summaryrefslogtreecommitdiff
path: root/include/linux/filter.h
blob: 5669da513cd7cc0d0e241021755c5ea270bee006 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Linux Socket Filter Data Structures
 */
#ifndef __LINUX_FILTER_H__
#define __LINUX_FILTER_H__

#include <linux/atomic.h>
#include <linux/bpf.h>
#include <linux/refcount.h>
#include <linux/compat.h>
#include <linux/skbuff.h>
#include <linux/linkage.h>
#include <linux/printk.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/capability.h>
#include <linux/set_memory.h>
#include <linux/kallsyms.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/sockptr.h>
#include <crypto/sha1.h>
#include <linux/u64_stats_sync.h>

#include <net/sch_generic.h>

#include <asm/byteorder.h>
#include <uapi/linux/filter.h>

struct sk_buff;
struct sock;
struct seccomp_data;
struct bpf_prog_aux;
struct xdp_rxq_info;
struct xdp_buff;
struct sock_reuseport;
struct ctl_table;
struct ctl_table_header;

/* ArgX, context and stack frame pointer register positions. Note,
 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
 * calls in BPF_CALL instruction.
 */
#define BPF_REG_ARG1	BPF_REG_1
#define BPF_REG_ARG2	BPF_REG_2
#define BPF_REG_ARG3	BPF_REG_3
#define BPF_REG_ARG4	BPF_REG_4
#define BPF_REG_ARG5	BPF_REG_5
#define BPF_REG_CTX	BPF_REG_6
#define BPF_REG_FP	BPF_REG_10

/* Additional register mappings for converted user programs. */
#define BPF_REG_A	BPF_REG_0
#define BPF_REG_X	BPF_REG_7
#define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
#define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
#define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */

/* Kernel hidden auxiliary/helper register. */
#define BPF_REG_AX		MAX_BPF_REG
#define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
#define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG

/* unused opcode to mark special call to bpf_tail_call() helper */
#define BPF_TAIL_CALL	0xf0

/* unused opcode to mark special load instruction. Same as BPF_ABS */
#define BPF_PROBE_MEM	0x20

/* unused opcode to mark special ldsx instruction. Same as BPF_IND */
#define BPF_PROBE_MEMSX	0x40

/* unused opcode to mark special load instruction. Same as BPF_MSH */
#define BPF_PROBE_MEM32	0xa0

/* unused opcode to mark special atomic instruction */
#define BPF_PROBE_ATOMIC 0xe0

/* unused opcode to mark call to interpreter with arguments */
#define BPF_CALL_ARGS	0xe0

/* unused opcode to mark speculation barrier for mitigating
 * Speculative Store Bypass
 */
#define BPF_NOSPEC	0xc0

/* As per nm, we expose JITed images as text (code) section for
 * kallsyms. That way, tools like perf can find it to match
 * addresses.
 */
#define BPF_SYM_ELF_TYPE	't'

/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK	512

/* Helper macros for filter block array initializers. */

/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */

#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

#define BPF_ALU64_REG(OP, DST, SRC)				\
	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)

#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

#define BPF_ALU32_REG(OP, DST, SRC)				\
	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)

/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */

#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })
#define BPF_ALU64_IMM(OP, DST, IMM)				\
	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)

#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })
#define BPF_ALU32_IMM(OP, DST, IMM)				\
	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)

/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */

#define BPF_ENDIAN(TYPE, DST, LEN)				\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = LEN })

/* Byte Swap, bswap16/32/64 */

#define BPF_BSWAP(DST, LEN)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = LEN })

/* Short form of mov, dst_reg = src_reg */

#define BPF_MOV64_REG(DST, SRC)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = 0 })

#define BPF_MOV32_REG(DST, SRC)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = 0 })

/* Special (internal-only) form of mov, used to resolve per-CPU addrs:
 * dst_reg = src_reg + <percpu_base_off>
 * BPF_ADDR_PERCPU is used as a special insn->off value.
 */
#define BPF_ADDR_PERCPU	(-1)

#define BPF_MOV64_PERCPU_REG(DST, SRC)				\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = BPF_ADDR_PERCPU,			\
		.imm   = 0 })

static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
{
	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
}

/* Short form of mov, dst_reg = imm32 */

#define BPF_MOV64_IMM(DST, IMM)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = IMM })

#define BPF_MOV32_IMM(DST, IMM)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = IMM })

/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */

#define BPF_MOVSX64_REG(DST, SRC, OFF)				\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

#define BPF_MOVSX32_REG(DST, SRC, OFF)				\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Special form of mov32, used for doing explicit zero extension on dst. */
#define BPF_ZEXT_REG(DST)					\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = DST,					\
		.off   = 0,					\
		.imm   = 1 })

static inline bool insn_is_zext(const struct bpf_insn *insn)
{
	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
}

/* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
 * to pointers in user vma.
 */
static inline bool insn_is_cast_user(const struct bpf_insn *insn)
{
	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
			      insn->off == BPF_ADDR_SPACE_CAST &&
			      insn->imm == 1U << 16;
}

/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
#define BPF_LD_IMM64(DST, IMM)					\
	BPF_LD_IMM64_RAW(DST, 0, IMM)

#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
	((struct bpf_insn) {					\
		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = (__u32) (IMM) }),			\
	((struct bpf_insn) {					\
		.code  = 0, /* zero is reserved opcode */	\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = ((__u64) (IMM)) >> 32 })

/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
#define BPF_LD_MAP_FD(DST, MAP_FD)				\
	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)

/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */

#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = IMM })

#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
	((struct bpf_insn) {					\
		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = IMM })

/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */

#define BPF_LD_ABS(SIZE, IMM)					\
	((struct bpf_insn) {					\
		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = IMM })

/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */

#define BPF_LD_IND(SIZE, SRC, IMM)				\
	((struct bpf_insn) {					\
		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
		.dst_reg = 0,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = IMM })

/* Memory load, dst_reg = *(uint *) (src_reg + off16) */

#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */

#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Memory store, *(uint *) (dst_reg + off16) = src_reg */

#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })


/*
 * Atomic operations:
 *
 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
 */

#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = OP })

/* Legacy alias */
#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)

/* Memory store, *(uint *) (dst_reg + off16) = imm32 */

#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
	((struct bpf_insn) {					\
		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })

/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */

#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */

#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })

/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */

#define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */

#define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })

/* Unconditional jumps, goto pc + off16 */

#define BPF_JMP_A(OFF)						\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_JA,			\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = 0 })

/* Relative call */

#define BPF_CALL_REL(TGT)					\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_CALL,			\
		.dst_reg = 0,					\
		.src_reg = BPF_PSEUDO_CALL,			\
		.off   = 0,					\
		.imm   = TGT })

/* Convert function address to BPF immediate */

#define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)

#define BPF_EMIT_CALL(FUNC)					\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_CALL,			\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = BPF_CALL_IMM(FUNC) })

/* Raw code statement block */

#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
	((struct bpf_insn) {					\
		.code  = CODE,					\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = IMM })

/* Program exit */

#define BPF_EXIT_INSN()						\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_EXIT,			\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = 0 })

/* Speculation barrier */

#define BPF_ST_NOSPEC()						\
	((struct bpf_insn) {					\
		.code  = BPF_ST | BPF_NOSPEC,			\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = 0 })

/* Internal classic blocks for direct assignment */

#define __BPF_STMT(CODE, K)					\
	((struct sock_filter) BPF_STMT(CODE, K))

#define __BPF_JUMP(CODE, K, JT, JF)				\
	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))

#define bytes_to_bpf_size(bytes)				\
({								\
	int bpf_size = -EINVAL;					\
								\
	if (bytes == sizeof(u8))				\
		bpf_size = BPF_B;				\
	else if (bytes == sizeof(u16))				\
		bpf_size = BPF_H;				\
	else if (bytes == sizeof(u32))				\
		bpf_size = BPF_W;				\
	else if (bytes == sizeof(u64))				\
		bpf_size = BPF_DW;				\
								\
	bpf_size;						\
})

#define bpf_size_to_bytes(bpf_size)				\
({								\
	int bytes = -EINVAL;					\
								\
	if (bpf_size == BPF_B)					\
		bytes = sizeof(u8);				\
	else if (bpf_size == BPF_H)				\
		bytes = sizeof(u16);				\
	else if (bpf_size == BPF_W)				\
		bytes = sizeof(u32);				\
	else if (bpf_size == BPF_DW)				\
		bytes = sizeof(u64);				\
								\
	bytes;							\
})

#define BPF_SIZEOF(type)					\
	({							\
		const int __size = bytes_to_bpf_size(sizeof(type)); \
		BUILD_BUG_ON(__size < 0);			\
		__size;						\
	})

#define BPF_FIELD_SIZEOF(type, field)				\
	({							\
		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
		BUILD_BUG_ON(__size < 0);			\
		__size;						\
	})

#define BPF_LDST_BYTES(insn)					\
	({							\
		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
		WARN_ON(__size < 0);				\
		__size;						\
	})

#define __BPF_MAP_0(m, v, ...) v
#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)

#define __BPF_REG_0(...) __BPF_PAD(5)
#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)

#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)

#define __BPF_CAST(t, a)						       \
	(__force t)							       \
	(__force							       \
	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
				      (unsigned long)0, (t)0))) a
#define __BPF_V void
#define __BPF_N

#define __BPF_DECL_ARGS(t, a) t   a
#define __BPF_DECL_REGS(t, a) u64 a

#define __BPF_PAD(n)							       \
	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
		  u64, __ur_3, u64, __ur_4, u64, __ur_5)

#define BPF_CALL_x(x, attr, name, ...)					       \
	static __always_inline						       \
	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
	{								       \
		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
	}								       \
	static __always_inline						       \
	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))

#define __NOATTR
#define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
#define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
#define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
#define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
#define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
#define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)

#define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)

#define bpf_ctx_range(TYPE, MEMBER)						\
	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
#if BITS_PER_LONG == 64
# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#else
# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
#endif /* BITS_PER_LONG == 64 */

#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
	({									\
		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
		*(PTR_SIZE) = (SIZE);						\
		offsetof(TYPE, MEMBER);						\
	})

/* A struct sock_filter is architecture independent. */
struct compat_sock_fprog {
	u16		len;
	compat_uptr_t	filter;	/* struct sock_filter * */
};

struct sock_fprog_kern {
	u16			len;
	struct sock_filter	*filter;
};

/* Some arches need doubleword alignment for their instructions and/or data */
#define BPF_IMAGE_ALIGNMENT 8

struct bpf_binary_header {
	u32 size;
	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
};

struct bpf_prog_stats {
	u64_stats_t cnt;
	u64_stats_t nsecs;
	u64_stats_t misses;
	struct u64_stats_sync syncp;
} __aligned(2 * sizeof(u64));

struct sk_filter {
	refcount_t	refcnt;
	struct rcu_head	rcu;
	struct bpf_prog	*prog;
};

DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);

extern struct mutex nf_conn_btf_access_lock;
extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
				     const struct bpf_reg_state *reg,
				     int off, int size);

typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
					  const struct bpf_insn *insnsi,
					  unsigned int (*bpf_func)(const void *,
								   const struct bpf_insn *));

static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
					  const void *ctx,
					  bpf_dispatcher_fn dfunc)
{
	u32 ret;

	cant_migrate();
	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
		struct bpf_prog_stats *stats;
		u64 duration, start = sched_clock();
		unsigned long flags;

		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);

		duration = sched_clock() - start;
		stats = this_cpu_ptr(prog->stats);
		flags = u64_stats_update_begin_irqsave(&stats->syncp);
		u64_stats_inc(&stats->cnt);
		u64_stats_add(&stats->nsecs, duration);
		u64_stats_update_end_irqrestore(&stats->syncp, flags);
	} else {
		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
	}
	return ret;
}

static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
{
	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
}

/*
 * Use in preemptible and therefore migratable context to make sure that
 * the execution of the BPF program runs on one CPU.
 *
 * This uses migrate_disable/enable() explicitly to document that the
 * invocation of a BPF program does not require reentrancy protection
 * against a BPF program which is invoked from a preempting task.
 */
static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
					  const void *ctx)
{
	u32 ret;

	migrate_disable();
	ret = bpf_prog_run(prog, ctx);
	migrate_enable();
	return ret;
}

#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN

struct bpf_skb_data_end {
	struct qdisc_skb_cb qdisc_cb;
	void *data_meta;
	void *data_end;
};

struct bpf_nh_params {
	u32 nh_family;
	union {
		u32 ipv4_nh;
		struct in6_addr ipv6_nh;
	};
};

struct bpf_redirect_info {
	u64 tgt_index;
	void *tgt_value;
	struct bpf_map *map;
	u32 flags;
	u32 kern_flags;
	u32 map_id;
	enum bpf_map_type map_type;
	struct bpf_nh_params nh;
};

DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);

/* flags for bpf_redirect_info kern_flags */
#define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */

/* Compute the linear packet data range [data, data_end) which
 * will be accessed by various program types (cls_bpf, act_bpf,
 * lwt, ...). Subsystems allowing direct data access must (!)
 * ensure that cb[] area can be written to when BPF program is
 * invoked (otherwise cb[] save/restore is necessary).
 */
static inline void bpf_compute_data_pointers(struct sk_buff *skb)
{
	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;

	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
	cb->data_meta = skb->data - skb_metadata_len(skb);
	cb->data_end  = skb->data + skb_headlen(skb);
}

/* Similar to bpf_compute_data_pointers(), except that save orginal
 * data in cb->data and cb->meta_data for restore.
 */
static inline void bpf_compute_and_save_data_end(
	struct sk_buff *skb, void **saved_data_end)
{
	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;

	*saved_data_end = cb->data_end;
	cb->data_end  = skb->data + skb_headlen(skb);
}

/* Restore data saved by bpf_compute_and_save_data_end(). */
static inline void bpf_restore_data_end(
	struct sk_buff *skb, void *saved_data_end)
{
	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;

	cb->data_end = saved_data_end;
}

static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
{
	/* eBPF programs may read/write skb->cb[] area to transfer meta
	 * data between tail calls. Since this also needs to work with
	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
	 *
	 * In some socket filter cases, the cb unfortunately needs to be
	 * saved/restored so that protocol specific skb->cb[] data won't
	 * be lost. In any case, due to unpriviledged eBPF programs
	 * attached to sockets, we need to clear the bpf_skb_cb() area
	 * to not leak previous contents to user space.
	 */
	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
		     sizeof_field(struct qdisc_skb_cb, data));

	return qdisc_skb_cb(skb)->data;
}

/* Must be invoked with migration disabled */
static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
					 const void *ctx)
{
	const struct sk_buff *skb = ctx;
	u8 *cb_data = bpf_skb_cb(skb);
	u8 cb_saved[BPF_SKB_CB_LEN];
	u32 res;

	if (unlikely(prog->cb_access)) {
		memcpy(cb_saved, cb_data, sizeof(cb_saved));
		memset(cb_data, 0, sizeof(cb_saved));
	}

	res = bpf_prog_run(prog, skb);

	if (unlikely(prog->cb_access))
		memcpy(cb_data, cb_saved, sizeof(cb_saved));

	return res;
}

static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
				       struct sk_buff *skb)
{
	u32 res;

	migrate_disable();
	res = __bpf_prog_run_save_cb(prog, skb);
	migrate_enable();
	return res;
}

static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
					struct sk_buff *skb)
{
	u8 *cb_data = bpf_skb_cb(skb);
	u32 res;

	if (unlikely(prog->cb_access))
		memset(cb_data, 0, BPF_SKB_CB_LEN);

	res = bpf_prog_run_pin_on_cpu(prog, skb);
	return res;
}

DECLARE_BPF_DISPATCHER(xdp)

DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);

u32 xdp_master_redirect(struct xdp_buff *xdp);

void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);

static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
{
	return prog->len * sizeof(struct bpf_insn);
}

static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
{
	return round_up(bpf_prog_insn_size(prog) +
			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
}

static inline unsigned int bpf_prog_size(unsigned int proglen)
{
	return max(sizeof(struct bpf_prog),
		   offsetof(struct bpf_prog, insns[proglen]));
}

static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
{
	/* When classic BPF programs have been loaded and the arch
	 * does not have a classic BPF JIT (anymore), they have been
	 * converted via bpf_migrate_filter() to eBPF and thus always
	 * have an unspec program type.
	 */
	return prog->type == BPF_PROG_TYPE_UNSPEC;
}

static inline u32 bpf_ctx_off_adjust_machine(u32 size)
{
	const u32 size_machine = sizeof(unsigned long);

	if (size > size_machine && size % size_machine == 0)
		size = size_machine;

	return size;
}

static inline bool
bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
{
	return size <= size_default && (size & (size - 1)) == 0;
}

static inline u8
bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
{
	u8 access_off = off & (size_default - 1);

#ifdef __LITTLE_ENDIAN
	return access_off;
#else
	return size_default - (access_off + size);
#endif
}

#define bpf_ctx_wide_access_ok(off, size, type, field)			\
	(size == sizeof(__u64) &&					\
	off >= offsetof(type, field) &&					\
	off + sizeof(__u64) <= offsetofend(type, field) &&		\
	off % sizeof(__u64) == 0)

#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))

static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
{
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
	if (!fp->jited) {
		set_vm_flush_reset_perms(fp);
		return set_memory_ro((unsigned long)fp, fp->pages);
	}
#endif
	return 0;
}

static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
{
	set_vm_flush_reset_perms(hdr);
	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
}

int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	return sk_filter_trim_cap(sk, skb, 1);
}

struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
void bpf_prog_free(struct bpf_prog *fp);

bool bpf_opcode_in_insntable(u8 code);

void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
			       const u32 *insn_to_jit_off);
int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
void bpf_prog_jit_attempt_done(struct bpf_prog *prog);

struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
				  gfp_t gfp_extra_flags);
void __bpf_prog_free(struct bpf_prog *fp);

static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
{
	__bpf_prog_free(fp);
}

typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
				       unsigned int flen);

int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
			      bpf_aux_classic_check_t trans, bool save_orig);
void bpf_prog_destroy(struct bpf_prog *fp);

int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_attach_bpf(u32 ufd, struct sock *sk);
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
void sk_reuseport_prog_free(struct bpf_prog *prog);
int sk_detach_filter(struct sock *sk);
int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);

bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);

u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#define __bpf_call_base_args \
	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
	 (void *)__bpf_call_base)

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
void bpf_jit_compile(struct bpf_prog *prog);
bool bpf_jit_needs_zext(void);
bool bpf_jit_inlines_helper_call(s32 imm);
bool bpf_jit_supports_subprog_tailcalls(void);
bool bpf_jit_supports_percpu_insn(void);
bool bpf_jit_supports_kfunc_call(void);
bool bpf_jit_supports_far_kfunc_call(void);
bool bpf_jit_supports_exceptions(void);
bool bpf_jit_supports_ptr_xchg(void);
bool bpf_jit_supports_arena(void);
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
u64 bpf_arch_uaddress_limit(void);
void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
bool bpf_helper_changes_pkt_data(void *func);

static inline bool bpf_dump_raw_ok(const struct cred *cred)
{
	/* Reconstruction of call-sites is dependent on kallsyms,
	 * thus make dump the same restriction.
	 */
	return kallsyms_show_value(cred);
}

struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
				       const struct bpf_insn *patch, u32 len);
int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);

void bpf_clear_redirect_map(struct bpf_map *map);

static inline bool xdp_return_frame_no_direct(void)
{
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);

	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
}

static inline void xdp_set_return_frame_no_direct(void)
{
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);

	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
}

static inline void xdp_clear_return_frame_no_direct(void)
{
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);

	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
}

static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
				 unsigned int pktlen)
{
	unsigned int len;

	if (unlikely(!(fwd->flags & IFF_UP)))
		return -ENETDOWN;

	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
	if (pktlen > len)
		return -EMSGSIZE;

	return 0;
}

/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
 * same cpu context. Further for best results no more than a single map
 * for the do_redirect/do_flush pair should be used. This limitation is
 * because we only track one map and force a flush when the map changes.
 * This does not appear to be a real limitation for existing software.
 */
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
			    struct xdp_buff *xdp, struct bpf_prog *prog);
int xdp_do_redirect(struct net_device *dev,
		    struct xdp_buff *xdp,
		    struct bpf_prog *prog);
int xdp_do_redirect_frame(struct net_device *dev,
			  struct xdp_buff *xdp,
			  struct xdp_frame *xdpf,
			  struct bpf_prog *prog);
void xdp_do_flush(void);

void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);

#ifdef CONFIG_INET
struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
				  struct bpf_prog *prog, struct sk_buff *skb,
				  struct sock *migrating_sk,
				  u32 hash);
#else
static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
		     struct bpf_prog *prog, struct sk_buff *skb,
		     struct sock *migrating_sk,
		     u32 hash)
{
	return NULL;
}
#endif

#ifdef CONFIG_BPF_JIT
extern int bpf_jit_enable;
extern int bpf_jit_harden;
extern int bpf_jit_kallsyms;
extern long bpf_jit_limit;
extern long bpf_jit_limit_max;

typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);

void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);

struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
		     unsigned int alignment,
		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
void bpf_jit_binary_free(struct bpf_binary_header *hdr);
u64 bpf_jit_alloc_exec_limit(void);
void *bpf_jit_alloc_exec(unsigned long size);
void bpf_jit_free_exec(void *addr);
void bpf_jit_free(struct bpf_prog *fp);
struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);

void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
void bpf_prog_pack_free(void *ptr, u32 size);

static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
{
	return list_empty(&fp->aux->ksym.lnode) ||
	       fp->aux->ksym.lnode.prev == LIST_POISON2;
}

struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
			  unsigned int alignment,
			  struct bpf_binary_header **rw_hdr,
			  u8 **rw_image,
			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
				 struct bpf_binary_header *ro_header,
				 struct bpf_binary_header *rw_header);
void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
			      struct bpf_binary_header *rw_header);

int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
				struct bpf_jit_poke_descriptor *poke);

int bpf_jit_get_func_addr(const struct bpf_prog *prog,
			  const struct bpf_insn *insn, bool extra_pass,
			  u64 *func_addr, bool *func_addr_fixed);

struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);

static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
				u32 pass, void *image)
{
	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
	       proglen, pass, image, current->comm, task_pid_nr(current));

	if (image)
		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
			       16, 1, image, proglen, false);
}

static inline bool bpf_jit_is_ebpf(void)
{
# ifdef CONFIG_HAVE_EBPF_JIT
	return true;
# else
	return false;
# endif
}

static inline bool ebpf_jit_enabled(void)
{
	return bpf_jit_enable && bpf_jit_is_ebpf();
}

static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
	return fp->jited && bpf_jit_is_ebpf();
}

static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
{
	/* These are the prerequisites, should someone ever have the
	 * idea to call blinding outside of them, we make sure to
	 * bail out.
	 */
	if (!bpf_jit_is_ebpf())
		return false;
	if (!prog->jit_requested)
		return false;
	if (!bpf_jit_harden)
		return false;
	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
		return false;

	return true;
}

static inline bool bpf_jit_kallsyms_enabled(void)
{
	/* There are a couple of corner cases where kallsyms should
	 * not be enabled f.e. on hardening.
	 */
	if (bpf_jit_harden)
		return false;
	if (!bpf_jit_kallsyms)
		return false;
	if (bpf_jit_kallsyms == 1)
		return true;

	return false;
}

int __bpf_address_lookup(unsigned long addr, unsigned long *size,
				 unsigned long *off, char *sym);
bool is_bpf_text_address(unsigned long addr);
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
		    char *sym);
struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);

static inline int
bpf_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym)
{
	int ret = __bpf_address_lookup(addr, size, off, sym);

	if (ret && modname)
		*modname = NULL;
	return ret;
}

void bpf_prog_kallsyms_add(struct bpf_prog *fp);
void bpf_prog_kallsyms_del(struct bpf_prog *fp);

#else /* CONFIG_BPF_JIT */

static inline bool ebpf_jit_enabled(void)
{
	return false;
}

static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
{
	return false;
}

static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
	return false;
}

static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
			    struct bpf_jit_poke_descriptor *poke)
{
	return -ENOTSUPP;
}

static inline void bpf_jit_free(struct bpf_prog *fp)
{
	bpf_prog_unlock_free(fp);
}

static inline bool bpf_jit_kallsyms_enabled(void)
{
	return false;
}

static inline int
__bpf_address_lookup(unsigned long addr, unsigned long *size,
		     unsigned long *off, char *sym)
{
	return 0;
}

static inline bool is_bpf_text_address(unsigned long addr)
{
	return false;
}

static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
				  char *type, char *sym)
{
	return -ERANGE;
}

static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
{
	return NULL;
}

static inline int
bpf_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym)
{
	return 0;
}

static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
}

static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
}

#endif /* CONFIG_BPF_JIT */

void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);

#define BPF_ANC		BIT(15)

static inline bool bpf_needs_clear_a(const struct sock_filter *first)
{
	switch (first->code) {
	case BPF_RET | BPF_K:
	case BPF_LD | BPF_W | BPF_LEN:
		return false;

	case BPF_LD | BPF_W | BPF_ABS:
	case BPF_LD | BPF_H | BPF_ABS:
	case BPF_LD | BPF_B | BPF_ABS:
		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
			return true;
		return false;

	default:
		return true;
	}
}

static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
{
	BUG_ON(ftest->code & BPF_ANC);

	switch (ftest->code) {
	case BPF_LD | BPF_W | BPF_ABS:
	case BPF_LD | BPF_H | BPF_ABS:
	case BPF_LD | BPF_B | BPF_ABS:
#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
				return BPF_ANC | SKF_AD_##CODE
		switch (ftest->k) {
		BPF_ANCILLARY(PROTOCOL);
		BPF_ANCILLARY(PKTTYPE);
		BPF_ANCILLARY(IFINDEX);
		BPF_ANCILLARY(NLATTR);
		BPF_ANCILLARY(NLATTR_NEST);
		BPF_ANCILLARY(MARK);
		BPF_ANCILLARY(QUEUE);
		BPF_ANCILLARY(HATYPE);
		BPF_ANCILLARY(RXHASH);
		BPF_ANCILLARY(CPU);
		BPF_ANCILLARY(ALU_XOR_X);
		BPF_ANCILLARY(VLAN_TAG);
		BPF_ANCILLARY(VLAN_TAG_PRESENT);
		BPF_ANCILLARY(PAY_OFFSET);
		BPF_ANCILLARY(RANDOM);
		BPF_ANCILLARY(VLAN_TPID);
		}
		fallthrough;
	default:
		return ftest->code;
	}
}

void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
					   int k, unsigned int size);

static inline int bpf_tell_extensions(void)
{
	return SKF_AD_MAX;
}

struct bpf_sock_addr_kern {
	struct sock *sk;
	struct sockaddr *uaddr;
	/* Temporary "register" to make indirect stores to nested structures
	 * defined above. We need three registers to make such a store, but
	 * only two (src and dst) are available at convert_ctx_access time
	 */
	u64 tmp_reg;
	void *t_ctx;	/* Attach type specific context. */
	u32 uaddrlen;
};

struct bpf_sock_ops_kern {
	struct	sock *sk;
	union {
		u32 args[4];
		u32 reply;
		u32 replylong[4];
	};
	struct sk_buff	*syn_skb;
	struct sk_buff	*skb;
	void	*skb_data_end;
	u8	op;
	u8	is_fullsock;
	u8	remaining_opt_len;
	u64	temp;			/* temp and everything after is not
					 * initialized to 0 before calling
					 * the BPF program. New fields that
					 * should be initialized to 0 should
					 * be inserted before temp.
					 * temp is scratch storage used by
					 * sock_ops_convert_ctx_access
					 * as temporary storage of a register.
					 */
};

struct bpf_sysctl_kern {
	struct ctl_table_header *head;
	struct ctl_table *table;
	void *cur_val;
	size_t cur_len;
	void *new_val;
	size_t new_len;
	int new_updated;
	int write;
	loff_t *ppos;
	/* Temporary "register" for indirect stores to ppos. */
	u64 tmp_reg;
};

#define BPF_SOCKOPT_KERN_BUF_SIZE	32
struct bpf_sockopt_buf {
	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
};

struct bpf_sockopt_kern {
	struct sock	*sk;
	u8		*optval;
	u8		*optval_end;
	s32		level;
	s32		optname;
	s32		optlen;
	/* for retval in struct bpf_cg_run_ctx */
	struct task_struct *current_task;
	/* Temporary "register" for indirect stores to ppos. */
	u64		tmp_reg;
};

int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);

struct bpf_sk_lookup_kern {
	u16		family;
	u16		protocol;
	__be16		sport;
	u16		dport;
	struct {
		__be32 saddr;
		__be32 daddr;
	} v4;
	struct {
		const struct in6_addr *saddr;
		const struct in6_addr *daddr;
	} v6;
	struct sock	*selected_sk;
	u32		ingress_ifindex;
	bool		no_reuseport;
};

extern struct static_key_false bpf_sk_lookup_enabled;

/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
 *
 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
 * SK_DROP. Their meaning is as follows:
 *
 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
 *
 * This macro aggregates return values and selected sockets from
 * multiple BPF programs according to following rules in order:
 *
 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
 *     macro result is SK_PASS and last ctx.selected_sk is used.
 *  2. If any program returned SK_DROP return value,
 *     macro result is SK_DROP.
 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
 *
 * Caller must ensure that the prog array is non-NULL, and that the
 * array as well as the programs it contains remain valid.
 */
#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
	({								\
		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
		struct bpf_prog_array_item *_item;			\
		struct sock *_selected_sk = NULL;			\
		bool _no_reuseport = false;				\
		struct bpf_prog *_prog;					\
		bool _all_pass = true;					\
		u32 _ret;						\
									\
		migrate_disable();					\
		_item = &(array)->items[0];				\
		while ((_prog = READ_ONCE(_item->prog))) {		\
			/* restore most recent selection */		\
			_ctx->selected_sk = _selected_sk;		\
			_ctx->no_reuseport = _no_reuseport;		\
									\
			_ret = func(_prog, _ctx);			\
			if (_ret == SK_PASS && _ctx->selected_sk) {	\
				/* remember last non-NULL socket */	\
				_selected_sk = _ctx->selected_sk;	\
				_no_reuseport = _ctx->no_reuseport;	\
			} else if (_ret == SK_DROP && _all_pass) {	\
				_all_pass = false;			\
			}						\
			_item++;					\
		}							\
		_ctx->selected_sk = _selected_sk;			\
		_ctx->no_reuseport = _no_reuseport;			\
		migrate_enable();					\
		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
	 })

static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
					const __be32 saddr, const __be16 sport,
					const __be32 daddr, const u16 dport,
					const int ifindex, struct sock **psk)
{
	struct bpf_prog_array *run_array;
	struct sock *selected_sk = NULL;
	bool no_reuseport = false;

	rcu_read_lock();
	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
	if (run_array) {
		struct bpf_sk_lookup_kern ctx = {
			.family		= AF_INET,
			.protocol	= protocol,
			.v4.saddr	= saddr,
			.v4.daddr	= daddr,
			.sport		= sport,
			.dport		= dport,
			.ingress_ifindex	= ifindex,
		};
		u32 act;

		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
		if (act == SK_PASS) {
			selected_sk = ctx.selected_sk;
			no_reuseport = ctx.no_reuseport;
		} else {
			selected_sk = ERR_PTR(-ECONNREFUSED);
		}
	}
	rcu_read_unlock();
	*psk = selected_sk;
	return no_reuseport;
}

#if IS_ENABLED(CONFIG_IPV6)
static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
					const struct in6_addr *saddr,
					const __be16 sport,
					const struct in6_addr *daddr,
					const u16 dport,
					const int ifindex, struct sock **psk)
{
	struct bpf_prog_array *run_array;
	struct sock *selected_sk = NULL;
	bool no_reuseport = false;

	rcu_read_lock();
	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
	if (run_array) {
		struct bpf_sk_lookup_kern ctx = {
			.family		= AF_INET6,
			.protocol	= protocol,
			.v6.saddr	= saddr,
			.v6.daddr	= daddr,
			.sport		= sport,
			.dport		= dport,
			.ingress_ifindex	= ifindex,
		};
		u32 act;

		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
		if (act == SK_PASS) {
			selected_sk = ctx.selected_sk;
			no_reuseport = ctx.no_reuseport;
		} else {
			selected_sk = ERR_PTR(-ECONNREFUSED);
		}
	}
	rcu_read_unlock();
	*psk = selected_sk;
	return no_reuseport;
}
#endif /* IS_ENABLED(CONFIG_IPV6) */

static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
						   u64 flags, const u64 flag_mask,
						   void *lookup_elem(struct bpf_map *map, u32 key))
{
	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;

	/* Lower bits of the flags are used as return code on lookup failure */
	if (unlikely(flags & ~(action_mask | flag_mask)))
		return XDP_ABORTED;

	ri->tgt_value = lookup_elem(map, index);
	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
		/* If the lookup fails we want to clear out the state in the
		 * redirect_info struct completely, so that if an eBPF program
		 * performs multiple lookups, the last one always takes
		 * precedence.
		 */
		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
		ri->map_type = BPF_MAP_TYPE_UNSPEC;
		return flags & action_mask;
	}

	ri->tgt_index = index;
	ri->map_id = map->id;
	ri->map_type = map->map_type;

	if (flags & BPF_F_BROADCAST) {
		WRITE_ONCE(ri->map, map);
		ri->flags = flags;
	} else {
		WRITE_ONCE(ri->map, NULL);
		ri->flags = 0;
	}

	return XDP_REDIRECT;
}

#ifdef CONFIG_NET
int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
			  u32 len, u64 flags);
int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
		      void *buf, unsigned long len, bool flush);
#else /* CONFIG_NET */
static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
				       void *to, u32 len)
{
	return -EOPNOTSUPP;
}

static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
					const void *from, u32 len, u64 flags)
{
	return -EOPNOTSUPP;
}

static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
				       void *buf, u32 len)
{
	return -EOPNOTSUPP;
}

static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
					void *buf, u32 len)
{
	return -EOPNOTSUPP;
}

static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
{
	return NULL;
}

static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
				    unsigned long len, bool flush)
{
}
#endif /* CONFIG_NET */

#endif /* __LINUX_FILTER_H__ */