summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-uniphier.c
blob: f5344527af0bf33ff8a4c47e0728197d87cff634 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// SPDX-License-Identifier: GPL-2.0
// spi-uniphier.c - Socionext UniPhier SPI controller driver
// Copyright 2012      Panasonic Corporation
// Copyright 2016-2018 Socionext Inc.

#include <linux/kernel.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

#define SSI_TIMEOUT_MS		2000
#define SSI_POLL_TIMEOUT_US	200
#define SSI_MAX_CLK_DIVIDER	254
#define SSI_MIN_CLK_DIVIDER	4

struct uniphier_spi_priv {
	void __iomem *base;
	dma_addr_t base_dma_addr;
	struct clk *clk;
	struct spi_master *master;
	struct completion xfer_done;

	int error;
	unsigned int tx_bytes;
	unsigned int rx_bytes;
	const u8 *tx_buf;
	u8 *rx_buf;
	atomic_t dma_busy;

	bool is_save_param;
	u8 bits_per_word;
	u16 mode;
	u32 speed_hz;
};

#define SSI_CTL			0x00
#define   SSI_CTL_EN		BIT(0)

#define SSI_CKS			0x04
#define   SSI_CKS_CKRAT_MASK	GENMASK(7, 0)
#define   SSI_CKS_CKPHS		BIT(14)
#define   SSI_CKS_CKINIT	BIT(13)
#define   SSI_CKS_CKDLY		BIT(12)

#define SSI_TXWDS		0x08
#define   SSI_TXWDS_WDLEN_MASK	GENMASK(13, 8)
#define   SSI_TXWDS_TDTF_MASK	GENMASK(7, 6)
#define   SSI_TXWDS_DTLEN_MASK	GENMASK(5, 0)

#define SSI_RXWDS		0x0c
#define   SSI_RXWDS_DTLEN_MASK	GENMASK(5, 0)

#define SSI_FPS			0x10
#define   SSI_FPS_FSPOL		BIT(15)
#define   SSI_FPS_FSTRT		BIT(14)

#define SSI_SR			0x14
#define   SSI_SR_BUSY		BIT(7)
#define   SSI_SR_RNE		BIT(0)

#define SSI_IE			0x18
#define   SSI_IE_TCIE		BIT(4)
#define   SSI_IE_RCIE		BIT(3)
#define   SSI_IE_TXRE		BIT(2)
#define   SSI_IE_RXRE		BIT(1)
#define   SSI_IE_RORIE		BIT(0)
#define   SSI_IE_ALL_MASK	GENMASK(4, 0)

#define SSI_IS			0x1c
#define   SSI_IS_RXRS		BIT(9)
#define   SSI_IS_RCID		BIT(3)
#define   SSI_IS_RORID		BIT(0)

#define SSI_IC			0x1c
#define   SSI_IC_TCIC		BIT(4)
#define   SSI_IC_RCIC		BIT(3)
#define   SSI_IC_RORIC		BIT(0)

#define SSI_FC			0x20
#define   SSI_FC_TXFFL		BIT(12)
#define   SSI_FC_TXFTH_MASK	GENMASK(11, 8)
#define   SSI_FC_RXFFL		BIT(4)
#define   SSI_FC_RXFTH_MASK	GENMASK(3, 0)

#define SSI_TXDR		0x24
#define SSI_RXDR		0x24

#define SSI_FIFO_DEPTH		8U
#define SSI_FIFO_BURST_NUM	1

#define SSI_DMA_RX_BUSY		BIT(1)
#define SSI_DMA_TX_BUSY		BIT(0)

static inline unsigned int bytes_per_word(unsigned int bits)
{
	return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4);
}

static inline void uniphier_spi_irq_enable(struct uniphier_spi_priv *priv,
					   u32 mask)
{
	u32 val;

	val = readl(priv->base + SSI_IE);
	val |= mask;
	writel(val, priv->base + SSI_IE);
}

static inline void uniphier_spi_irq_disable(struct uniphier_spi_priv *priv,
					    u32 mask)
{
	u32 val;

	val = readl(priv->base + SSI_IE);
	val &= ~mask;
	writel(val, priv->base + SSI_IE);
}

static void uniphier_spi_set_mode(struct spi_device *spi)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
	u32 val1, val2;

	/*
	 * clock setting
	 * CKPHS    capture timing. 0:rising edge, 1:falling edge
	 * CKINIT   clock initial level. 0:low, 1:high
	 * CKDLY    clock delay. 0:no delay, 1:delay depending on FSTRT
	 *          (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
	 *
	 * frame setting
	 * FSPOL    frame signal porarity. 0: low, 1: high
	 * FSTRT    start frame timing
	 *          0: rising edge of clock, 1: falling edge of clock
	 */
	switch (spi->mode & SPI_MODE_X_MASK) {
	case SPI_MODE_0:
		/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
		val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY;
		val2 = 0;
		break;
	case SPI_MODE_1:
		/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
		val1 = 0;
		val2 = SSI_FPS_FSTRT;
		break;
	case SPI_MODE_2:
		/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
		val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY;
		val2 = SSI_FPS_FSTRT;
		break;
	case SPI_MODE_3:
		/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
		val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT;
		val2 = 0;
		break;
	}

	if (!(spi->mode & SPI_CS_HIGH))
		val2 |= SSI_FPS_FSPOL;

	writel(val1, priv->base + SSI_CKS);
	writel(val2, priv->base + SSI_FPS);

	val1 = 0;
	if (spi->mode & SPI_LSB_FIRST)
		val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
	writel(val1, priv->base + SSI_TXWDS);
	writel(val1, priv->base + SSI_RXWDS);
}

static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
	u32 val;

	val = readl(priv->base + SSI_TXWDS);
	val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
	val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
	val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
	writel(val, priv->base + SSI_TXWDS);

	val = readl(priv->base + SSI_RXWDS);
	val &= ~SSI_RXWDS_DTLEN_MASK;
	val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
	writel(val, priv->base + SSI_RXWDS);
}

static void uniphier_spi_set_baudrate(struct spi_device *spi,
				      unsigned int speed)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
	u32 val, ckdiv;

	/*
	 * the supported rates are even numbers from 4 to 254. (4,6,8...254)
	 * round up as we look for equal or less speed
	 */
	ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed);
	ckdiv = round_up(ckdiv, 2);

	val = readl(priv->base + SSI_CKS);
	val &= ~SSI_CKS_CKRAT_MASK;
	val |= ckdiv & SSI_CKS_CKRAT_MASK;
	writel(val, priv->base + SSI_CKS);
}

static void uniphier_spi_setup_transfer(struct spi_device *spi,
				       struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
	u32 val;

	priv->error = 0;
	priv->tx_buf = t->tx_buf;
	priv->rx_buf = t->rx_buf;
	priv->tx_bytes = priv->rx_bytes = t->len;

	if (!priv->is_save_param || priv->mode != spi->mode) {
		uniphier_spi_set_mode(spi);
		priv->mode = spi->mode;
		priv->is_save_param = false;
	}

	if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
		uniphier_spi_set_transfer_size(spi, t->bits_per_word);
		priv->bits_per_word = t->bits_per_word;
	}

	if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
		uniphier_spi_set_baudrate(spi, t->speed_hz);
		priv->speed_hz = t->speed_hz;
	}

	priv->is_save_param = true;

	/* reset FIFOs */
	val = SSI_FC_TXFFL | SSI_FC_RXFFL;
	writel(val, priv->base + SSI_FC);
}

static void uniphier_spi_send(struct uniphier_spi_priv *priv)
{
	int wsize;
	u32 val = 0;

	wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
	priv->tx_bytes -= wsize;

	if (priv->tx_buf) {
		switch (wsize) {
		case 1:
			val = *priv->tx_buf;
			break;
		case 2:
			val = get_unaligned_le16(priv->tx_buf);
			break;
		case 4:
			val = get_unaligned_le32(priv->tx_buf);
			break;
		}

		priv->tx_buf += wsize;
	}

	writel(val, priv->base + SSI_TXDR);
}

static void uniphier_spi_recv(struct uniphier_spi_priv *priv)
{
	int rsize;
	u32 val;

	rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
	priv->rx_bytes -= rsize;

	val = readl(priv->base + SSI_RXDR);

	if (priv->rx_buf) {
		switch (rsize) {
		case 1:
			*priv->rx_buf = val;
			break;
		case 2:
			put_unaligned_le16(val, priv->rx_buf);
			break;
		case 4:
			put_unaligned_le32(val, priv->rx_buf);
			break;
		}

		priv->rx_buf += rsize;
	}
}

static void uniphier_spi_set_fifo_threshold(struct uniphier_spi_priv *priv,
					    unsigned int threshold)
{
	u32 val;

	val = readl(priv->base + SSI_FC);
	val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
	val |= FIELD_PREP(SSI_FC_TXFTH_MASK, SSI_FIFO_DEPTH - threshold);
	val |= FIELD_PREP(SSI_FC_RXFTH_MASK, threshold);
	writel(val, priv->base + SSI_FC);
}

static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv)
{
	unsigned int fifo_threshold, fill_words;
	unsigned int bpw = bytes_per_word(priv->bits_per_word);

	fifo_threshold = DIV_ROUND_UP(priv->rx_bytes, bpw);
	fifo_threshold = min(fifo_threshold, SSI_FIFO_DEPTH);

	uniphier_spi_set_fifo_threshold(priv, fifo_threshold);

	fill_words = fifo_threshold -
		DIV_ROUND_UP(priv->rx_bytes - priv->tx_bytes, bpw);

	while (fill_words--)
		uniphier_spi_send(priv);
}

static void uniphier_spi_set_cs(struct spi_device *spi, bool enable)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
	u32 val;

	val = readl(priv->base + SSI_FPS);

	if (enable)
		val |= SSI_FPS_FSPOL;
	else
		val &= ~SSI_FPS_FSPOL;

	writel(val, priv->base + SSI_FPS);
}

static bool uniphier_spi_can_dma(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	unsigned int bpw = bytes_per_word(priv->bits_per_word);

	if ((!master->dma_tx && !master->dma_rx)
	    || (!master->dma_tx && t->tx_buf)
	    || (!master->dma_rx && t->rx_buf))
		return false;

	return DIV_ROUND_UP(t->len, bpw) > SSI_FIFO_DEPTH;
}

static void uniphier_spi_dma_rxcb(void *data)
{
	struct spi_master *master = data;
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	int state = atomic_fetch_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);

	uniphier_spi_irq_disable(priv, SSI_IE_RXRE);

	if (!(state & SSI_DMA_TX_BUSY))
		spi_finalize_current_transfer(master);
}

static void uniphier_spi_dma_txcb(void *data)
{
	struct spi_master *master = data;
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	int state = atomic_fetch_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);

	uniphier_spi_irq_disable(priv, SSI_IE_TXRE);

	if (!(state & SSI_DMA_RX_BUSY))
		spi_finalize_current_transfer(master);
}

static int uniphier_spi_transfer_one_dma(struct spi_master *master,
					 struct spi_device *spi,
					 struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL;
	int buswidth;

	atomic_set(&priv->dma_busy, 0);

	uniphier_spi_set_fifo_threshold(priv, SSI_FIFO_BURST_NUM);

	if (priv->bits_per_word <= 8)
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (priv->bits_per_word <= 16)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;

	if (priv->rx_buf) {
		struct dma_slave_config rxconf = {
			.direction = DMA_DEV_TO_MEM,
			.src_addr = priv->base_dma_addr + SSI_RXDR,
			.src_addr_width = buswidth,
			.src_maxburst = SSI_FIFO_BURST_NUM,
		};

		dmaengine_slave_config(master->dma_rx, &rxconf);

		rxdesc = dmaengine_prep_slave_sg(
			master->dma_rx,
			t->rx_sg.sgl, t->rx_sg.nents,
			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!rxdesc)
			goto out_err_prep;

		rxdesc->callback = uniphier_spi_dma_rxcb;
		rxdesc->callback_param = master;

		uniphier_spi_irq_enable(priv, SSI_IE_RXRE);
		atomic_or(SSI_DMA_RX_BUSY, &priv->dma_busy);

		dmaengine_submit(rxdesc);
		dma_async_issue_pending(master->dma_rx);
	}

	if (priv->tx_buf) {
		struct dma_slave_config txconf = {
			.direction = DMA_MEM_TO_DEV,
			.dst_addr = priv->base_dma_addr + SSI_TXDR,
			.dst_addr_width = buswidth,
			.dst_maxburst = SSI_FIFO_BURST_NUM,
		};

		dmaengine_slave_config(master->dma_tx, &txconf);

		txdesc = dmaengine_prep_slave_sg(
			master->dma_tx,
			t->tx_sg.sgl, t->tx_sg.nents,
			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!txdesc)
			goto out_err_prep;

		txdesc->callback = uniphier_spi_dma_txcb;
		txdesc->callback_param = master;

		uniphier_spi_irq_enable(priv, SSI_IE_TXRE);
		atomic_or(SSI_DMA_TX_BUSY, &priv->dma_busy);

		dmaengine_submit(txdesc);
		dma_async_issue_pending(master->dma_tx);
	}

	/* signal that we need to wait for completion */
	return (priv->tx_buf || priv->rx_buf);

out_err_prep:
	if (rxdesc)
		dmaengine_terminate_sync(master->dma_rx);

	return -EINVAL;
}

static int uniphier_spi_transfer_one_irq(struct spi_master *master,
					 struct spi_device *spi,
					 struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	struct device *dev = master->dev.parent;
	unsigned long time_left;

	reinit_completion(&priv->xfer_done);

	uniphier_spi_fill_tx_fifo(priv);

	uniphier_spi_irq_enable(priv, SSI_IE_RCIE | SSI_IE_RORIE);

	time_left = wait_for_completion_timeout(&priv->xfer_done,
					msecs_to_jiffies(SSI_TIMEOUT_MS));

	uniphier_spi_irq_disable(priv, SSI_IE_RCIE | SSI_IE_RORIE);

	if (!time_left) {
		dev_err(dev, "transfer timeout.\n");
		return -ETIMEDOUT;
	}

	return priv->error;
}

static int uniphier_spi_transfer_one_poll(struct spi_master *master,
					  struct spi_device *spi,
					  struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	int loop = SSI_POLL_TIMEOUT_US * 10;

	while (priv->tx_bytes) {
		uniphier_spi_fill_tx_fifo(priv);

		while ((priv->rx_bytes - priv->tx_bytes) > 0) {
			while (!(readl(priv->base + SSI_SR) & SSI_SR_RNE)
								&& loop--)
				ndelay(100);

			if (loop == -1)
				goto irq_transfer;

			uniphier_spi_recv(priv);
		}
	}

	return 0;

irq_transfer:
	return uniphier_spi_transfer_one_irq(master, spi, t);
}

static int uniphier_spi_transfer_one(struct spi_master *master,
				     struct spi_device *spi,
				     struct spi_transfer *t)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	unsigned long threshold;
	bool use_dma;

	/* Terminate and return success for 0 byte length transfer */
	if (!t->len)
		return 0;

	uniphier_spi_setup_transfer(spi, t);

	use_dma = master->can_dma ? master->can_dma(master, spi, t) : false;
	if (use_dma)
		return uniphier_spi_transfer_one_dma(master, spi, t);

	/*
	 * If the transfer operation will take longer than
	 * SSI_POLL_TIMEOUT_US, it should use irq.
	 */
	threshold = DIV_ROUND_UP(SSI_POLL_TIMEOUT_US * priv->speed_hz,
					USEC_PER_SEC * BITS_PER_BYTE);
	if (t->len > threshold)
		return uniphier_spi_transfer_one_irq(master, spi, t);
	else
		return uniphier_spi_transfer_one_poll(master, spi, t);
}

static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);

	writel(SSI_CTL_EN, priv->base + SSI_CTL);

	return 0;
}

static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);

	writel(0, priv->base + SSI_CTL);

	return 0;
}

static void uniphier_spi_handle_err(struct spi_master *master,
				    struct spi_message *msg)
{
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
	u32 val;

	/* stop running spi transfer */
	writel(0, priv->base + SSI_CTL);

	/* reset FIFOs */
	val = SSI_FC_TXFFL | SSI_FC_RXFFL;
	writel(val, priv->base + SSI_FC);

	uniphier_spi_irq_disable(priv, SSI_IE_ALL_MASK);

	if (atomic_read(&priv->dma_busy) & SSI_DMA_TX_BUSY) {
		dmaengine_terminate_async(master->dma_tx);
		atomic_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);
	}

	if (atomic_read(&priv->dma_busy) & SSI_DMA_RX_BUSY) {
		dmaengine_terminate_async(master->dma_rx);
		atomic_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);
	}
}

static irqreturn_t uniphier_spi_handler(int irq, void *dev_id)
{
	struct uniphier_spi_priv *priv = dev_id;
	u32 val, stat;

	stat = readl(priv->base + SSI_IS);
	val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC;
	writel(val, priv->base + SSI_IC);

	/* rx fifo overrun */
	if (stat & SSI_IS_RORID) {
		priv->error = -EIO;
		goto done;
	}

	/* rx complete */
	if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) {
		while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) &&
				(priv->rx_bytes - priv->tx_bytes) > 0)
			uniphier_spi_recv(priv);

		if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) ||
				(priv->rx_bytes != priv->tx_bytes)) {
			priv->error = -EIO;
			goto done;
		} else if (priv->rx_bytes == 0)
			goto done;

		/* next tx transfer */
		uniphier_spi_fill_tx_fifo(priv);

		return IRQ_HANDLED;
	}

	return IRQ_NONE;

done:
	complete(&priv->xfer_done);
	return IRQ_HANDLED;
}

static int uniphier_spi_probe(struct platform_device *pdev)
{
	struct uniphier_spi_priv *priv;
	struct spi_master *master;
	struct resource *res;
	struct dma_slave_caps caps;
	u32 dma_tx_burst = 0, dma_rx_burst = 0;
	unsigned long clk_rate;
	int irq;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(*priv));
	if (!master)
		return -ENOMEM;

	platform_set_drvdata(pdev, master);

	priv = spi_master_get_devdata(master);
	priv->master = master;
	priv->is_save_param = false;

	priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
	if (IS_ERR(priv->base)) {
		ret = PTR_ERR(priv->base);
		goto out_master_put;
	}
	priv->base_dma_addr = res->start;

	priv->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(priv->clk)) {
		dev_err(&pdev->dev, "failed to get clock\n");
		ret = PTR_ERR(priv->clk);
		goto out_master_put;
	}

	ret = clk_prepare_enable(priv->clk);
	if (ret)
		goto out_master_put;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = irq;
		goto out_disable_clk;
	}

	ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler,
			       0, "uniphier-spi", priv);
	if (ret) {
		dev_err(&pdev->dev, "failed to request IRQ\n");
		goto out_disable_clk;
	}

	init_completion(&priv->xfer_done);

	clk_rate = clk_get_rate(priv->clk);

	master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER);
	master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER);
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
	master->dev.of_node = pdev->dev.of_node;
	master->bus_num = pdev->id;
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);

	master->set_cs = uniphier_spi_set_cs;
	master->transfer_one = uniphier_spi_transfer_one;
	master->prepare_transfer_hardware
				= uniphier_spi_prepare_transfer_hardware;
	master->unprepare_transfer_hardware
				= uniphier_spi_unprepare_transfer_hardware;
	master->handle_err = uniphier_spi_handle_err;
	master->can_dma = uniphier_spi_can_dma;

	master->num_chipselect = 1;
	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;

	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
	if (IS_ERR_OR_NULL(master->dma_tx)) {
		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
			ret = -EPROBE_DEFER;
			goto out_disable_clk;
		}
		master->dma_tx = NULL;
		dma_tx_burst = INT_MAX;
	} else {
		ret = dma_get_slave_caps(master->dma_tx, &caps);
		if (ret) {
			dev_err(&pdev->dev, "failed to get TX DMA capacities: %d\n",
				ret);
			goto out_release_dma;
		}
		dma_tx_burst = caps.max_burst;
	}

	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
	if (IS_ERR_OR_NULL(master->dma_rx)) {
		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
			ret = -EPROBE_DEFER;
			goto out_release_dma;
		}
		master->dma_rx = NULL;
		dma_rx_burst = INT_MAX;
	} else {
		ret = dma_get_slave_caps(master->dma_rx, &caps);
		if (ret) {
			dev_err(&pdev->dev, "failed to get RX DMA capacities: %d\n",
				ret);
			goto out_release_dma;
		}
		dma_rx_burst = caps.max_burst;
	}

	master->max_dma_len = min(dma_tx_burst, dma_rx_burst);

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret)
		goto out_release_dma;

	return 0;

out_release_dma:
	if (!IS_ERR_OR_NULL(master->dma_rx)) {
		dma_release_channel(master->dma_rx);
		master->dma_rx = NULL;
	}
	if (!IS_ERR_OR_NULL(master->dma_tx)) {
		dma_release_channel(master->dma_tx);
		master->dma_tx = NULL;
	}

out_disable_clk:
	clk_disable_unprepare(priv->clk);

out_master_put:
	spi_master_put(master);
	return ret;
}

static void uniphier_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);

	if (master->dma_tx)
		dma_release_channel(master->dma_tx);
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);

	clk_disable_unprepare(priv->clk);
}

static const struct of_device_id uniphier_spi_match[] = {
	{ .compatible = "socionext,uniphier-scssi" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_spi_match);

static struct platform_driver uniphier_spi_driver = {
	.probe = uniphier_spi_probe,
	.remove_new = uniphier_spi_remove,
	.driver = {
		.name = "uniphier-spi",
		.of_match_table = uniphier_spi_match,
	},
};
module_platform_driver(uniphier_spi_driver);

MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>");
MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver");
MODULE_LICENSE("GPL v2");