __bit) \
({ \
struct kvm_x86_pmu_feature feature = { \
.anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \
}; \
\
feature; \
})
#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
static inline unsigned int x86_family(unsigned int eax)
{
unsigned int x86;
x86 = (eax >> 8) & 0xf;
if (x86 == 0xf)
x86 += (eax >> 20) & 0xff;
return x86;
}
static inline unsigned int x86_model(unsigned int eax)
{
return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
}
/* Page table bitfield declarations */
#define PTE_PRESENT_MASK BIT_ULL(0)
#define PTE_WRITABLE_MASK BIT_ULL(1)
#define PTE_USER_MASK BIT_ULL(2)
#define PTE_ACCESSED_MASK BIT_ULL(5)
#define PTE_DIRTY_MASK BIT_ULL(6)
#define PTE_LARGE_MASK BIT_ULL(7)
#define PTE_GLOBAL_MASK BIT_ULL(8)
#define PTE_NX_MASK BIT_ULL(63)
#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
#define PAGE_SHIFT 12
#define PAGE_SIZE (1ULL << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
/* General Registers in 64-Bit Mode */
struct gpr64_regs {
u64 rax;
u64 rcx;
u64 rdx;
u64 rbx;
u64 rsp;
u64 rbp;
u64 rsi;
u64 rdi;
u64 r8;
u64 r9;
u64 r10;
u64 r11;
u64 r12;
u64 r13;
u64 r14;
u64 r15;
};
struct desc64 {
uint16_t limit0;
uint16_t base0;
unsigned base1:8, type:4, s:1, dpl:2, p:1;
unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
uint32_t base3;
uint32_t zero1;
} __attribute__((packed));
struct desc_ptr {
uint16_t size;
uint64_t address;
} __attribute__((packed));
struct kvm_x86_state {
struct kvm_xsave *xsave;
struct kvm_vcpu_events events;
struct kvm_mp_state mp_state;
struct kvm_regs regs;
struct kvm_xcrs xcrs;
struct kvm_sregs sregs;
struct kvm_debugregs debugregs;
union {
struct kvm_nested_state nested;
char nested_[16384];
};
struct kvm_msrs msrs;
};
static inline uint64_t get_desc64_base(const struct desc64 *desc)
{
return ((uint64_t)desc->base3 << 32) |
(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
}
static inline uint64_t rdtsc(void)
{
uint32_t eax, edx;
uint64_t tsc_val;
/*
* The lfence is to wait (on Intel CPUs) until all previous
* instructions have been executed. If software requires RDTSC to be
* executed prior to execution of any subsequent instruction, it can
* execute LFENCE immediately after RDTSC
*/
__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
tsc_val = ((uint64_t)edx) << 32 | eax;
return tsc_val;
}
static inline uint64_t rdtscp(uint32_t *aux)
{
uint32_t eax, edx;
__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
return ((uint64_t)edx) << 32 | eax;
}
static inline uint64_t rdmsr(uint32_t msr)
{
uint32_t a, d;
__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
return a | ((uint64_t) d << 32);
}
static inline void wrmsr(uint32_t msr, uint64_t value)
{
uint32_t a = value;
uint32_t d = value >> 32;
__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
}
static inline uint16_t inw(uint16_t port)
{
uint16_t tmp;
__asm__ __volatile__("in %%dx, %%ax"
: /* output */ "=a" (tmp)
: /* input */ "d" (port));
return tmp;
}
static inline uint16_t get_es(void)
{
uint16_t es;
__asm__ __volatile__("mov %%es, %[es]"
: /* output */ [es]"=rm"(es));
return es;
}
static inline uint16_t get_cs(void)
{
uint16_t cs;
__asm__ __volatile__("mov %%cs, %[cs]"
: /* output */ [cs]"=rm"(cs));
return cs;
}
static inline uint16_t get_ss(void)
{
uint16_t ss;
__asm__ __volatile__("mov %%ss, %[ss]"
: /* output */ [ss]"=rm"(ss));
return ss;
}
static inline uint16_t get_ds(void)
{
uint16_t ds;
__asm__ __volatile__("mov %%ds, %[ds]"
: /* output */ [ds]"=rm"(ds));
return ds;
}
static inline uint16_t get_fs(void)
{
uint16_t fs;
__asm__ __volatile__("mov %%fs, %[fs]"
: /* output */ [fs]"=rm"(fs));
return fs;
}
static inline uint16_t get_gs(void)
{
uint16_t gs;
__asm__ __volatile__("mov %%gs, %[gs]"
: /* output */ [gs]"=rm"(gs));
return gs;
}
static inline uint16_t get_tr(void)
{
uint16_t tr;
__asm__ __volatile__("str %[tr]"
: /* output */ [tr]"=rm"(tr));
return tr;
}
static inline uint64_t get_cr0(void)
{
uint64_t cr0;
__asm__ __volatile__("mov %%cr0, %[cr0]"
: /* output */ [cr0]"=r"(cr0));
return cr0;
}
static inline uint64_t get_cr3(void)
{
uint64_t cr3;
__asm__ __volatile__("mov %%cr3, %[cr3]"
: /* output */ [cr3]"=r"(cr3));
return cr3;
}
static inline uint64_t get_cr4(void)
{
uint64_t cr4;
__asm__ __volatile__("mov %%cr4, %[cr4]"
: /* output */ [cr4]"=r"(cr4));
return cr4;
}
static inline void set_cr4(uint64_t val)
{
__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
}
static inline u64 xgetbv(u32 index)
{
u32 eax, edx;
__asm__ __volatile__("xgetbv;"
: "=a" (eax), "=d" (edx)
: "c" (index));
return eax | ((u64)edx << 32);
}
static inline void xsetbv(u32 index, u64 value)
{
u32 eax = value;
u32 edx = value >> 32;
__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
}
static inline struct desc_ptr get_gdt(void)
{
struct desc_ptr gdt;
__asm__ __volatile__("sgdt %[gdt]"
: /* output */ [gdt]"=m"(gdt));
return gdt;
}
static inline struct desc_ptr get_idt(void)
{
struct desc_ptr idt;
__asm__ __volatile__("sidt %[idt]"
: /* output */ [idt]"=m"(idt));
return idt;
}
static inline void outl(uint16_t port, uint32_t value)
{
__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
}
static inline void __cpuid(uint32_t function, uint32_t index,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
*eax = function;
*ecx = index;
asm volatile("cpuid"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx)
: "memory");
}
static inline void cpuid(uint32_t function,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
return __cpuid(function, 0, eax, ebx, ecx, edx);
}
static inline uint32_t this_cpu_fms(void)
{
uint32_t eax, ebx, ecx, edx;
cpuid(1, &eax, &ebx, &ecx, &edx);
return eax;
}
static inline uint32_t this_cpu_family(void)
{
return x86_family(this_cpu_fms());
}
static inline uint32_t this_cpu_model(void)
{
return x86_model(this_cpu_fms());
}
static inline bool this_cpu_vendor_string_is(const char *vendor)
{
const uint32_t *chunk = (const uint32_t *)vendor;
uint32_t eax, ebx, ecx, edx;
cpuid(0, &eax, &ebx, &ecx, &edx);
return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
}
static inline bool this_cpu_is_intel(void)
{
return this_cpu_vendor_string_is("GenuineIntel");
}
/*
* Exclude early K5 samples with a vendor string of "AMDisbetter!"
*/
static inline bool this_cpu_is_amd(void)
{
return this_cpu_vendor_string_is("AuthenticAMD");
}
static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
uint8_t reg, uint8_t lo, uint8_t hi)
{
uint32_t gprs[4];
__cpuid(function, index,
&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
return (gprs[reg] & GENMASK(hi, lo)) >> lo;
}
static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
{
return __this_cpu_has(feature.function, feature.index,
feature.reg, feature.bit, feature.bit);
}
static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
{
return __this_cpu_has(property.function, property.index,
property.reg, property.lo_bit, property.hi_bit);
}
static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
{
uint32_t max_leaf;
switch (property.function & 0xc0000000) {
case 0:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
break;
case 0x40000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
break;
case 0x80000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
break;
case 0xc0000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
}
return max_leaf >= property.function;
}
static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
{
uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
return nr_bits > feature.anti_feature.bit &&
!this_cpu_has(feature.anti_feature);
}
static __always_inline uint64_t this_cpu_supported_xcr0(void)
{
if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
return 0;
return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
}
typedef u32 __attribute__((vector_size(16))) sse128_t;
#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
static inline void read_sse_reg(int reg, sse128_t *data)
{
switch (reg) {
case 0:
asm("movdqa %%xmm0, %0" : "=m"(*data));
break;
case 1:
asm("movdqa %%xmm1, %0" : "=m"(*data));
break;
case 2:
asm("movdqa %%xmm2, %0" : "=m"(*data));
break;
case 3:
asm("movdqa %%xmm3, %0" : "=m"(*data));
break;
case 4:
asm("movdqa %%xmm4, %0" : "=m"(*data));
break;
case 5:
asm("movdqa %%xmm5, %0" : "=m"(*data));
break;
case 6:
asm("movdqa %%xmm6, %0" : "=m"(*data));
break;
case 7:
asm("movdqa %%xmm7, %0" : "=m"(*data));
break;
default:
BUG();
}
}
static inline void write_sse_reg(int reg, const sse128_t *data)
{
switch (reg) {
case 0:
asm("movdqa %0, %%xmm0" : : "m"(*data));
break;
case 1:
asm("movdqa %0, %%xmm1" : : "m"(*data));
break;
case 2:
asm("movdqa %0, %%xmm2" : : "m"(*data));
break;
case 3:
asm("movdqa %0, %%xmm3" : : "m"(*data));
break;
case 4:
asm("movdqa %0, %%xmm4" : : "m"(*data));
break;
case 5:
asm("movdqa %0, %%xmm5" : : "m"(*data));
break;
case 6:
asm("movdqa %0, %%xmm6" : : "m"(*data));
break;
case 7:
asm("movdqa %0, %%xmm7" : : "m"(*data));
break;
default:
BUG();
}
}
static inline void cpu_relax(void)
{
asm volatile("rep; nop" ::: "memory");
}
#define ud2() \
__asm__ __volatile__( \
"ud2\n" \
)
#define hlt() \
__asm__ __volatile__( \
"hlt\n" \
)
struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
void kvm_x86_state_cleanup(struct kvm_x86_state *state);
const struct kvm_msr_list *kvm_get_msr_index_list(void);
const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
uint64_t kvm_get_feature_msr(uint64_t msr_index);
static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
struct kvm_msrs *msrs)
{
int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
TEST_ASSERT(r == msrs->nmsrs,
"KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
}
static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
{
int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
TEST_ASSERT(r == msrs->nmsrs,
"KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
}
static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
struct kvm_debugregs *debugregs)
{
vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
}
static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
struct kvm_debugregs *debugregs)
{
vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
}
static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
}
static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
}
static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
}
static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
struct kvm_xcrs *xcrs)
{
vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
}
static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
{
vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
}
const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
uint32_t function, uint32_t index);
const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
static inline uint32_t kvm_cpu_fms(void)
{
return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
}
static inline uint32_t kvm_cpu_family(void)
{
return x86_family(kvm_cpu_fms());
}
static inline uint32_t kvm_cpu_model(void)
{
return x86_model(kvm_cpu_fms());
}
bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_feature feature);
static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
{
return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
}
uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_property property);
static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
{
return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
}
static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
{
uint32_t max_leaf;
switch (property.function & 0xc0000000) {
case 0:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
break;
case 0x40000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
break;
case 0x80000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
break;
case 0xc0000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
}
return max_leaf >= property.function;
}
static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
{
uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
return nr_bits > feature.anti_feature.bit &&
!kvm_cpu_has(feature.anti_feature);
}
static inline size_t kvm_cpuid2_size(int nr_entries)
{
return sizeof(struct kvm_cpuid2) +
sizeof(struct kvm_cpuid_entry2) * nr_entries;
}
/*
* Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
* entries sized to hold @nr_entries. The caller is responsible for freeing
* the struct.
*/
static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
{
struct kvm_cpuid2 *cpuid;
cpuid = malloc(kvm_cpuid2_size(nr_entries));
TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
cpuid->nent = nr_entries;
return cpuid;
}
void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
uint32_t function,
uint32_t index)
{
return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
function, index);
}
static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
uint32_t function)
{
return __vcpu_get_cpuid_entry(vcpu, function, 0);
}
static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
{
int r;
TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
if (r)
return r;
/* On success, refresh the cache to pick up adjustments made by KVM. */
vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
return 0;
}
static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
{
TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
/* Refresh the cache to pick up adjustments made by KVM. */
vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
}
void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature,
bool set);
static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature)
{
vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
}
static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature)
{
vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
}
uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
/*
* Assert on an MSR access(es) and pretty print the MSR name when possible.
* Note, the caller provides the stringified name so that the name of macro is
* printed, not the value the macro resolves to (due to macro expansion).
*/
#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
do { \
if (__builtin_constant_p(msr)) { \
TEST_ASSERT(cond, fmt, str, args); \
} else if (!(cond)) { \
char buf[16]; \
\
snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
TEST_ASSERT(cond, fmt, buf, args); \
} \
} while (0)
/*
* Returns true if KVM should return the last written value when reading an MSR
* from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
* is changing, etc. This is NOT an exhaustive list! The intent is to filter
* out MSRs that are not durable _and_ that a selftest wants to write.
*/
static inline bool is_durable_msr(uint32_t msr)
{
return msr != MSR_IA32_TSC;
}
#define vcpu_set_msr(vcpu, msr, val) \
do { \
uint64_t r, v = val; \
\
TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
if (!is_durable_msr(msr)) \
break; \
r = vcpu_get_msr(vcpu, msr); \
TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
} while (0)
void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
bool vm_is_unrestricted_guest(struct kvm_vm *vm);
struct ex_regs {
uint64_t rax, rcx, rdx, rbx;
uint64_t rbp, rsi, rdi;
uint64_t r8, r9, r10, r11;
uint64_t r12, r13, r14, r15;
uint64_t vector;
uint64_t error_code;
uint64_t rip;
uint64_t cs;
uint64_t rflags;
};
struct idt_entry {
uint16_t offset0;
uint16_t selector;
uint16_t ist : 3;
uint16_t : 5;
uint16_t type : 4;
uint16_t : 1;
uint16_t dpl : 2;
uint16_t p : 1;
uint16_t offset1;
uint32_t offset2; uint32_t reserved;
};
void vm_init_descriptor_tables(struct kvm_vm *vm);
void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
void (*handler)(struct ex_regs *));
/* If a toddler were to say "abracadabra". */
#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
/*
* KVM selftest exception fixup uses registers to coordinate with the exception
* handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
* per-CPU data. Using only registers avoids having to map memory into the
* guest, doesn't require a valid, stable GS.base, and reduces the risk of
* for recursive faults when accessing memory in the handler. The downside to
* using registers is that it restricts what registers can be used by the actual
* instruction. But, selftests are 64-bit only, making register* pressure a
* minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
* by the callee, and except for r11 are not implicit parameters to any
* instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
* parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
* is higher priority than testing non-faulting SYSCALL/SYSRET.
*
* Note, the fixup handler deliberately does not handle #DE, i.e. the vector
* is guaranteed to be non-zero on fault.
*
* REGISTER INPUTS:
* r9 = MAGIC
* r10 = RIP
* r11 = new RIP on fault
*
* REGISTER OUTPUTS:
* r9 = exception vector (non-zero)
* r10 = error code
*/
#define KVM_ASM_SAFE(insn) \
"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
"lea 1f(%%rip), %%r10\n\t" \
"lea 2f(%%rip), %%r11\n\t" \
"1: " insn "\n\t" \
"xor %%r9, %%r9\n\t" \
"2:\n\t" \
"mov %%r9b, %[vector]\n\t" \
"mov %%r10, %[error_code]\n\t"
#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
#define kvm_asm_safe(insn, inputs...) \
({ \
uint64_t ign_error_code; \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
#define kvm_asm_safe_ec(insn, error_code, inputs...) \
({ \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
{
uint64_t error_code;
uint8_t vector;
uint32_t a, d;
asm volatile(KVM_ASM_SAFE("rdmsr")
: "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
: "c"(msr)
: KVM_ASM_SAFE_CLOBBERS);
*val = (uint64_t)a | ((uint64_t)d << 32);
return vector;
}
static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
{
return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
}
static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
{
u32 eax = value;
u32 edx = value >> 32;
return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
}
bool kvm_is_tdp_enabled(void);
uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
int *level);
uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
uint64_t a3);
uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
#define vm_xsave_require_permission(xfeature) \
__vm_xsave_require_permission(xfeature, #xfeature)
enum pg_level {
PG_LEVEL_NONE,
PG_LEVEL_4K,
PG_LEVEL_2M,
PG_LEVEL_1G,
PG_LEVEL_512G,
PG_LEVEL_NUM
};
#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint64_t nr_bytes, int level);
/*
* Basic CPU control in CR0
*/
#define X86_CR0_PE (1UL<<0) /* Protection Enable */
#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
#define X86_CR0_EM (1UL<<2) /* Emulation */
#define X86_CR0_TS (1UL<<3) /* Task Switched */
#define X86_CR0_ET (1UL<<4) /* Extension Type */
#define X86_CR0_NE (1UL<<5) /* Numeric Error */
#define X86_CR0_WP (1UL<<16) /* Write Protect */
#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
#define X86_CR0_NW (1UL<<29) /* Not Write-through */
#define X86_CR0_CD (1UL<<30) /* Cache Disable */
#define X86_CR0_PG (1UL<<31) /* Paging */
#define PFERR_PRESENT_BIT 0
#define PFERR_WRITE_BIT 1
#define PFERR_USER_BIT 2
#define PFERR_RSVD_BIT 3
#define PFERR_FETCH_BIT 4
#define PFERR_PK_BIT 5
#define PFERR_SGX_BIT 15
#define PFERR_GUEST_FINAL_BIT 32
#define PFERR_GUEST_PAGE_BIT 33
#define PFERR_IMPLICIT_ACCESS_BIT 48
#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
#endif /* SELFTEST_KVM_PROCESSOR_H */
|