1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/export.h>
#include <linux/log2.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/slab.h>
#include "six.h"
#ifdef DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#else
#define EBUG_ON(cond) do {} while (0)
#endif
#define six_acquire(l, t) lock_acquire(l, 0, t, 0, 0, NULL, _RET_IP_)
#define six_release(l) lock_release(l, _RET_IP_)
struct six_lock_vals {
/* Value we add to the lock in order to take the lock: */
u64 lock_val;
/* If the lock has this value (used as a mask), taking the lock fails: */
u64 lock_fail;
/* Value we add to the lock in order to release the lock: */
u64 unlock_val;
/* Mask that indicates lock is held for this type: */
u64 held_mask;
/* Waitlist we wakeup when releasing the lock: */
enum six_lock_type unlock_wakeup;
};
#define __SIX_LOCK_HELD_read __SIX_VAL(read_lock, ~0)
#define __SIX_LOCK_HELD_intent __SIX_VAL(intent_lock, ~0)
#define __SIX_LOCK_HELD_write __SIX_VAL(seq, 1)
#define LOCK_VALS { \
[SIX_LOCK_read] = { \
.lock_val = __SIX_VAL(read_lock, 1), \
.lock_fail = __SIX_LOCK_HELD_write + __SIX_VAL(write_locking, 1),\
.unlock_val = -__SIX_VAL(read_lock, 1), \
.held_mask = __SIX_LOCK_HELD_read, \
.unlock_wakeup = SIX_LOCK_write, \
}, \
[SIX_LOCK_intent] = { \
.lock_val = __SIX_VAL(intent_lock, 1), \
.lock_fail = __SIX_LOCK_HELD_intent, \
.unlock_val = -__SIX_VAL(intent_lock, 1), \
.held_mask = __SIX_LOCK_HELD_intent, \
.unlock_wakeup = SIX_LOCK_intent, \
}, \
[SIX_LOCK_write] = { \
.lock_val = __SIX_VAL(seq, 1), \
.lock_fail = __SIX_LOCK_HELD_read, \
.unlock_val = __SIX_VAL(seq, 1), \
.held_mask = __SIX_LOCK_HELD_write, \
.unlock_wakeup = SIX_LOCK_read, \
}, \
}
static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
union six_lock_state old)
{
if (type != SIX_LOCK_intent)
return;
if (!old.intent_lock) {
EBUG_ON(lock->owner);
lock->owner = current;
} else {
EBUG_ON(lock->owner != current);
}
}
static inline unsigned pcpu_read_count(struct six_lock *lock)
{
unsigned read_count = 0;
int cpu;
for_each_possible_cpu(cpu)
read_count += *per_cpu_ptr(lock->readers, cpu);
return read_count;
}
struct six_lock_waiter {
struct list_head list;
struct task_struct *task;
};
/* This is probably up there with the more evil things I've done */
#define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l))
static inline void six_lock_wakeup(struct six_lock *lock,
union six_lock_state state,
unsigned waitlist_id)
{
if (waitlist_id == SIX_LOCK_write) {
if (state.write_locking && !state.read_lock) {
struct task_struct *p = READ_ONCE(lock->owner);
if (p)
wake_up_process(p);
}
} else {
struct list_head *wait_list = &lock->wait_list[waitlist_id];
struct six_lock_waiter *w, *next;
if (!(state.waiters & (1 << waitlist_id)))
return;
clear_bit(waitlist_bitnr(waitlist_id),
(unsigned long *) &lock->state.v);
raw_spin_lock(&lock->wait_lock);
list_for_each_entry_safe(w, next, wait_list, list) {
list_del_init(&w->list);
if (wake_up_process(w->task) &&
waitlist_id != SIX_LOCK_read) {
if (!list_empty(wait_list))
set_bit(waitlist_bitnr(waitlist_id),
(unsigned long *) &lock->state.v);
break;
}
}
raw_spin_unlock(&lock->wait_lock);
}
}
static __always_inline bool do_six_trylock_type(struct six_lock *lock,
enum six_lock_type type,
bool try)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old, new;
bool ret;
u64 v;
EBUG_ON(type == SIX_LOCK_write && lock->owner != current);
EBUG_ON(type == SIX_LOCK_write && (lock->state.seq & 1));
EBUG_ON(type == SIX_LOCK_write && (try != !(lock->state.write_locking)));
/*
* Percpu reader mode:
*
* The basic idea behind this algorithm is that you can implement a lock
* between two threads without any atomics, just memory barriers:
*
* For two threads you'll need two variables, one variable for "thread a
* has the lock" and another for "thread b has the lock".
*
* To take the lock, a thread sets its variable indicating that it holds
* the lock, then issues a full memory barrier, then reads from the
* other thread's variable to check if the other thread thinks it has
* the lock. If we raced, we backoff and retry/sleep.
*/
if (type == SIX_LOCK_read && lock->readers) {
retry:
preempt_disable();
this_cpu_inc(*lock->readers); /* signal that we own lock */
smp_mb();
old.v = READ_ONCE(lock->state.v);
ret = !(old.v & l[type].lock_fail);
this_cpu_sub(*lock->readers, !ret);
preempt_enable();
/*
* If we failed because a writer was trying to take the
* lock, issue a wakeup because we might have caused a
* spurious trylock failure:
*/
if (old.write_locking) {
struct task_struct *p = READ_ONCE(lock->owner);
if (p)
wake_up_process(p);
}
/*
* If we failed from the lock path and the waiting bit wasn't
* set, set it:
*/
if (!try && !ret) {
v = old.v;
do {
new.v = old.v = v;
if (!(old.v & l[type].lock_fail))
goto retry;
if (new.waiters & (1 << type))
break;
new.waiters |= 1 << type;
} while ((v = atomic64_cmpxchg(&lock->state.counter,
old.v, new.v)) != old.v);
}
} else if (type == SIX_LOCK_write && lock->readers) {
if (try) {
atomic64_add(__SIX_VAL(write_locking, 1),
&lock->state.counter);
smp_mb__after_atomic();
}
ret = !pcpu_read_count(lock);
/*
* On success, we increment lock->seq; also we clear
* write_locking unless we failed from the lock path:
*/
v = 0;
if (ret)
v += __SIX_VAL(seq, 1);
if (ret || try)
v -= __SIX_VAL(write_locking, 1);
if (try && !ret) {
old.v = atomic64_add_return(v, &lock->state.counter);
six_lock_wakeup(lock, old, SIX_LOCK_read);
} else {
atomic64_add(v, &lock->state.counter);
}
} else {
v = READ_ONCE(lock->state.v);
do {
new.v = old.v = v;
if (!(old.v & l[type].lock_fail)) {
new.v += l[type].lock_val;
if (type == SIX_LOCK_write)
new.write_locking = 0;
} else if (!try && type != SIX_LOCK_write &&
!(new.waiters & (1 << type)))
new.waiters |= 1 << type;
else
break; /* waiting bit already set */
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v, new.v)) != old.v);
ret = !(old.v & l[type].lock_fail);
EBUG_ON(ret && !(lock->state.v & l[type].held_mask));
}
if (ret)
six_set_owner(lock, type, old);
EBUG_ON(type == SIX_LOCK_write && (try || ret) && (lock->state.write_locking));
return ret;
}
__always_inline __flatten
static bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type)
{
if (!do_six_trylock_type(lock, type, true))
return false;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1);
return true;
}
__always_inline __flatten
static bool __six_relock_type(struct six_lock *lock, enum six_lock_type type,
unsigned seq)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state old;
u64 v;
EBUG_ON(type == SIX_LOCK_write);
if (type == SIX_LOCK_read &&
lock->readers) {
bool ret;
preempt_disable();
this_cpu_inc(*lock->readers);
smp_mb();
old.v = READ_ONCE(lock->state.v);
ret = !(old.v & l[type].lock_fail) && old.seq == seq;
this_cpu_sub(*lock->readers, !ret);
preempt_enable();
/*
* Similar to the lock path, we may have caused a spurious write
* lock fail and need to issue a wakeup:
*/
if (old.write_locking) {
struct task_struct *p = READ_ONCE(lock->owner);
if (p)
wake_up_process(p);
}
if (ret)
six_acquire(&lock->dep_map, 1);
return ret;
}
v = READ_ONCE(lock->state.v);
do {
old.v = v;
if (old.seq != seq || old.v & l[type].lock_fail)
return false;
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v,
old.v + l[type].lock_val)) != old.v);
six_set_owner(lock, type, old);
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 1);
return true;
}
#ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER
static inline int six_can_spin_on_owner(struct six_lock *lock)
{
struct task_struct *owner;
int retval = 1;
if (need_resched())
return 0;
rcu_read_lock();
owner = READ_ONCE(lock->owner);
if (owner)
retval = owner->on_cpu;
rcu_read_unlock();
/*
* if lock->owner is not set, the mutex owner may have just acquired
* it and not set the owner yet or the mutex has been released.
*/
return retval;
}
static inline bool six_spin_on_owner(struct six_lock *lock,
struct task_struct *owner)
{
bool ret = true;
rcu_read_lock();
while (lock->owner == owner) {
/*
* Ensure we emit the owner->on_cpu, dereference _after_
* checking lock->owner still matches owner. If that fails,
* owner might point to freed memory. If it still matches,
* the rcu_read_lock() ensures the memory stays valid.
*/
barrier();
if (!owner->on_cpu || need_resched()) {
ret = false;
break;
}
cpu_relax();
}
rcu_read_unlock();
return ret;
}
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
struct task_struct *task = current;
if (type == SIX_LOCK_write)
return false;
preempt_disable();
if (!six_can_spin_on_owner(lock))
goto fail;
if (!osq_lock(&lock->osq))
goto fail;
while (1) {
struct task_struct *owner;
/*
* If there's an owner, wait for it to either
* release the lock or go to sleep.
*/
owner = READ_ONCE(lock->owner);
if (owner && !six_spin_on_owner(lock, owner))
break;
if (do_six_trylock_type(lock, type, false)) {
osq_unlock(&lock->osq);
preempt_enable();
return true;
}
/*
* When there's no owner, we might have preempted between the
* owner acquiring the lock and setting the owner field. If
* we're an RT task that will live-lock because we won't let
* the owner complete.
*/
if (!owner && (need_resched() || rt_task(task)))
break;
/*
* The cpu_relax() call is a compiler barrier which forces
* everything in this loop to be re-loaded. We don't need
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
cpu_relax();
}
osq_unlock(&lock->osq);
fail:
preempt_enable();
/*
* If we fell out of the spin path because of need_resched(),
* reschedule now, before we try-lock again. This avoids getting
* scheduled out right after we obtained the lock.
*/
if (need_resched())
schedule();
return false;
}
#else /* CONFIG_SIX_LOCK_SPIN_ON_OWNER */
static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type)
{
return false;
}
#endif
noinline
static int __six_lock_type_slowpath(struct six_lock *lock, enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p)
{
union six_lock_state old;
struct six_lock_waiter wait;
int ret = 0;
if (type == SIX_LOCK_write) {
EBUG_ON(lock->state.write_locking);
atomic64_add(__SIX_VAL(write_locking, 1), &lock->state.counter);
smp_mb__after_atomic();
}
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
if (ret)
goto out_before_sleep;
if (six_optimistic_spin(lock, type))
goto out_before_sleep;
lock_contended(&lock->dep_map, _RET_IP_);
INIT_LIST_HEAD(&wait.list);
wait.task = current;
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (type == SIX_LOCK_write)
EBUG_ON(lock->owner != current);
else if (list_empty_careful(&wait.list)) {
raw_spin_lock(&lock->wait_lock);
list_add_tail(&wait.list, &lock->wait_list[type]);
raw_spin_unlock(&lock->wait_lock);
}
if (do_six_trylock_type(lock, type, false))
break;
ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
if (ret)
break;
schedule();
}
__set_current_state(TASK_RUNNING);
if (!list_empty_careful(&wait.list)) {
raw_spin_lock(&lock->wait_lock);
list_del_init(&wait.list);
raw_spin_unlock(&lock->wait_lock);
}
out_before_sleep:
if (ret && type == SIX_LOCK_write) {
old.v = atomic64_sub_return(__SIX_VAL(write_locking, 1),
&lock->state.counter);
six_lock_wakeup(lock, old, SIX_LOCK_read);
}
return ret;
}
__always_inline
static int __six_lock_type(struct six_lock *lock, enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p)
{
int ret;
if (type != SIX_LOCK_write)
six_acquire(&lock->dep_map, 0);
ret = do_six_trylock_type(lock, type, true) ? 0
: __six_lock_type_slowpath(lock, type, should_sleep_fn, p);
if (ret && type != SIX_LOCK_write)
six_release(&lock->dep_map);
if (!ret)
lock_acquired(&lock->dep_map, _RET_IP_);
return ret;
}
__always_inline __flatten
static void __six_unlock_type(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
union six_lock_state state;
EBUG_ON(type == SIX_LOCK_write &&
!(lock->state.v & __SIX_LOCK_HELD_intent));
if (type != SIX_LOCK_write)
six_release(&lock->dep_map);
if (type == SIX_LOCK_intent) {
EBUG_ON(lock->owner != current);
if (lock->intent_lock_recurse) {
--lock->intent_lock_recurse;
return;
}
lock->owner = NULL;
}
if (type == SIX_LOCK_read &&
lock->readers) {
smp_mb(); /* unlock barrier */
this_cpu_dec(*lock->readers);
smp_mb(); /* between unlocking and checking for waiters */
state.v = READ_ONCE(lock->state.v);
} else {
EBUG_ON(!(lock->state.v & l[type].held_mask));
state.v = atomic64_add_return_release(l[type].unlock_val,
&lock->state.counter);
}
six_lock_wakeup(lock, state, l[type].unlock_wakeup);
}
#define __SIX_LOCK(type) \
bool six_trylock_##type(struct six_lock *lock) \
{ \
return __six_trylock_type(lock, SIX_LOCK_##type); \
} \
EXPORT_SYMBOL_GPL(six_trylock_##type); \
\
bool six_relock_##type(struct six_lock *lock, u32 seq) \
{ \
return __six_relock_type(lock, SIX_LOCK_##type, seq); \
} \
EXPORT_SYMBOL_GPL(six_relock_##type); \
\
int six_lock_##type(struct six_lock *lock, \
six_lock_should_sleep_fn should_sleep_fn, void *p) \
{ \
return __six_lock_type(lock, SIX_LOCK_##type, should_sleep_fn, p);\
} \
EXPORT_SYMBOL_GPL(six_lock_##type); \
\
void six_unlock_##type(struct six_lock *lock) \
{ \
__six_unlock_type(lock, SIX_LOCK_##type); \
} \
EXPORT_SYMBOL_GPL(six_unlock_##type);
__SIX_LOCK(read)
__SIX_LOCK(intent)
__SIX_LOCK(write)
#undef __SIX_LOCK
/* Convert from intent to read: */
void six_lock_downgrade(struct six_lock *lock)
{
six_lock_increment(lock, SIX_LOCK_read);
six_unlock_intent(lock);
}
EXPORT_SYMBOL_GPL(six_lock_downgrade);
bool six_lock_tryupgrade(struct six_lock *lock)
{
union six_lock_state old, new;
u64 v = READ_ONCE(lock->state.v);
do {
new.v = old.v = v;
if (new.intent_lock)
return false;
if (!lock->readers) {
EBUG_ON(!new.read_lock);
new.read_lock--;
}
new.intent_lock = 1;
} while ((v = atomic64_cmpxchg_acquire(&lock->state.counter,
old.v, new.v)) != old.v);
if (lock->readers)
this_cpu_dec(*lock->readers);
six_set_owner(lock, SIX_LOCK_intent, old);
return true;
}
EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
bool six_trylock_convert(struct six_lock *lock,
enum six_lock_type from,
enum six_lock_type to)
{
EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
if (to == from)
return true;
if (to == SIX_LOCK_read) {
six_lock_downgrade(lock);
return true;
} else {
return six_lock_tryupgrade(lock);
}
}
EXPORT_SYMBOL_GPL(six_trylock_convert);
/*
* Increment read/intent lock count, assuming we already have it read or intent
* locked:
*/
void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
{
const struct six_lock_vals l[] = LOCK_VALS;
six_acquire(&lock->dep_map, 0);
/* XXX: assert already locked, and that we don't overflow: */
switch (type) {
case SIX_LOCK_read:
if (lock->readers) {
this_cpu_inc(*lock->readers);
} else {
EBUG_ON(!lock->state.read_lock &&
!lock->state.intent_lock);
atomic64_add(l[type].lock_val, &lock->state.counter);
}
break;
case SIX_LOCK_intent:
EBUG_ON(!lock->state.intent_lock);
lock->intent_lock_recurse++;
break;
case SIX_LOCK_write:
BUG();
break;
}
}
EXPORT_SYMBOL_GPL(six_lock_increment);
void six_lock_wakeup_all(struct six_lock *lock)
{
struct six_lock_waiter *w;
raw_spin_lock(&lock->wait_lock);
list_for_each_entry(w, &lock->wait_list[0], list)
wake_up_process(w->task);
list_for_each_entry(w, &lock->wait_list[1], list)
wake_up_process(w->task);
raw_spin_unlock(&lock->wait_lock);
}
EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
struct free_pcpu_rcu {
struct rcu_head rcu;
void __percpu *p;
};
static void free_pcpu_rcu_fn(struct rcu_head *_rcu)
{
struct free_pcpu_rcu *rcu =
container_of(_rcu, struct free_pcpu_rcu, rcu);
free_percpu(rcu->p);
kfree(rcu);
}
void six_lock_pcpu_free_rcu(struct six_lock *lock)
{
struct free_pcpu_rcu *rcu = kzalloc(sizeof(*rcu), GFP_KERNEL);
if (!rcu)
return;
rcu->p = lock->readers;
lock->readers = NULL;
call_rcu(&rcu->rcu, free_pcpu_rcu_fn);
}
EXPORT_SYMBOL_GPL(six_lock_pcpu_free_rcu);
void six_lock_pcpu_free(struct six_lock *lock)
{
BUG_ON(lock->readers && pcpu_read_count(lock));
BUG_ON(lock->state.read_lock);
free_percpu(lock->readers);
lock->readers = NULL;
}
EXPORT_SYMBOL_GPL(six_lock_pcpu_free);
void six_lock_pcpu_alloc(struct six_lock *lock)
{
#ifdef __KERNEL__
if (!lock->readers)
lock->readers = alloc_percpu(unsigned);
#endif
}
EXPORT_SYMBOL_GPL(six_lock_pcpu_alloc);
/*
* Returns lock held counts, for both read and intent
*/
struct six_lock_count six_lock_counts(struct six_lock *lock)
{
struct six_lock_count ret = { 0, lock->state.intent_lock };
if (!lock->readers)
ret.read += lock->state.read_lock;
else {
int cpu;
for_each_possible_cpu(cpu)
ret.read += *per_cpu_ptr(lock->readers, cpu);
}
return ret;
}
EXPORT_SYMBOL_GPL(six_lock_counts);
|