summaryrefslogtreecommitdiff
path: root/fs/bcachefs/btree_types.h
blob: 63d04873addb91c44a979476321f421e5eeca975 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_TYPES_H
#define _BCACHEFS_BTREE_TYPES_H

#include <linux/list.h>
#include <linux/rhashtable.h>

#include "bkey_methods.h"
#include "buckets_types.h"
#include "journal_types.h"
#include "six.h"

struct open_bucket;
struct btree_update;
struct btree_trans;

#define MAX_BSETS		3U

struct btree_nr_keys {

	/*
	 * Amount of live metadata (i.e. size of node after a compaction) in
	 * units of u64s
	 */
	u16			live_u64s;
	u16			bset_u64s[MAX_BSETS];

	/* live keys only: */
	u16			packed_keys;
	u16			unpacked_keys;
};

struct bset_tree {
	/*
	 * We construct a binary tree in an array as if the array
	 * started at 1, so that things line up on the same cachelines
	 * better: see comments in bset.c at cacheline_to_bkey() for
	 * details
	 */

	/* size of the binary tree and prev array */
	u16			size;

	/* function of size - precalculated for to_inorder() */
	u16			extra;

	u16			data_offset;
	u16			aux_data_offset;
	u16			end_offset;

	struct bpos		max_key;
};

struct btree_write {
	struct journal_entry_pin	journal;
	struct closure_waitlist		wait;
};

struct btree_alloc {
	struct open_buckets	ob;
	BKEY_PADDED(k);
};

struct btree_bkey_cached_common {
	struct six_lock		lock;
	u8			level;
	u8			btree_id;
};

struct btree {
	struct btree_bkey_cached_common c;

	struct rhash_head	hash;

	/* Key/pointer for this btree node */
	__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);

	unsigned long		flags;
	u16			written;
	u8			nsets;
	u8			nr_key_bits;

	struct bkey_format	format;

	struct btree_node	*data;
	void			*aux_data;

	/*
	 * Sets of sorted keys - the real btree node - plus a binary search tree
	 *
	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
	 * to the memory we have allocated for this btree node. Additionally,
	 * set[0]->data points to the entire btree node as it exists on disk.
	 */
	struct bset_tree	set[MAX_BSETS];

	struct btree_nr_keys	nr;
	u16			sib_u64s[2];
	u16			whiteout_u64s;
	u8			page_order;
	u8			unpack_fn_len;

	/*
	 * XXX: add a delete sequence number, so when bch2_btree_node_relock()
	 * fails because the lock sequence number has changed - i.e. the
	 * contents were modified - we can still relock the node if it's still
	 * the one we want, without redoing the traversal
	 */

	/*
	 * For asynchronous splits/interior node updates:
	 * When we do a split, we allocate new child nodes and update the parent
	 * node to point to them: we update the parent in memory immediately,
	 * but then we must wait until the children have been written out before
	 * the update to the parent can be written - this is a list of the
	 * btree_updates that are blocking this node from being
	 * written:
	 */
	struct list_head	write_blocked;

	/*
	 * Also for asynchronous splits/interior node updates:
	 * If a btree node isn't reachable yet, we don't want to kick off
	 * another write - because that write also won't yet be reachable and
	 * marking it as completed before it's reachable would be incorrect:
	 */
	unsigned long		will_make_reachable;

	struct open_buckets	ob;

	/* lru list */
	struct list_head	list;

	struct btree_write	writes[2];

#ifdef CONFIG_BCACHEFS_DEBUG
	bool			*expensive_debug_checks;
#endif
};

struct btree_cache {
	struct rhashtable	table;
	bool			table_init_done;
	/*
	 * We never free a struct btree, except on shutdown - we just put it on
	 * the btree_cache_freed list and reuse it later. This simplifies the
	 * code, and it doesn't cost us much memory as the memory usage is
	 * dominated by buffers that hold the actual btree node data and those
	 * can be freed - and the number of struct btrees allocated is
	 * effectively bounded.
	 *
	 * btree_cache_freeable effectively is a small cache - we use it because
	 * high order page allocations can be rather expensive, and it's quite
	 * common to delete and allocate btree nodes in quick succession. It
	 * should never grow past ~2-3 nodes in practice.
	 */
	struct mutex		lock;
	struct list_head	live;
	struct list_head	freeable;
	struct list_head	freed;

	/* Number of elements in live + freeable lists */
	unsigned		used;
	unsigned		reserve;
	struct shrinker		shrink;

	/*
	 * If we need to allocate memory for a new btree node and that
	 * allocation fails, we can cannibalize another node in the btree cache
	 * to satisfy the allocation - lock to guarantee only one thread does
	 * this at a time:
	 */
	struct task_struct	*alloc_lock;
	struct closure_waitlist	alloc_wait;
};

struct btree_node_iter {
	struct btree_node_iter_set {
		u16	k, end;
	} data[MAX_BSETS];
};

enum btree_iter_type {
	BTREE_ITER_KEYS,
	BTREE_ITER_NODES,
};

#define BTREE_ITER_TYPE			((1 << 2) - 1)

#define BTREE_ITER_SLOTS		(1 << 2)
#define BTREE_ITER_INTENT		(1 << 3)
#define BTREE_ITER_PREFETCH		(1 << 4)
#define BTREE_ITER_KEEP_UNTIL_COMMIT	(1 << 5)
/*
 * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
 * @pos or the first key strictly greater than @pos
 */
#define BTREE_ITER_IS_EXTENTS		(1 << 6)
#define BTREE_ITER_ERROR		(1 << 7)

enum btree_iter_uptodate {
	BTREE_ITER_UPTODATE		= 0,
	BTREE_ITER_NEED_PEEK		= 1,
	BTREE_ITER_NEED_RELOCK		= 2,
	BTREE_ITER_NEED_TRAVERSE	= 3,
};

/*
 * @pos			- iterator's current position
 * @level		- current btree depth
 * @locks_want		- btree level below which we start taking intent locks
 * @nodes_locked	- bitmask indicating which nodes in @nodes are locked
 * @nodes_intent_locked	- bitmask indicating which locks are intent locks
 */
struct btree_iter {
	u8			idx;

	struct btree_trans	*trans;
	struct bpos		pos;

	u8			flags;
	enum btree_iter_uptodate uptodate:4;
	enum btree_id		btree_id:4;
	unsigned		level:4,
				locks_want:4,
				nodes_locked:4,
				nodes_intent_locked:4;

	struct btree_iter_level {
		struct btree	*b;
		struct btree_node_iter iter;
		u32		lock_seq;
	}			l[BTREE_MAX_DEPTH];

	/*
	 * Current unpacked key - so that bch2_btree_iter_next()/
	 * bch2_btree_iter_next_slot() can correctly advance pos.
	 */
	struct bkey		k;
};

static inline enum btree_iter_type btree_iter_type(struct btree_iter *iter)
{
	return iter->flags & BTREE_ITER_TYPE;
}

struct btree_insert_entry {
	unsigned		trigger_flags;
	struct bkey_i		*k;
	struct btree_iter	*iter;
};

#define BTREE_ITER_MAX		64

struct btree_trans {
	struct bch_fs		*c;
	unsigned long		ip;

	u64			iters_linked;
	u64			iters_live;
	u64			iters_touched;

	u8			nr_iters;
	u8			nr_updates;
	u8			size;
	unsigned		used_mempool:1;
	unsigned		error:1;
	unsigned		nounlock:1;

	unsigned		mem_top;
	unsigned		mem_bytes;
	void			*mem;

	struct btree_iter	*iters;
	struct btree_insert_entry *updates;
	u8			*updates_sorted;

	/* update path: */
	struct journal_res	journal_res;
	struct journal_preres	journal_preres;
	u64			*journal_seq;
	struct disk_reservation *disk_res;
	unsigned		flags;
	unsigned		journal_u64s;
	unsigned		journal_preres_u64s;
	struct replicas_delta_list *fs_usage_deltas;

	struct btree_iter	iters_onstack[2];
	struct btree_insert_entry updates_onstack[2];
	u8			updates_sorted_onstack[2];
};

#define BTREE_FLAG(flag)						\
static inline bool btree_node_ ## flag(struct btree *b)			\
{	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
									\
static inline void set_btree_node_ ## flag(struct btree *b)		\
{	set_bit(BTREE_NODE_ ## flag, &b->flags); }			\
									\
static inline void clear_btree_node_ ## flag(struct btree *b)		\
{	clear_bit(BTREE_NODE_ ## flag, &b->flags); }

enum btree_flags {
	BTREE_NODE_read_in_flight,
	BTREE_NODE_read_error,
	BTREE_NODE_dirty,
	BTREE_NODE_need_write,
	BTREE_NODE_noevict,
	BTREE_NODE_write_idx,
	BTREE_NODE_accessed,
	BTREE_NODE_write_in_flight,
	BTREE_NODE_just_written,
	BTREE_NODE_dying,
	BTREE_NODE_fake,
	BTREE_NODE_old_extent_overwrite,
};

BTREE_FLAG(read_in_flight);
BTREE_FLAG(read_error);
BTREE_FLAG(dirty);
BTREE_FLAG(need_write);
BTREE_FLAG(noevict);
BTREE_FLAG(write_idx);
BTREE_FLAG(accessed);
BTREE_FLAG(write_in_flight);
BTREE_FLAG(just_written);
BTREE_FLAG(dying);
BTREE_FLAG(fake);
BTREE_FLAG(old_extent_overwrite);

static inline struct btree_write *btree_current_write(struct btree *b)
{
	return b->writes + btree_node_write_idx(b);
}

static inline struct btree_write *btree_prev_write(struct btree *b)
{
	return b->writes + (btree_node_write_idx(b) ^ 1);
}

static inline struct bset_tree *bset_tree_last(struct btree *b)
{
	EBUG_ON(!b->nsets);
	return b->set + b->nsets - 1;
}

static inline void *
__btree_node_offset_to_ptr(const struct btree *b, u16 offset)
{
	return (void *) ((u64 *) b->data + 1 + offset);
}

static inline u16
__btree_node_ptr_to_offset(const struct btree *b, const void *p)
{
	u16 ret = (u64 *) p - 1 - (u64 *) b->data;

	EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
	return ret;
}

static inline struct bset *bset(const struct btree *b,
				const struct bset_tree *t)
{
	return __btree_node_offset_to_ptr(b, t->data_offset);
}

static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
{
	t->end_offset =
		__btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
}

static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
				  const struct bset *i)
{
	t->data_offset = __btree_node_ptr_to_offset(b, i);
	set_btree_bset_end(b, t);
}

static inline struct bset *btree_bset_first(struct btree *b)
{
	return bset(b, b->set);
}

static inline struct bset *btree_bset_last(struct btree *b)
{
	return bset(b, bset_tree_last(b));
}

static inline u16
__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
{
	return __btree_node_ptr_to_offset(b, k);
}

static inline struct bkey_packed *
__btree_node_offset_to_key(const struct btree *b, u16 k)
{
	return __btree_node_offset_to_ptr(b, k);
}

static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
{
	return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
}

#define btree_bkey_first(_b, _t)					\
({									\
	EBUG_ON(bset(_b, _t)->start !=					\
		__btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
									\
	bset(_b, _t)->start;						\
})

#define btree_bkey_last(_b, _t)						\
({									\
	EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) !=	\
		vstruct_last(bset(_b, _t)));				\
									\
	__btree_node_offset_to_key(_b, (_t)->end_offset);		\
})

static inline unsigned bset_u64s(struct bset_tree *t)
{
	return t->end_offset - t->data_offset -
		sizeof(struct bset) / sizeof(u64);
}

static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
{
	return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
}

static inline unsigned bset_byte_offset(struct btree *b, void *i)
{
	return i - (void *) b->data;
}

enum btree_node_type {
#define x(kwd, val, name) BKEY_TYPE_##kwd = val,
	BCH_BTREE_IDS()
#undef x
	BKEY_TYPE_BTREE,
};

/* Type of a key in btree @id at level @level: */
static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
{
	return level ? BKEY_TYPE_BTREE : (enum btree_node_type) id;
}

/* Type of keys @b contains: */
static inline enum btree_node_type btree_node_type(struct btree *b)
{
	return __btree_node_type(b->c.level, b->c.btree_id);
}

static inline bool btree_node_type_is_extents(enum btree_node_type type)
{
	switch (type) {
	case BKEY_TYPE_EXTENTS:
	case BKEY_TYPE_REFLINK:
		return true;
	default:
		return false;
	}
}

static inline bool btree_node_is_extents(struct btree *b)
{
	return btree_node_type_is_extents(btree_node_type(b));
}

#define BTREE_NODE_TYPE_HAS_TRIGGERS			\
	((1U << BKEY_TYPE_EXTENTS)|			\
	 (1U << BKEY_TYPE_ALLOC)|			\
	 (1U << BKEY_TYPE_INODES)|			\
	 (1U << BKEY_TYPE_REFLINK)|			\
	 (1U << BKEY_TYPE_EC)|				\
	 (1U << BKEY_TYPE_BTREE))

#define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS		\
	((1U << BKEY_TYPE_EXTENTS)|			\
	 (1U << BKEY_TYPE_INODES)|			\
	 (1U << BKEY_TYPE_REFLINK))

enum btree_trigger_flags {
	__BTREE_TRIGGER_NORUN,		/* Don't run triggers at all */
	__BTREE_TRIGGER_NOOVERWRITES,	/* Don't run triggers on overwrites */

	__BTREE_TRIGGER_INSERT,
	__BTREE_TRIGGER_OVERWRITE,
	__BTREE_TRIGGER_OVERWRITE_SPLIT,

	__BTREE_TRIGGER_GC,
	__BTREE_TRIGGER_BUCKET_INVALIDATE,
	__BTREE_TRIGGER_ALLOC_READ,
	__BTREE_TRIGGER_NOATOMIC,
};

#define BTREE_TRIGGER_NORUN		(1U << __BTREE_TRIGGER_NORUN)
#define BTREE_TRIGGER_NOOVERWRITES	(1U << __BTREE_TRIGGER_NOOVERWRITES)

#define BTREE_TRIGGER_INSERT		(1U << __BTREE_TRIGGER_INSERT)
#define BTREE_TRIGGER_OVERWRITE		(1U << __BTREE_TRIGGER_OVERWRITE)
#define BTREE_TRIGGER_OVERWRITE_SPLIT	(1U << __BTREE_TRIGGER_OVERWRITE_SPLIT)

#define BTREE_TRIGGER_GC		(1U << __BTREE_TRIGGER_GC)
#define BTREE_TRIGGER_BUCKET_INVALIDATE	(1U << __BTREE_TRIGGER_BUCKET_INVALIDATE)
#define BTREE_TRIGGER_ALLOC_READ	(1U << __BTREE_TRIGGER_ALLOC_READ)
#define BTREE_TRIGGER_NOATOMIC		(1U << __BTREE_TRIGGER_NOATOMIC)

static inline bool btree_node_type_needs_gc(enum btree_node_type type)
{
	return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type);
}

struct btree_root {
	struct btree		*b;

	struct btree_update	*as;

	/* On disk root - see async splits: */
	__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
	u8			level;
	u8			alive;
	s8			error;
};

/*
 * Optional hook that will be called just prior to a btree node update, when
 * we're holding the write lock and we know what key is about to be overwritten:
 */

enum btree_insert_ret {
	BTREE_INSERT_OK,
	/* leaf node needs to be split */
	BTREE_INSERT_BTREE_NODE_FULL,
	BTREE_INSERT_ENOSPC,
	BTREE_INSERT_NEED_MARK_REPLICAS,
	BTREE_INSERT_NEED_JOURNAL_RES,
};

enum btree_gc_coalesce_fail_reason {
	BTREE_GC_COALESCE_FAIL_RESERVE_GET,
	BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
	BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
};

enum btree_node_sibling {
	btree_prev_sib,
	btree_next_sib,
};

typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *,
							struct btree *,
							struct btree_node_iter *);

#endif /* _BCACHEFS_BTREE_TYPES_H */