summaryrefslogtreecommitdiff
path: root/kernel/dma/swiotlb.c
blob: fe1ccb53596fb8f6f9c55af5e05a0e19dae58e4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Dynamic DMA mapping support.
 *
 * This implementation is a fallback for platforms that do not support
 * I/O TLBs (aka DMA address translation hardware).
 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
 * Copyright (C) 2000, 2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 *			unnecessary i-cache flushing.
 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 * 08/12/11 beckyb	Add highmem support
 */

#define pr_fmt(fmt) "software IO TLB: " fmt

#include <linux/cache.h>
#include <linux/cc_platform.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/dma-direct.h>
#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/iommu-helper.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/pfn.h>
#include <linux/rculist.h>
#include <linux/scatterlist.h>
#include <linux/set_memory.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/swiotlb.h>
#include <linux/types.h>
#ifdef CONFIG_DMA_RESTRICTED_POOL
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
#include <linux/slab.h>
#endif

#define CREATE_TRACE_POINTS
#include <trace/events/swiotlb.h>

#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))

/*
 * Minimum IO TLB size to bother booting with.  Systems with mainly
 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 * allocate a contiguous 1MB, we're probably in trouble anyway.
 */
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)

#define INVALID_PHYS_ADDR (~(phys_addr_t)0)

/**
 * struct io_tlb_slot - IO TLB slot descriptor
 * @orig_addr:	The original address corresponding to a mapped entry.
 * @alloc_size:	Size of the allocated buffer.
 * @list:	The free list describing the number of free entries available
 *		from each index.
 * @pad_slots:	Number of preceding padding slots. Valid only in the first
 *		allocated non-padding slot.
 */
struct io_tlb_slot {
	phys_addr_t orig_addr;
	size_t alloc_size;
	unsigned short list;
	unsigned short pad_slots;
};

static bool swiotlb_force_bounce;
static bool swiotlb_force_disable;

#ifdef CONFIG_SWIOTLB_DYNAMIC

static void swiotlb_dyn_alloc(struct work_struct *work);

static struct io_tlb_mem io_tlb_default_mem = {
	.lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
	.pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
	.dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
					swiotlb_dyn_alloc),
};

#else  /* !CONFIG_SWIOTLB_DYNAMIC */

static struct io_tlb_mem io_tlb_default_mem;

#endif	/* CONFIG_SWIOTLB_DYNAMIC */

static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
static unsigned long default_nareas;

/**
 * struct io_tlb_area - IO TLB memory area descriptor
 *
 * This is a single area with a single lock.
 *
 * @used:	The number of used IO TLB block.
 * @index:	The slot index to start searching in this area for next round.
 * @lock:	The lock to protect the above data structures in the map and
 *		unmap calls.
 */
struct io_tlb_area {
	unsigned long used;
	unsigned int index;
	spinlock_t lock;
};

/*
 * Round up number of slabs to the next power of 2. The last area is going
 * be smaller than the rest if default_nslabs is not power of two.
 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
 * otherwise a segment may span two or more areas. It conflicts with free
 * contiguous slots tracking: free slots are treated contiguous no matter
 * whether they cross an area boundary.
 *
 * Return true if default_nslabs is rounded up.
 */
static bool round_up_default_nslabs(void)
{
	if (!default_nareas)
		return false;

	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
	else if (is_power_of_2(default_nslabs))
		return false;
	default_nslabs = roundup_pow_of_two(default_nslabs);
	return true;
}

/**
 * swiotlb_adjust_nareas() - adjust the number of areas and slots
 * @nareas:	Desired number of areas. Zero is treated as 1.
 *
 * Adjust the default number of areas in a memory pool.
 * The default size of the memory pool may also change to meet minimum area
 * size requirements.
 */
static void swiotlb_adjust_nareas(unsigned int nareas)
{
	if (!nareas)
		nareas = 1;
	else if (!is_power_of_2(nareas))
		nareas = roundup_pow_of_two(nareas);

	default_nareas = nareas;

	pr_info("area num %d.\n", nareas);
	if (round_up_default_nslabs())
		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
			(default_nslabs << IO_TLB_SHIFT) >> 20);
}

/**
 * limit_nareas() - get the maximum number of areas for a given memory pool size
 * @nareas:	Desired number of areas.
 * @nslots:	Total number of slots in the memory pool.
 *
 * Limit the number of areas to the maximum possible number of areas in
 * a memory pool of the given size.
 *
 * Return: Maximum possible number of areas.
 */
static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
{
	if (nslots < nareas * IO_TLB_SEGSIZE)
		return nslots / IO_TLB_SEGSIZE;
	return nareas;
}

static int __init
setup_io_tlb_npages(char *str)
{
	if (isdigit(*str)) {
		/* avoid tail segment of size < IO_TLB_SEGSIZE */
		default_nslabs =
			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
	}
	if (*str == ',')
		++str;
	if (isdigit(*str))
		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
	if (*str == ',')
		++str;
	if (!strcmp(str, "force"))
		swiotlb_force_bounce = true;
	else if (!strcmp(str, "noforce"))
		swiotlb_force_disable = true;

	return 0;
}
early_param("swiotlb", setup_io_tlb_npages);

unsigned long swiotlb_size_or_default(void)
{
	return default_nslabs << IO_TLB_SHIFT;
}

void __init swiotlb_adjust_size(unsigned long size)
{
	/*
	 * If swiotlb parameter has not been specified, give a chance to
	 * architectures such as those supporting memory encryption to
	 * adjust/expand SWIOTLB size for their use.
	 */
	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
		return;

	size = ALIGN(size, IO_TLB_SIZE);
	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
	if (round_up_default_nslabs())
		size = default_nslabs << IO_TLB_SHIFT;
	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
}

void swiotlb_print_info(void)
{
	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;

	if (!mem->nslabs) {
		pr_warn("No low mem\n");
		return;
	}

	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
}

static inline unsigned long io_tlb_offset(unsigned long val)
{
	return val & (IO_TLB_SEGSIZE - 1);
}

static inline unsigned long nr_slots(u64 val)
{
	return DIV_ROUND_UP(val, IO_TLB_SIZE);
}

/*
 * Early SWIOTLB allocation may be too early to allow an architecture to
 * perform the desired operations.  This function allows the architecture to
 * call SWIOTLB when the operations are possible.  It needs to be called
 * before the SWIOTLB memory is used.
 */
void __init swiotlb_update_mem_attributes(void)
{
	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
	unsigned long bytes;

	if (!mem->nslabs || mem->late_alloc)
		return;
	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
	set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
}

static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
		unsigned long nslabs, bool late_alloc, unsigned int nareas)
{
	void *vaddr = phys_to_virt(start);
	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;

	mem->nslabs = nslabs;
	mem->start = start;
	mem->end = mem->start + bytes;
	mem->late_alloc = late_alloc;
	mem->nareas = nareas;
	mem->area_nslabs = nslabs / mem->nareas;

	for (i = 0; i < mem->nareas; i++) {
		spin_lock_init(&mem->areas[i].lock);
		mem->areas[i].index = 0;
		mem->areas[i].used = 0;
	}

	for (i = 0; i < mem->nslabs; i++) {
		mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
					 mem->nslabs - i);
		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
		mem->slots[i].alloc_size = 0;
		mem->slots[i].pad_slots = 0;
	}

	memset(vaddr, 0, bytes);
	mem->vaddr = vaddr;
	return;
}

/**
 * add_mem_pool() - add a memory pool to the allocator
 * @mem:	Software IO TLB allocator.
 * @pool:	Memory pool to be added.
 */
static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
	spin_lock(&mem->lock);
	list_add_rcu(&pool->node, &mem->pools);
	mem->nslabs += pool->nslabs;
	spin_unlock(&mem->lock);
#else
	mem->nslabs = pool->nslabs;
#endif
}

static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
		unsigned int flags,
		int (*remap)(void *tlb, unsigned long nslabs))
{
	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
	void *tlb;

	/*
	 * By default allocate the bounce buffer memory from low memory, but
	 * allow to pick a location everywhere for hypervisors with guest
	 * memory encryption.
	 */
	if (flags & SWIOTLB_ANY)
		tlb = memblock_alloc(bytes, PAGE_SIZE);
	else
		tlb = memblock_alloc_low(bytes, PAGE_SIZE);

	if (!tlb) {
		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
			__func__, bytes);
		return NULL;
	}

	if (remap && remap(tlb, nslabs) < 0) {
		memblock_free(tlb, PAGE_ALIGN(bytes));
		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
		return NULL;
	}

	return tlb;
}

/*
 * Statically reserve bounce buffer space and initialize bounce buffer data
 * structures for the software IO TLB used to implement the DMA API.
 */
void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
		int (*remap)(void *tlb, unsigned long nslabs))
{
	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
	unsigned long nslabs;
	unsigned int nareas;
	size_t alloc_size;
	void *tlb;

	if (!addressing_limit && !swiotlb_force_bounce)
		return;
	if (swiotlb_force_disable)
		return;

	io_tlb_default_mem.force_bounce =
		swiotlb_force_bounce || (flags & SWIOTLB_FORCE);

#ifdef CONFIG_SWIOTLB_DYNAMIC
	if (!remap)
		io_tlb_default_mem.can_grow = true;
	if (flags & SWIOTLB_ANY)
		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
	else
		io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
#endif

	if (!default_nareas)
		swiotlb_adjust_nareas(num_possible_cpus());

	nslabs = default_nslabs;
	nareas = limit_nareas(default_nareas, nslabs);
	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
		if (nslabs <= IO_TLB_MIN_SLABS)
			return;
		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
		nareas = limit_nareas(nareas, nslabs);
	}

	if (default_nslabs != nslabs) {
		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
			default_nslabs, nslabs);
		default_nslabs = nslabs;
	}

	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
	if (!mem->slots) {
		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
			__func__, alloc_size, PAGE_SIZE);
		return;
	}

	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
		nareas), SMP_CACHE_BYTES);
	if (!mem->areas) {
		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
		return;
	}

	swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
	add_mem_pool(&io_tlb_default_mem, mem);

	if (flags & SWIOTLB_VERBOSE)
		swiotlb_print_info();
}

void __init swiotlb_init(bool addressing_limit, unsigned int flags)
{
	swiotlb_init_remap(addressing_limit, flags, NULL);
}

/*
 * Systems with larger DMA zones (those that don't support ISA) can
 * initialize the swiotlb later using the slab allocator if needed.
 * This should be just like above, but with some error catching.
 */
int swiotlb_init_late(size_t size, gfp_t gfp_mask,
		int (*remap)(void *tlb, unsigned long nslabs))
{
	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
	unsigned int nareas;
	unsigned char *vstart = NULL;
	unsigned int order, area_order;
	bool retried = false;
	int rc = 0;

	if (io_tlb_default_mem.nslabs)
		return 0;

	if (swiotlb_force_disable)
		return 0;

	io_tlb_default_mem.force_bounce = swiotlb_force_bounce;

#ifdef CONFIG_SWIOTLB_DYNAMIC
	if (!remap)
		io_tlb_default_mem.can_grow = true;
	if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
	else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
		io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
	else
		io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
#endif

	if (!default_nareas)
		swiotlb_adjust_nareas(num_possible_cpus());

retry:
	order = get_order(nslabs << IO_TLB_SHIFT);
	nslabs = SLABS_PER_PAGE << order;

	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
						  order);
		if (vstart)
			break;
		order--;
		nslabs = SLABS_PER_PAGE << order;
		retried = true;
	}

	if (!vstart)
		return -ENOMEM;

	if (remap)
		rc = remap(vstart, nslabs);
	if (rc) {
		free_pages((unsigned long)vstart, order);

		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
		if (nslabs < IO_TLB_MIN_SLABS)
			return rc;
		retried = true;
		goto retry;
	}

	if (retried) {
		pr_warn("only able to allocate %ld MB\n",
			(PAGE_SIZE << order) >> 20);
	}

	nareas = limit_nareas(default_nareas, nslabs);
	area_order = get_order(array_size(sizeof(*mem->areas), nareas));
	mem->areas = (struct io_tlb_area *)
		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
	if (!mem->areas)
		goto error_area;

	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
		get_order(array_size(sizeof(*mem->slots), nslabs)));
	if (!mem->slots)
		goto error_slots;

	set_memory_decrypted((unsigned long)vstart,
			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
	swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
				 nareas);
	add_mem_pool(&io_tlb_default_mem, mem);

	swiotlb_print_info();
	return 0;

error_slots:
	free_pages((unsigned long)mem->areas, area_order);
error_area:
	free_pages((unsigned long)vstart, order);
	return -ENOMEM;
}

void __init swiotlb_exit(void)
{
	struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
	unsigned long tbl_vaddr;
	size_t tbl_size, slots_size;
	unsigned int area_order;

	if (swiotlb_force_bounce)
		return;

	if (!mem->nslabs)
		return;

	pr_info("tearing down default memory pool\n");
	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
	tbl_size = PAGE_ALIGN(mem->end - mem->start);
	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));

	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
	if (mem->late_alloc) {
		area_order = get_order(array_size(sizeof(*mem->areas),
			mem->nareas));
		free_pages((unsigned long)mem->areas, area_order);
		free_pages(tbl_vaddr, get_order(tbl_size));
		free_pages((unsigned long)mem->slots, get_order(slots_size));
	} else {
		memblock_free_late(__pa(mem->areas),
			array_size(sizeof(*mem->areas), mem->nareas));
		memblock_free_late(mem->start, tbl_size);
		memblock_free_late(__pa(mem->slots), slots_size);
	}

	memset(mem, 0, sizeof(*mem));
}

#ifdef CONFIG_SWIOTLB_DYNAMIC

/**
 * alloc_dma_pages() - allocate pages to be used for DMA
 * @gfp:	GFP flags for the allocation.
 * @bytes:	Size of the buffer.
 * @phys_limit:	Maximum allowed physical address of the buffer.
 *
 * Allocate pages from the buddy allocator. If successful, make the allocated
 * pages decrypted that they can be used for DMA.
 *
 * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
 * if the allocated physical address was above @phys_limit.
 */
static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
{
	unsigned int order = get_order(bytes);
	struct page *page;
	phys_addr_t paddr;
	void *vaddr;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	paddr = page_to_phys(page);
	if (paddr + bytes - 1 > phys_limit) {
		__free_pages(page, order);
		return ERR_PTR(-EAGAIN);
	}

	vaddr = phys_to_virt(paddr);
	if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
		goto error;
	return page;

error:
	/* Intentional leak if pages cannot be encrypted again. */
	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
		__free_pages(page, order);
	return NULL;
}

/**
 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
 * @dev:	Device for which a memory pool is allocated.
 * @bytes:	Size of the buffer.
 * @phys_limit:	Maximum allowed physical address of the buffer.
 * @gfp:	GFP flags for the allocation.
 *
 * Return: Allocated pages, or %NULL on allocation failure.
 */
static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
		u64 phys_limit, gfp_t gfp)
{
	struct page *page;

	/*
	 * Allocate from the atomic pools if memory is encrypted and
	 * the allocation is atomic, because decrypting may block.
	 */
	if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
		void *vaddr;

		if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
			return NULL;

		return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
					   dma_coherent_ok);
	}

	gfp &= ~GFP_ZONEMASK;
	if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
		gfp |= __GFP_DMA;
	else if (phys_limit <= DMA_BIT_MASK(32))
		gfp |= __GFP_DMA32;

	while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
		    phys_limit < DMA_BIT_MASK(64) &&
		    !(gfp & (__GFP_DMA32 | __GFP_DMA)))
			gfp |= __GFP_DMA32;
		else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
			 !(gfp & __GFP_DMA))
			gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
		else
			return NULL;
	}

	return page;
}

/**
 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
 * @vaddr:	Virtual address of the buffer.
 * @bytes:	Size of the buffer.
 */
static void swiotlb_free_tlb(void *vaddr, size_t bytes)
{
	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
	    dma_free_from_pool(NULL, vaddr, bytes))
		return;

	/* Intentional leak if pages cannot be encrypted again. */
	if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
		__free_pages(virt_to_page(vaddr), get_order(bytes));
}

/**
 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
 * @dev:	Device for which a memory pool is allocated.
 * @minslabs:	Minimum number of slabs.
 * @nslabs:	Desired (maximum) number of slabs.
 * @nareas:	Number of areas.
 * @phys_limit:	Maximum DMA buffer physical address.
 * @gfp:	GFP flags for the allocations.
 *
 * Allocate and initialize a new IO TLB memory pool. The actual number of
 * slabs may be reduced if allocation of @nslabs fails. If even
 * @minslabs cannot be allocated, this function fails.
 *
 * Return: New memory pool, or %NULL on allocation failure.
 */
static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
		unsigned long minslabs, unsigned long nslabs,
		unsigned int nareas, u64 phys_limit, gfp_t gfp)
{
	struct io_tlb_pool *pool;
	unsigned int slot_order;
	struct page *tlb;
	size_t pool_size;
	size_t tlb_size;

	if (nslabs > SLABS_PER_PAGE << MAX_PAGE_ORDER) {
		nslabs = SLABS_PER_PAGE << MAX_PAGE_ORDER;
		nareas = limit_nareas(nareas, nslabs);
	}

	pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
	pool = kzalloc(pool_size, gfp);
	if (!pool)
		goto error;
	pool->areas = (void *)pool + sizeof(*pool);

	tlb_size = nslabs << IO_TLB_SHIFT;
	while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
		if (nslabs <= minslabs)
			goto error_tlb;
		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
		nareas = limit_nareas(nareas, nslabs);
		tlb_size = nslabs << IO_TLB_SHIFT;
	}

	slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
	pool->slots = (struct io_tlb_slot *)
		__get_free_pages(gfp, slot_order);
	if (!pool->slots)
		goto error_slots;

	swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
	return pool;

error_slots:
	swiotlb_free_tlb(page_address(tlb), tlb_size);
error_tlb:
	kfree(pool);
error:
	return NULL;
}

/**
 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
 * @work:	Pointer to dyn_alloc in struct io_tlb_mem.
 */
static void swiotlb_dyn_alloc(struct work_struct *work)
{
	struct io_tlb_mem *mem =
		container_of(work, struct io_tlb_mem, dyn_alloc);
	struct io_tlb_pool *pool;

	pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
				  default_nareas, mem->phys_limit, GFP_KERNEL);
	if (!pool) {
		pr_warn_ratelimited("Failed to allocate new pool");
		return;
	}

	add_mem_pool(mem, pool);
}

/**
 * swiotlb_dyn_free() - RCU callback to free a memory pool
 * @rcu:	RCU head in the corresponding struct io_tlb_pool.
 */
static void swiotlb_dyn_free(struct rcu_head *rcu)
{
	struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
	size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
	size_t tlb_size = pool->end - pool->start;

	free_pages((unsigned long)pool->slots, get_order(slots_size));
	swiotlb_free_tlb(pool->vaddr, tlb_size);
	kfree(pool);
}

/**
 * swiotlb_find_pool() - find the IO TLB pool for a physical address
 * @dev:        Device which has mapped the DMA buffer.
 * @paddr:      Physical address within the DMA buffer.
 *
 * Find the IO TLB memory pool descriptor which contains the given physical
 * address, if any.
 *
 * Return: Memory pool which contains @paddr, or %NULL if none.
 */
struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
	struct io_tlb_pool *pool;

	rcu_read_lock();
	list_for_each_entry_rcu(pool, &mem->pools, node) {
		if (paddr >= pool->start && paddr < pool->end)
			goto out;
	}

	list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
		if (paddr >= pool->start && paddr < pool->end)
			goto out;
	}
	pool = NULL;
out:
	rcu_read_unlock();
	return pool;
}

/**
 * swiotlb_del_pool() - remove an IO TLB pool from a device
 * @dev:	Owning device.
 * @pool:	Memory pool to be removed.
 */
static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
{
	unsigned long flags;

	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
	list_del_rcu(&pool->node);
	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);

	call_rcu(&pool->rcu, swiotlb_dyn_free);
}

#endif	/* CONFIG_SWIOTLB_DYNAMIC */

/**
 * swiotlb_dev_init() - initialize swiotlb fields in &struct device
 * @dev:	Device to be initialized.
 */
void swiotlb_dev_init(struct device *dev)
{
	dev->dma_io_tlb_mem = &io_tlb_default_mem;
#ifdef CONFIG_SWIOTLB_DYNAMIC
	INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
	spin_lock_init(&dev->dma_io_tlb_lock);
	dev->dma_uses_io_tlb = false;
#endif
}

/**
 * swiotlb_align_offset() - Get required offset into an IO TLB allocation.
 * @dev:         Owning device.
 * @align_mask:  Allocation alignment mask.
 * @addr:        DMA address.
 *
 * Return the minimum offset from the start of an IO TLB allocation which is
 * required for a given buffer address and allocation alignment to keep the
 * device happy.
 *
 * First, the address bits covered by min_align_mask must be identical in the
 * original address and the bounce buffer address. High bits are preserved by
 * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra
 * padding bytes before the bounce buffer.
 *
 * Second, @align_mask specifies which bits of the first allocated slot must
 * be zero. This may require allocating additional padding slots, and then the
 * offset (in bytes) from the first such padding slot is returned.
 */
static unsigned int swiotlb_align_offset(struct device *dev,
					 unsigned int align_mask, u64 addr)
{
	return addr & dma_get_min_align_mask(dev) &
		(align_mask | (IO_TLB_SIZE - 1));
}

/*
 * Bounce: copy the swiotlb buffer from or back to the original dma location
 */
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
			   enum dma_data_direction dir)
{
	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
	phys_addr_t orig_addr = mem->slots[index].orig_addr;
	size_t alloc_size = mem->slots[index].alloc_size;
	unsigned long pfn = PFN_DOWN(orig_addr);
	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
	int tlb_offset;

	if (orig_addr == INVALID_PHYS_ADDR)
		return;

	/*
	 * It's valid for tlb_offset to be negative. This can happen when the
	 * "offset" returned by swiotlb_align_offset() is non-zero, and the
	 * tlb_addr is pointing within the first "offset" bytes of the second
	 * or subsequent slots of the allocated swiotlb area. While it's not
	 * valid for tlb_addr to be pointing within the first "offset" bytes
	 * of the first slot, there's no way to check for such an error since
	 * this function can't distinguish the first slot from the second and
	 * subsequent slots.
	 */
	tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) -
		     swiotlb_align_offset(dev, 0, orig_addr);

	orig_addr += tlb_offset;
	alloc_size -= tlb_offset;

	if (size > alloc_size) {
		dev_WARN_ONCE(dev, 1,
			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
			alloc_size, size);
		size = alloc_size;
	}

	if (PageHighMem(pfn_to_page(pfn))) {
		unsigned int offset = orig_addr & ~PAGE_MASK;
		struct page *page;
		unsigned int sz = 0;
		unsigned long flags;

		while (size) {
			sz = min_t(size_t, PAGE_SIZE - offset, size);

			local_irq_save(flags);
			page = pfn_to_page(pfn);
			if (dir == DMA_TO_DEVICE)
				memcpy_from_page(vaddr, page, offset, sz);
			else
				memcpy_to_page(page, offset, vaddr, sz);
			local_irq_restore(flags);

			size -= sz;
			pfn++;
			vaddr += sz;
			offset = 0;
		}
	} else if (dir == DMA_TO_DEVICE) {
		memcpy(vaddr, phys_to_virt(orig_addr), size);
	} else {
		memcpy(phys_to_virt(orig_addr), vaddr, size);
	}
}

static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
{
	return start + (idx << IO_TLB_SHIFT);
}

/*
 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
 */
static inline unsigned long get_max_slots(unsigned long boundary_mask)
{
	return (boundary_mask >> IO_TLB_SHIFT) + 1;
}

static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
{
	if (index >= mem->area_nslabs)
		return 0;
	return index;
}

/*
 * Track the total used slots with a global atomic value in order to have
 * correct information to determine the high water mark. The mem_used()
 * function gives imprecise results because there's no locking across
 * multiple areas.
 */
#ifdef CONFIG_DEBUG_FS
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
{
	unsigned long old_hiwater, new_used;

	new_used = atomic_long_add_return(nslots, &mem->total_used);
	old_hiwater = atomic_long_read(&mem->used_hiwater);
	do {
		if (new_used <= old_hiwater)
			break;
	} while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
					  &old_hiwater, new_used));
}

static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
{
	atomic_long_sub(nslots, &mem->total_used);
}

#else /* !CONFIG_DEBUG_FS */
static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
{
}
static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
{
}
#endif /* CONFIG_DEBUG_FS */

#ifdef CONFIG_SWIOTLB_DYNAMIC
#ifdef CONFIG_DEBUG_FS
static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
{
	atomic_long_add(nslots, &mem->transient_nslabs);
}

static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
{
	atomic_long_sub(nslots, &mem->transient_nslabs);
}

#else /* !CONFIG_DEBUG_FS */
static void inc_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
{
}
static void dec_transient_used(struct io_tlb_mem *mem, unsigned int nslots)
{
}
#endif /* CONFIG_DEBUG_FS */
#endif /* CONFIG_SWIOTLB_DYNAMIC */

/**
 * swiotlb_search_pool_area() - search one memory area in one pool
 * @dev:	Device which maps the buffer.
 * @pool:	Memory pool to be searched.
 * @area_index:	Index of the IO TLB memory area to be searched.
 * @orig_addr:	Original (non-bounced) IO buffer address.
 * @alloc_size: Total requested size of the bounce buffer,
 *		including initial alignment padding.
 * @alloc_align_mask:	Required alignment of the allocated buffer.
 *
 * Find a suitable sequence of IO TLB entries for the request and allocate
 * a buffer from the given IO TLB memory area.
 * This function takes care of locking.
 *
 * Return: Index of the first allocated slot, or -1 on error.
 */
static int swiotlb_search_pool_area(struct device *dev, struct io_tlb_pool *pool,
		int area_index, phys_addr_t orig_addr, size_t alloc_size,
		unsigned int alloc_align_mask)
{
	struct io_tlb_area *area = pool->areas + area_index;
	unsigned long boundary_mask = dma_get_seg_boundary(dev);
	dma_addr_t tbl_dma_addr =
		phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
	unsigned long max_slots = get_max_slots(boundary_mask);
	unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
	unsigned int nslots = nr_slots(alloc_size), stride;
	unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr);
	unsigned int index, slots_checked, count = 0, i;
	unsigned long flags;
	unsigned int slot_base;
	unsigned int slot_index;

	BUG_ON(!nslots);
	BUG_ON(area_index >= pool->nareas);

	/*
	 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
	 * page-aligned in the absence of any other alignment requirements.
	 * 'alloc_align_mask' was later introduced to specify the alignment
	 * explicitly, however this is passed as zero for streaming mappings
	 * and so we preserve the old behaviour there in case any drivers are
	 * relying on it.
	 */
	if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
		alloc_align_mask = PAGE_SIZE - 1;

	/*
	 * Ensure that the allocation is at least slot-aligned and update
	 * 'iotlb_align_mask' to ignore bits that will be preserved when
	 * offsetting into the allocation.
	 */
	alloc_align_mask |= (IO_TLB_SIZE - 1);
	iotlb_align_mask &= ~alloc_align_mask;

	/*
	 * For mappings with an alignment requirement don't bother looping to
	 * unaligned slots once we found an aligned one.
	 */
	stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));

	spin_lock_irqsave(&area->lock, flags);
	if (unlikely(nslots > pool->area_nslabs - area->used))
		goto not_found;

	slot_base = area_index * pool->area_nslabs;
	index = area->index;

	for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
		phys_addr_t tlb_addr;

		slot_index = slot_base + index;
		tlb_addr = slot_addr(tbl_dma_addr, slot_index);

		if ((tlb_addr & alloc_align_mask) ||
		    (orig_addr && (tlb_addr & iotlb_align_mask) !=
				  (orig_addr & iotlb_align_mask))) {
			index = wrap_area_index(pool, index + 1);
			slots_checked++;
			continue;
		}

		if (!iommu_is_span_boundary(slot_index, nslots,
					    nr_slots(tbl_dma_addr),
					    max_slots)) {
			if (pool->slots[slot_index].list >= nslots)
				goto found;
		}
		index = wrap_area_index(pool, index + stride);
		slots_checked += stride;
	}

not_found:
	spin_unlock_irqrestore(&area->lock, flags);
	return -1;

found:
	/*
	 * If we find a slot that indicates we have 'nslots' number of
	 * contiguous buffers, we allocate the buffers from that slot onwards
	 * and set the list of free entries to '0' indicating unavailable.
	 */
	for (i = slot_index; i < slot_index + nslots; i++) {
		pool->slots[i].list = 0;
		pool->slots[i].alloc_size = alloc_size - (offset +
				((i - slot_index) << IO_TLB_SHIFT));
	}
	for (i = slot_index - 1;
	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
	     pool->slots[i].list; i--)
		pool->slots[i].list = ++count;

	/*
	 * Update the indices to avoid searching in the next round.
	 */
	area->index = wrap_area_index(pool, index + nslots);
	area->used += nslots;
	spin_unlock_irqrestore(&area->lock, flags);

	inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
	return slot_index;
}

#ifdef CONFIG_SWIOTLB_DYNAMIC

/**
 * swiotlb_search_area() - search one memory area in all pools
 * @dev:	Device which maps the buffer.
 * @start_cpu:	Start CPU number.
 * @cpu_offset:	Offset from @start_cpu.
 * @orig_addr:	Original (non-bounced) IO buffer address.
 * @alloc_size: Total requested size of the bounce buffer,
 *		including initial alignment padding.
 * @alloc_align_mask:	Required alignment of the allocated buffer.
 * @retpool:	Used memory pool, updated on return.
 *
 * Search one memory area in all pools for a sequence of slots that match the
 * allocation constraints.
 *
 * Return: Index of the first allocated slot, or -1 on error.
 */
static int swiotlb_search_area(struct device *dev, int start_cpu,
		int cpu_offset, phys_addr_t orig_addr, size_t alloc_size,
		unsigned int alloc_align_mask, struct io_tlb_pool **retpool)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
	struct io_tlb_pool *pool;
	int area_index;
	int index = -1;

	rcu_read_lock();
	list_for_each_entry_rcu(pool, &mem->pools, node) {
		if (cpu_offset >= pool->nareas)
			continue;
		area_index = (start_cpu + cpu_offset) & (pool->nareas - 1);
		index = swiotlb_search_pool_area(dev, pool, area_index,
						 orig_addr, alloc_size,
						 alloc_align_mask);
		if (index >= 0) {
			*retpool = pool;
			break;
		}
	}
	rcu_read_unlock();
	return index;
}

/**
 * swiotlb_find_slots() - search for slots in the whole swiotlb
 * @dev:	Device which maps the buffer.
 * @orig_addr:	Original (non-bounced) IO buffer address.
 * @alloc_size: Total requested size of the bounce buffer,
 *		including initial alignment padding.
 * @alloc_align_mask:	Required alignment of the allocated buffer.
 * @retpool:	Used memory pool, updated on return.
 *
 * Search through the whole software IO TLB to find a sequence of slots that
 * match the allocation constraints.
 *
 * Return: Index of the first allocated slot, or -1 on error.
 */
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
		size_t alloc_size, unsigned int alloc_align_mask,
		struct io_tlb_pool **retpool)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
	struct io_tlb_pool *pool;
	unsigned long nslabs;
	unsigned long flags;
	u64 phys_limit;
	int cpu, i;
	int index;

	if (alloc_size > IO_TLB_SEGSIZE * IO_TLB_SIZE)
		return -1;

	cpu = raw_smp_processor_id();
	for (i = 0; i < default_nareas; ++i) {
		index = swiotlb_search_area(dev, cpu, i, orig_addr, alloc_size,
					    alloc_align_mask, &pool);
		if (index >= 0)
			goto found;
	}

	if (!mem->can_grow)
		return -1;

	schedule_work(&mem->dyn_alloc);

	nslabs = nr_slots(alloc_size);
	phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
	pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
				  GFP_NOWAIT | __GFP_NOWARN);
	if (!pool)
		return -1;

	index = swiotlb_search_pool_area(dev, pool, 0, orig_addr,
					 alloc_size, alloc_align_mask);
	if (index < 0) {
		swiotlb_dyn_free(&pool->rcu);
		return -1;
	}

	pool->transient = true;
	spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
	list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
	spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
	inc_transient_used(mem, pool->nslabs);

found:
	WRITE_ONCE(dev->dma_uses_io_tlb, true);

	/*
	 * The general barrier orders reads and writes against a presumed store
	 * of the SWIOTLB buffer address by a device driver (to a driver private
	 * data structure). It serves two purposes.
	 *
	 * First, the store to dev->dma_uses_io_tlb must be ordered before the
	 * presumed store. This guarantees that the returned buffer address
	 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
	 *
	 * Second, the load from mem->pools must be ordered before the same
	 * presumed store. This guarantees that the returned buffer address
	 * cannot be observed by another CPU before an update of the RCU list
	 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
	 * atomicity).
	 *
	 * See also the comment in is_swiotlb_buffer().
	 */
	smp_mb();

	*retpool = pool;
	return index;
}

#else  /* !CONFIG_SWIOTLB_DYNAMIC */

static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
		size_t alloc_size, unsigned int alloc_align_mask,
		struct io_tlb_pool **retpool)
{
	struct io_tlb_pool *pool;
	int start, i;
	int index;

	*retpool = pool = &dev->dma_io_tlb_mem->defpool;
	i = start = raw_smp_processor_id() & (pool->nareas - 1);
	do {
		index = swiotlb_search_pool_area(dev, pool, i, orig_addr,
						 alloc_size, alloc_align_mask);
		if (index >= 0)
			return index;
		if (++i >= pool->nareas)
			i = 0;
	} while (i != start);
	return -1;
}

#endif /* CONFIG_SWIOTLB_DYNAMIC */

#ifdef CONFIG_DEBUG_FS

/**
 * mem_used() - get number of used slots in an allocator
 * @mem:	Software IO TLB allocator.
 *
 * The result is accurate in this version of the function, because an atomic
 * counter is available if CONFIG_DEBUG_FS is set.
 *
 * Return: Number of used slots.
 */
static unsigned long mem_used(struct io_tlb_mem *mem)
{
	return atomic_long_read(&mem->total_used);
}

#else /* !CONFIG_DEBUG_FS */

/**
 * mem_pool_used() - get number of used slots in a memory pool
 * @pool:	Software IO TLB memory pool.
 *
 * The result is not accurate, see mem_used().
 *
 * Return: Approximate number of used slots.
 */
static unsigned long mem_pool_used(struct io_tlb_pool *pool)
{
	int i;
	unsigned long used = 0;

	for (i = 0; i < pool->nareas; i++)
		used += pool->areas[i].used;
	return used;
}

/**
 * mem_used() - get number of used slots in an allocator
 * @mem:	Software IO TLB allocator.
 *
 * The result is not accurate, because there is no locking of individual
 * areas.
 *
 * Return: Approximate number of used slots.
 */
static unsigned long mem_used(struct io_tlb_mem *mem)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
	struct io_tlb_pool *pool;
	unsigned long used = 0;

	rcu_read_lock();
	list_for_each_entry_rcu(pool, &mem->pools, node)
		used += mem_pool_used(pool);
	rcu_read_unlock();

	return used;
#else
	return mem_pool_used(&mem->defpool);
#endif
}

#endif /* CONFIG_DEBUG_FS */

/**
 * swiotlb_tbl_map_single() - bounce buffer map a single contiguous physical area
 * @dev:		Device which maps the buffer.
 * @orig_addr:		Original (non-bounced) physical IO buffer address
 * @mapping_size:	Requested size of the actual bounce buffer, excluding
 *			any pre- or post-padding for alignment
 * @alloc_align_mask:	Required start and end alignment of the allocated buffer
 * @dir:		DMA direction
 * @attrs:		Optional DMA attributes for the map operation
 *
 * Find and allocate a suitable sequence of IO TLB slots for the request.
 * The allocated space starts at an alignment specified by alloc_align_mask,
 * and the size of the allocated space is rounded up so that the total amount
 * of allocated space is a multiple of (alloc_align_mask + 1). If
 * alloc_align_mask is zero, the allocated space may be at any alignment and
 * the size is not rounded up.
 *
 * The returned address is within the allocated space and matches the bits
 * of orig_addr that are specified in the DMA min_align_mask for the device. As
 * such, this returned address may be offset from the beginning of the allocated
 * space. The bounce buffer space starting at the returned address for
 * mapping_size bytes is initialized to the contents of the original IO buffer
 * area. Any pre-padding (due to an offset) and any post-padding (due to
 * rounding-up the size) is not initialized.
 */
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
		size_t mapping_size, unsigned int alloc_align_mask,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
	unsigned int offset;
	struct io_tlb_pool *pool;
	unsigned int i;
	size_t size;
	int index;
	phys_addr_t tlb_addr;
	unsigned short pad_slots;

	if (!mem || !mem->nslabs) {
		dev_warn_ratelimited(dev,
			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
		return (phys_addr_t)DMA_MAPPING_ERROR;
	}

	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");

	/*
	 * The default swiotlb memory pool is allocated with PAGE_SIZE
	 * alignment. If a mapping is requested with larger alignment,
	 * the mapping may be unable to use the initial slot(s) in all
	 * sets of IO_TLB_SEGSIZE slots. In such case, a mapping request
	 * of or near the maximum mapping size would always fail.
	 */
	dev_WARN_ONCE(dev, alloc_align_mask > ~PAGE_MASK,
		"Alloc alignment may prevent fulfilling requests with max mapping_size\n");

	offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
	size = ALIGN(mapping_size + offset, alloc_align_mask + 1);
	index = swiotlb_find_slots(dev, orig_addr, size, alloc_align_mask, &pool);
	if (index == -1) {
		if (!(attrs & DMA_ATTR_NO_WARN))
			dev_warn_ratelimited(dev,
	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
				 size, mem->nslabs, mem_used(mem));
		return (phys_addr_t)DMA_MAPPING_ERROR;
	}

	/*
	 * If dma_skip_sync was set, reset it on first SWIOTLB buffer
	 * mapping to always sync SWIOTLB buffers.
	 */
	dma_reset_need_sync(dev);

	/*
	 * Save away the mapping from the original address to the DMA address.
	 * This is needed when we sync the memory.  Then we sync the buffer if
	 * needed.
	 */
	pad_slots = offset >> IO_TLB_SHIFT;
	offset &= (IO_TLB_SIZE - 1);
	index += pad_slots;
	pool->slots[index].pad_slots = pad_slots;
	for (i = 0; i < (nr_slots(size) - pad_slots); i++)
		pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
	tlb_addr = slot_addr(pool->start, index) + offset;
	/*
	 * When the device is writing memory, i.e. dir == DMA_FROM_DEVICE, copy
	 * the original buffer to the TLB buffer before initiating DMA in order
	 * to preserve the original's data if the device does a partial write,
	 * i.e. if the device doesn't overwrite the entire buffer.  Preserving
	 * the original data, even if it's garbage, is necessary to match
	 * hardware behavior.  Use of swiotlb is supposed to be transparent,
	 * i.e. swiotlb must not corrupt memory by clobbering unwritten bytes.
	 */
	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
	return tlb_addr;
}

static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
{
	struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
	unsigned long flags;
	unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr);
	int index, nslots, aindex;
	struct io_tlb_area *area;
	int count, i;

	index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
	index -= mem->slots[index].pad_slots;
	nslots = nr_slots(mem->slots[index].alloc_size + offset);
	aindex = index / mem->area_nslabs;
	area = &mem->areas[aindex];

	/*
	 * Return the buffer to the free list by setting the corresponding
	 * entries to indicate the number of contiguous entries available.
	 * While returning the entries to the free list, we merge the entries
	 * with slots below and above the pool being returned.
	 */
	BUG_ON(aindex >= mem->nareas);

	spin_lock_irqsave(&area->lock, flags);
	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
		count = mem->slots[index + nslots].list;
	else
		count = 0;

	/*
	 * Step 1: return the slots to the free list, merging the slots with
	 * superceeding slots
	 */
	for (i = index + nslots - 1; i >= index; i--) {
		mem->slots[i].list = ++count;
		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
		mem->slots[i].alloc_size = 0;
		mem->slots[i].pad_slots = 0;
	}

	/*
	 * Step 2: merge the returned slots with the preceding slots, if
	 * available (non zero)
	 */
	for (i = index - 1;
	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
	     i--)
		mem->slots[i].list = ++count;
	area->used -= nslots;
	spin_unlock_irqrestore(&area->lock, flags);

	dec_used(dev->dma_io_tlb_mem, nslots);
}

#ifdef CONFIG_SWIOTLB_DYNAMIC

/**
 * swiotlb_del_transient() - delete a transient memory pool
 * @dev:	Device which mapped the buffer.
 * @tlb_addr:	Physical address within a bounce buffer.
 *
 * Check whether the address belongs to a transient SWIOTLB memory pool.
 * If yes, then delete the pool.
 *
 * Return: %true if @tlb_addr belonged to a transient pool that was released.
 */
static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
{
	struct io_tlb_pool *pool;

	pool = swiotlb_find_pool(dev, tlb_addr);
	if (!pool->transient)
		return false;

	dec_used(dev->dma_io_tlb_mem, pool->nslabs);
	swiotlb_del_pool(dev, pool);
	dec_transient_used(dev->dma_io_tlb_mem, pool->nslabs);
	return true;
}

#else  /* !CONFIG_SWIOTLB_DYNAMIC */

static inline bool swiotlb_del_transient(struct device *dev,
					 phys_addr_t tlb_addr)
{
	return false;
}

#endif	/* CONFIG_SWIOTLB_DYNAMIC */

/*
 * tlb_addr is the physical address of the bounce buffer to unmap.
 */
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
			      size_t mapping_size, enum dma_data_direction dir,
			      unsigned long attrs)
{
	/*
	 * First, sync the memory before unmapping the entry
	 */
	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);

	if (swiotlb_del_transient(dev, tlb_addr))
		return;
	swiotlb_release_slots(dev, tlb_addr);
}

void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
		size_t size, enum dma_data_direction dir)
{
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
	else
		BUG_ON(dir != DMA_FROM_DEVICE);
}

void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
		size_t size, enum dma_data_direction dir)
{
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
	else
		BUG_ON(dir != DMA_TO_DEVICE);
}

/*
 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
 * to the device copy the data into it as well.
 */
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	phys_addr_t swiotlb_addr;
	dma_addr_t dma_addr;

	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);

	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, 0, dir, attrs);
	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
		return DMA_MAPPING_ERROR;

	/* Ensure that the address returned is DMA'ble */
	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
			attrs | DMA_ATTR_SKIP_CPU_SYNC);
		dev_WARN_ONCE(dev, 1,
			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
		return DMA_MAPPING_ERROR;
	}

	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
		arch_sync_dma_for_device(swiotlb_addr, size, dir);
	return dma_addr;
}

size_t swiotlb_max_mapping_size(struct device *dev)
{
	int min_align_mask = dma_get_min_align_mask(dev);
	int min_align = 0;

	/*
	 * swiotlb_find_slots() skips slots according to
	 * min align mask. This affects max mapping size.
	 * Take it into acount here.
	 */
	if (min_align_mask)
		min_align = roundup(min_align_mask, IO_TLB_SIZE);

	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
}

/**
 * is_swiotlb_allocated() - check if the default software IO TLB is initialized
 */
bool is_swiotlb_allocated(void)
{
	return io_tlb_default_mem.nslabs;
}

bool is_swiotlb_active(struct device *dev)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;

	return mem && mem->nslabs;
}

/**
 * default_swiotlb_base() - get the base address of the default SWIOTLB
 *
 * Get the lowest physical address used by the default software IO TLB pool.
 */
phys_addr_t default_swiotlb_base(void)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
	io_tlb_default_mem.can_grow = false;
#endif
	return io_tlb_default_mem.defpool.start;
}

/**
 * default_swiotlb_limit() - get the address limit of the default SWIOTLB
 *
 * Get the highest physical address used by the default software IO TLB pool.
 */
phys_addr_t default_swiotlb_limit(void)
{
#ifdef CONFIG_SWIOTLB_DYNAMIC
	return io_tlb_default_mem.phys_limit;
#else
	return io_tlb_default_mem.defpool.end - 1;
#endif
}

#ifdef CONFIG_DEBUG_FS
#ifdef CONFIG_SWIOTLB_DYNAMIC
static unsigned long mem_transient_used(struct io_tlb_mem *mem)
{
	return atomic_long_read(&mem->transient_nslabs);
}

static int io_tlb_transient_used_get(void *data, u64 *val)
{
	struct io_tlb_mem *mem = data;

	*val = mem_transient_used(mem);
	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_transient_used, io_tlb_transient_used_get,
			 NULL, "%llu\n");
#endif /* CONFIG_SWIOTLB_DYNAMIC */

static int io_tlb_used_get(void *data, u64 *val)
{
	struct io_tlb_mem *mem = data;

	*val = mem_used(mem);
	return 0;
}

static int io_tlb_hiwater_get(void *data, u64 *val)
{
	struct io_tlb_mem *mem = data;

	*val = atomic_long_read(&mem->used_hiwater);
	return 0;
}

static int io_tlb_hiwater_set(void *data, u64 val)
{
	struct io_tlb_mem *mem = data;

	/* Only allow setting to zero */
	if (val != 0)
		return -EINVAL;

	atomic_long_set(&mem->used_hiwater, val);
	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
				io_tlb_hiwater_set, "%llu\n");

static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
					 const char *dirname)
{
	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
	if (!mem->nslabs)
		return;

	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
			&fops_io_tlb_used);
	debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
			&fops_io_tlb_hiwater);
#ifdef CONFIG_SWIOTLB_DYNAMIC
	debugfs_create_file("io_tlb_transient_nslabs", 0400, mem->debugfs,
			    mem, &fops_io_tlb_transient_used);
#endif
}

static int __init swiotlb_create_default_debugfs(void)
{
	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
	return 0;
}

late_initcall(swiotlb_create_default_debugfs);

#else  /* !CONFIG_DEBUG_FS */

static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
						const char *dirname)
{
}

#endif	/* CONFIG_DEBUG_FS */

#ifdef CONFIG_DMA_RESTRICTED_POOL

struct page *swiotlb_alloc(struct device *dev, size_t size)
{
	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
	struct io_tlb_pool *pool;
	phys_addr_t tlb_addr;
	unsigned int align;
	int index;

	if (!mem)
		return NULL;

	align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
	index = swiotlb_find_slots(dev, 0, size, align, &pool);
	if (index == -1)
		return NULL;

	tlb_addr = slot_addr(pool->start, index);
	if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
		dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
			      &tlb_addr);
		swiotlb_release_slots(dev, tlb_addr);
		return NULL;
	}

	return pfn_to_page(PFN_DOWN(tlb_addr));
}

bool swiotlb_free(struct device *dev, struct page *page, size_t size)
{
	phys_addr_t tlb_addr = page_to_phys(page);

	if (!is_swiotlb_buffer(dev, tlb_addr))
		return false;

	swiotlb_release_slots(dev, tlb_addr);

	return true;
}

static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
				    struct device *dev)
{
	struct io_tlb_mem *mem = rmem->priv;
	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;

	/* Set Per-device io tlb area to one */
	unsigned int nareas = 1;

	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
		dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
		return -EINVAL;
	}

	/*
	 * Since multiple devices can share the same pool, the private data,
	 * io_tlb_mem struct, will be initialized by the first device attached
	 * to it.
	 */
	if (!mem) {
		struct io_tlb_pool *pool;

		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
		if (!mem)
			return -ENOMEM;
		pool = &mem->defpool;

		pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
		if (!pool->slots) {
			kfree(mem);
			return -ENOMEM;
		}

		pool->areas = kcalloc(nareas, sizeof(*pool->areas),
				GFP_KERNEL);
		if (!pool->areas) {
			kfree(pool->slots);
			kfree(mem);
			return -ENOMEM;
		}

		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
				     rmem->size >> PAGE_SHIFT);
		swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
					 false, nareas);
		mem->force_bounce = true;
		mem->for_alloc = true;
#ifdef CONFIG_SWIOTLB_DYNAMIC
		spin_lock_init(&mem->lock);
		INIT_LIST_HEAD_RCU(&mem->pools);
#endif
		add_mem_pool(mem, pool);

		rmem->priv = mem;

		swiotlb_create_debugfs_files(mem, rmem->name);
	}

	dev->dma_io_tlb_mem = mem;

	return 0;
}

static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
					struct device *dev)
{
	dev->dma_io_tlb_mem = &io_tlb_default_mem;
}

static const struct reserved_mem_ops rmem_swiotlb_ops = {
	.device_init = rmem_swiotlb_device_init,
	.device_release = rmem_swiotlb_device_release,
};

static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
{
	unsigned long node = rmem->fdt_node;

	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
	    of_get_flat_dt_prop(node, "no-map", NULL))
		return -EINVAL;

	rmem->ops = &rmem_swiotlb_ops;
	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
		&rmem->base, (unsigned long)rmem->size / SZ_1M);
	return 0;
}

RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
#endif /* CONFIG_DMA_RESTRICTED_POOL */