1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* This file contians vfs address (mmap) ops for 9P2000.
*
* Copyright (C) 2005 by Eric Van Hensbergen <ericvh@gmail.com>
* Copyright (C) 2002 by Ron Minnich <rminnich@lanl.gov>
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/netfs.h>
#include <net/9p/9p.h>
#include <net/9p/client.h>
#include "v9fs.h"
#include "v9fs_vfs.h"
#include "cache.h"
#include "fid.h"
/**
* v9fs_issue_read - Issue a read from 9P
* @subreq: The read to make
*/
static void v9fs_issue_read(struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *rreq = subreq->rreq;
struct p9_fid *fid = rreq->netfs_priv;
struct iov_iter to;
loff_t pos = subreq->start + subreq->transferred;
size_t len = subreq->len - subreq->transferred;
int total, err;
iov_iter_xarray(&to, ITER_DEST, &rreq->mapping->i_pages, pos, len);
total = p9_client_read(fid, pos, &to, &err);
/* if we just extended the file size, any portion not in
* cache won't be on server and is zeroes */
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
netfs_subreq_terminated(subreq, err ?: total, false);
}
/**
* v9fs_init_request - Initialise a read request
* @rreq: The read request
* @file: The file being read from
*/
static int v9fs_init_request(struct netfs_io_request *rreq, struct file *file)
{
struct p9_fid *fid = file->private_data;
BUG_ON(!fid);
/* we might need to read from a fid that was opened write-only
* for read-modify-write of page cache, use the writeback fid
* for that */
WARN_ON(rreq->origin == NETFS_READ_FOR_WRITE &&
!(fid->mode & P9_ORDWR));
p9_fid_get(fid);
rreq->netfs_priv = fid;
return 0;
}
/**
* v9fs_free_request - Cleanup request initialized by v9fs_init_rreq
* @rreq: The I/O request to clean up
*/
static void v9fs_free_request(struct netfs_io_request *rreq)
{
struct p9_fid *fid = rreq->netfs_priv;
p9_fid_put(fid);
}
const struct netfs_request_ops v9fs_req_ops = {
.init_request = v9fs_init_request,
.free_request = v9fs_free_request,
.issue_read = v9fs_issue_read,
};
/**
* v9fs_release_folio - release the private state associated with a folio
* @folio: The folio to be released
* @gfp: The caller's allocation restrictions
*
* Returns true if the page can be released, false otherwise.
*/
static bool v9fs_release_folio(struct folio *folio, gfp_t gfp)
{
if (folio_test_private(folio))
return false;
#ifdef CONFIG_9P_FSCACHE
if (folio_test_fscache(folio)) {
if (current_is_kswapd() || !(gfp & __GFP_FS))
return false;
folio_wait_fscache(folio);
}
fscache_note_page_release(v9fs_inode_cookie(V9FS_I(folio_inode(folio))));
#endif
return true;
}
static void v9fs_invalidate_folio(struct folio *folio, size_t offset,
size_t length)
{
folio_wait_fscache(folio);
}
#ifdef CONFIG_9P_FSCACHE
static void v9fs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
bool was_async)
{
struct v9fs_inode *v9inode = priv;
__le32 version;
if (IS_ERR_VALUE(transferred_or_error) &&
transferred_or_error != -ENOBUFS) {
version = cpu_to_le32(v9inode->qid.version);
fscache_invalidate(v9fs_inode_cookie(v9inode), &version,
i_size_read(&v9inode->netfs.inode), 0);
}
}
#endif
static int v9fs_vfs_write_folio_locked(struct folio *folio)
{
struct inode *inode = folio_inode(folio);
loff_t start = folio_pos(folio);
loff_t i_size = i_size_read(inode);
struct iov_iter from;
size_t len = folio_size(folio);
struct p9_fid *writeback_fid;
int err;
struct v9fs_inode __maybe_unused *v9inode = V9FS_I(inode);
struct fscache_cookie __maybe_unused *cookie = v9fs_inode_cookie(v9inode);
if (start >= i_size)
return 0; /* Simultaneous truncation occurred */
len = min_t(loff_t, i_size - start, len);
iov_iter_xarray(&from, ITER_SOURCE, &folio_mapping(folio)->i_pages, start, len);
writeback_fid = v9fs_fid_find_inode(inode, true, INVALID_UID, true);
if (!writeback_fid) {
WARN_ONCE(1, "folio expected an open fid inode->i_private=%p\n",
inode->i_private);
return -EINVAL;
}
folio_wait_fscache(folio);
folio_start_writeback(folio);
p9_client_write(writeback_fid, start, &from, &err);
#ifdef CONFIG_9P_FSCACHE
if (err == 0 &&
fscache_cookie_enabled(cookie) &&
test_bit(FSCACHE_COOKIE_IS_CACHING, &cookie->flags)) {
folio_start_fscache(folio);
fscache_write_to_cache(v9fs_inode_cookie(v9inode),
folio_mapping(folio), start, len, i_size,
v9fs_write_to_cache_done, v9inode,
true);
}
#endif
folio_end_writeback(folio);
p9_fid_put(writeback_fid);
return err;
}
static int v9fs_vfs_writepage(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
int retval;
p9_debug(P9_DEBUG_VFS, "folio %p\n", folio);
retval = v9fs_vfs_write_folio_locked(folio);
if (retval < 0) {
if (retval == -EAGAIN) {
folio_redirty_for_writepage(wbc, folio);
retval = 0;
} else {
mapping_set_error(folio_mapping(folio), retval);
}
} else
retval = 0;
folio_unlock(folio);
return retval;
}
static int v9fs_launder_folio(struct folio *folio)
{
int retval;
if (folio_clear_dirty_for_io(folio)) {
retval = v9fs_vfs_write_folio_locked(folio);
if (retval)
return retval;
}
folio_wait_fscache(folio);
return 0;
}
/**
* v9fs_direct_IO - 9P address space operation for direct I/O
* @iocb: target I/O control block
* @iter: The data/buffer to use
*
* The presence of v9fs_direct_IO() in the address space ops vector
* allowes open() O_DIRECT flags which would have failed otherwise.
*
* In the non-cached mode, we shunt off direct read and write requests before
* the VFS gets them, so this method should never be called.
*
* Direct IO is not 'yet' supported in the cached mode. Hence when
* this routine is called through generic_file_aio_read(), the read/write fails
* with an error.
*
*/
static ssize_t
v9fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
loff_t pos = iocb->ki_pos;
ssize_t n;
int err = 0;
if (iov_iter_rw(iter) == WRITE) {
n = p9_client_write(file->private_data, pos, iter, &err);
if (n) {
struct inode *inode = file_inode(file);
loff_t i_size = i_size_read(inode);
if (pos + n > i_size)
inode_add_bytes(inode, pos + n - i_size);
}
} else {
n = p9_client_read(file->private_data, pos, iter, &err);
}
return n ? n : err;
}
static int v9fs_write_begin(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned int len,
struct page **subpagep, void **fsdata)
{
int retval;
struct folio *folio;
struct v9fs_inode *v9inode = V9FS_I(mapping->host);
p9_debug(P9_DEBUG_VFS, "filp %p, mapping %p\n", filp, mapping);
/* Prefetch area to be written into the cache if we're caching this
* file. We need to do this before we get a lock on the page in case
* there's more than one writer competing for the same cache block.
*/
retval = netfs_write_begin(&v9inode->netfs, filp, mapping, pos, len, &folio, fsdata);
if (retval < 0)
return retval;
*subpagep = &folio->page;
return retval;
}
static int v9fs_write_end(struct file *filp, struct address_space *mapping,
loff_t pos, unsigned int len, unsigned int copied,
struct page *subpage, void *fsdata)
{
loff_t last_pos = pos + copied;
struct folio *folio = page_folio(subpage);
struct inode *inode = mapping->host;
p9_debug(P9_DEBUG_VFS, "filp %p, mapping %p\n", filp, mapping);
if (!folio_test_uptodate(folio)) {
if (unlikely(copied < len)) {
copied = 0;
goto out;
}
folio_mark_uptodate(folio);
}
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold the i_mutex.
*/
if (last_pos > inode->i_size) {
inode_add_bytes(inode, last_pos - inode->i_size);
i_size_write(inode, last_pos);
#ifdef CONFIG_9P_FSCACHE
fscache_update_cookie(v9fs_inode_cookie(V9FS_I(inode)), NULL,
&last_pos);
#endif
}
folio_mark_dirty(folio);
out:
folio_unlock(folio);
folio_put(folio);
return copied;
}
#ifdef CONFIG_9P_FSCACHE
/*
* Mark a page as having been made dirty and thus needing writeback. We also
* need to pin the cache object to write back to.
*/
static bool v9fs_dirty_folio(struct address_space *mapping, struct folio *folio)
{
struct v9fs_inode *v9inode = V9FS_I(mapping->host);
return fscache_dirty_folio(mapping, folio, v9fs_inode_cookie(v9inode));
}
#else
#define v9fs_dirty_folio filemap_dirty_folio
#endif
const struct address_space_operations v9fs_addr_operations = {
.read_folio = netfs_read_folio,
.readahead = netfs_readahead,
.dirty_folio = v9fs_dirty_folio,
.writepage = v9fs_vfs_writepage,
.write_begin = v9fs_write_begin,
.write_end = v9fs_write_end,
.release_folio = v9fs_release_folio,
.invalidate_folio = v9fs_invalidate_folio,
.launder_folio = v9fs_launder_folio,
.direct_IO = v9fs_direct_IO,
};
|