summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-rspi.c
blob: 411b1307b7fd82679ecd17678bf5d7b64ba3e906 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
// SPDX-License-Identifier: GPL-2.0
/*
 * SH RSPI driver
 *
 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
 * Copyright (C) 2014 Glider bvba
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sh_dma.h>
#include <linux/spi/spi.h>
#include <linux/spi/rspi.h>
#include <linux/spinlock.h>

#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
#define RSPI_NUM_SPCMD		8
#define RSPI_RZ_NUM_SPCMD	4
#define QSPI_NUM_SPCMD		4

/* RSPI on RZ only */
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */

/* QSPI only */
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)

/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
/* QSPI on R-Car Gen2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSLP(i)		BIT(i)	/* SSLi Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
#define SPPCR_SPOM		0x04
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */

/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */

/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */

/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */

/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */

/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
#define SPCMD_SPB_16BIT		0x0100
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
#define SPCMD_SSLA(i)		((i) << 4)	/* SSL Assert Signal Setting */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_BRDV(brdv)	((brdv) << 2)
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
/* QSPI on R-Car Gen2 */
#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */

#define QSPI_BUFFER_SIZE        32u

struct rspi_data {
	void __iomem *addr;
	u32 speed_hz;
	struct spi_controller *ctlr;
	struct platform_device *pdev;
	wait_queue_head_t wait;
	spinlock_t lock;		/* Protects RMW-access to RSPI_SSLP */
	struct clk *clk;
	u16 spcmd;
	u8 spsr;
	u8 sppcr;
	int rx_irq, tx_irq;
	const struct spi_ops *ops;

	unsigned dma_callbacked:1;
	unsigned byte_access:1;
};

static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
{
	iowrite8(data, rspi->addr + offset);
}

static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
{
	iowrite16(data, rspi->addr + offset);
}

static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
{
	iowrite32(data, rspi->addr + offset);
}

static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
{
	return ioread8(rspi->addr + offset);
}

static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
{
	return ioread16(rspi->addr + offset);
}

static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
	if (rspi->byte_access)
		rspi_write8(rspi, data, RSPI_SPDR);
	else /* 16 bit */
		rspi_write16(rspi, data, RSPI_SPDR);
}

static u16 rspi_read_data(const struct rspi_data *rspi)
{
	if (rspi->byte_access)
		return rspi_read8(rspi, RSPI_SPDR);
	else /* 16 bit */
		return rspi_read16(rspi, RSPI_SPDR);
}

/* optional functions */
struct spi_ops {
	int (*set_config_register)(struct rspi_data *rspi, int access_size);
	int (*transfer_one)(struct spi_controller *ctlr,
			    struct spi_device *spi, struct spi_transfer *xfer);
	u16 extra_mode_bits;
	u16 min_div;
	u16 max_div;
	u16 flags;
	u16 fifo_size;
	u8 num_hw_ss;
};

static void rspi_set_rate(struct rspi_data *rspi)
{
	unsigned long clksrc;
	int brdv = 0, spbr;

	clksrc = clk_get_rate(rspi->clk);
	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
	while (spbr > 255 && brdv < 3) {
		brdv++;
		spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
	}

	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
	rspi->spcmd |= SPCMD_BRDV(brdv);
	rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
}

/*
 * functions for RSPI on legacy SH
 */
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
{
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);

	/* Sets transfer bit rate */
	rspi_set_rate(rspi);

	/* Disable dummy transmission, set 16-bit word access, 1 frame */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 0;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Resets sequencer */
	rspi_write8(rspi, 0, RSPI_SPSCR);
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

/*
 * functions for RSPI on RZ
 */
static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
{
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);

	/* Sets transfer bit rate */
	rspi_set_rate(rspi);

	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
	rspi->byte_access = 1;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Resets sequencer */
	rspi_write8(rspi, 0, RSPI_SPSCR);
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

/*
 * functions for QSPI
 */
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
{
	unsigned long clksrc;
	int brdv = 0, spbr;

	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);

	/* Sets transfer bit rate */
	clksrc = clk_get_rate(rspi->clk);
	if (rspi->speed_hz >= clksrc) {
		spbr = 0;
		rspi->speed_hz = clksrc;
	} else {
		spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
		while (spbr > 255 && brdv < 3) {
			brdv++;
			spbr = DIV_ROUND_UP(spbr, 2);
		}
		spbr = clamp(spbr, 0, 255);
		rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
	}
	rspi_write8(rspi, spbr, RSPI_SPBR);
	rspi->spcmd |= SPCMD_BRDV(brdv);

	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 1;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
		rspi->spcmd |= SPCMD_SPB_8BIT;
	else if (access_size == 16)
		rspi->spcmd |= SPCMD_SPB_16BIT;
	else
		rspi->spcmd |= SPCMD_SPB_32BIT;

	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Resets sequencer */
	rspi_write8(rspi, 0, RSPI_SPSCR);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
{
	u8 data;

	data = rspi_read8(rspi, reg);
	data &= ~mask;
	data |= (val & mask);
	rspi_write8(rspi, data, reg);
}

static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
					  unsigned int len)
{
	unsigned int n;

	n = min(len, QSPI_BUFFER_SIZE);

	if (len >= QSPI_BUFFER_SIZE) {
		/* sets triggering number to 32 bytes */
		qspi_update(rspi, SPBFCR_TXTRG_MASK,
			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
	} else {
		/* sets triggering number to 1 byte */
		qspi_update(rspi, SPBFCR_TXTRG_MASK,
			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
	}

	return n;
}

static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
{
	unsigned int n;

	n = min(len, QSPI_BUFFER_SIZE);

	if (len >= QSPI_BUFFER_SIZE) {
		/* sets triggering number to 32 bytes */
		qspi_update(rspi, SPBFCR_RXTRG_MASK,
			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
	} else {
		/* sets triggering number to 1 byte */
		qspi_update(rspi, SPBFCR_RXTRG_MASK,
			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
	}
	return n;
}

static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
	if (rspi->spsr & wait_mask)
		return 0;

	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
}

static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
}

static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
	int error = rspi_wait_for_tx_empty(rspi);
	if (error < 0) {
		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
		return error;
	}
	rspi_write_data(rspi, data);
	return 0;
}

static int rspi_data_in(struct rspi_data *rspi)
{
	int error;
	u8 data;

	error = rspi_wait_for_rx_full(rspi);
	if (error < 0) {
		dev_err(&rspi->ctlr->dev, "receive timeout\n");
		return error;
	}
	data = rspi_read_data(rspi);
	return data;
}

static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
			     unsigned int n)
{
	while (n-- > 0) {
		if (tx) {
			int ret = rspi_data_out(rspi, *tx++);
			if (ret < 0)
				return ret;
		}
		if (rx) {
			int ret = rspi_data_in(rspi);
			if (ret < 0)
				return ret;
			*rx++ = ret;
		}
	}

	return 0;
}

static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
			     struct sg_table *rx)
{
	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
	u8 irq_mask = 0;
	unsigned int other_irq = 0;
	dma_cookie_t cookie;
	int ret;

	/* First prepare and submit the DMA request(s), as this may fail */
	if (rx) {
		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
					rx->nents, DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_rx) {
			ret = -EAGAIN;
			goto no_dma_rx;
		}

		desc_rx->callback = rspi_dma_complete;
		desc_rx->callback_param = rspi;
		cookie = dmaengine_submit(desc_rx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
			goto no_dma_rx;
		}

		irq_mask |= SPCR_SPRIE;
	}

	if (tx) {
		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
					tx->nents, DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_tx) {
			ret = -EAGAIN;
			goto no_dma_tx;
		}

		if (rx) {
			/* No callback */
			desc_tx->callback = NULL;
		} else {
			desc_tx->callback = rspi_dma_complete;
			desc_tx->callback_param = rspi;
		}
		cookie = dmaengine_submit(desc_tx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
			goto no_dma_tx;
		}

		irq_mask |= SPCR_SPTIE;
	}

	/*
	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	if (tx)
		disable_irq(other_irq = rspi->tx_irq);
	if (rx && rspi->rx_irq != other_irq)
		disable_irq(rspi->rx_irq);

	rspi_enable_irq(rspi, irq_mask);
	rspi->dma_callbacked = 0;

	/* Now start DMA */
	if (rx)
		dma_async_issue_pending(rspi->ctlr->dma_rx);
	if (tx)
		dma_async_issue_pending(rspi->ctlr->dma_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked) {
		ret = 0;
		if (tx)
			dmaengine_synchronize(rspi->ctlr->dma_tx);
		if (rx)
			dmaengine_synchronize(rspi->ctlr->dma_rx);
	} else {
		if (!ret) {
			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
			ret = -ETIMEDOUT;
		}
		if (tx)
			dmaengine_terminate_sync(rspi->ctlr->dma_tx);
		if (rx)
			dmaengine_terminate_sync(rspi->ctlr->dma_rx);
	}

	rspi_disable_irq(rspi, irq_mask);

	if (tx)
		enable_irq(rspi->tx_irq);
	if (rx && rspi->rx_irq != other_irq)
		enable_irq(rspi->rx_irq);

	return ret;

no_dma_tx:
	if (rx)
		dmaengine_terminate_sync(rspi->ctlr->dma_rx);
no_dma_rx:
	if (ret == -EAGAIN) {
		dev_warn_once(&rspi->ctlr->dev,
			      "DMA not available, falling back to PIO\n");
	}
	return ret;
}

static void rspi_receive_init(const struct rspi_data *rspi)
{
	u8 spsr;

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		rspi_read_data(rspi);	/* dummy read */
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
			    RSPI_SPSR);
}

static void rspi_rz_receive_init(const struct rspi_data *rspi)
{
	rspi_receive_init(rspi);
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
	rspi_write8(rspi, 0, RSPI_SPBFCR);
}

static void qspi_receive_init(const struct rspi_data *rspi)
{
	u8 spsr;

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		rspi_read_data(rspi);   /* dummy read */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	rspi_write8(rspi, 0, QSPI_SPBFCR);
}

static bool __rspi_can_dma(const struct rspi_data *rspi,
			   const struct spi_transfer *xfer)
{
	return xfer->len > rspi->ops->fifo_size;
}

static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
			 struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);

	return __rspi_can_dma(rspi, xfer);
}

static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
					 struct spi_transfer *xfer)
{
	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
		return -EAGAIN;

	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
	return rspi_dma_transfer(rspi, &xfer->tx_sg,
				xfer->rx_buf ? &xfer->rx_sg : NULL);
}

static int rspi_common_transfer(struct rspi_data *rspi,
				struct spi_transfer *xfer)
{
	int ret;

	xfer->effective_speed_hz = rspi->speed_hz;

	ret = rspi_dma_check_then_transfer(rspi, xfer);
	if (ret != -EAGAIN)
		return ret;

	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
	if (ret < 0)
		return ret;

	/* Wait for the last transmission */
	rspi_wait_for_tx_empty(rspi);

	return 0;
}

static int rspi_transfer_one(struct spi_controller *ctlr,
			     struct spi_device *spi, struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
	u8 spcr;

	spcr = rspi_read8(rspi, RSPI_SPCR);
	if (xfer->rx_buf) {
		rspi_receive_init(rspi);
		spcr &= ~SPCR_TXMD;
	} else {
		spcr |= SPCR_TXMD;
	}
	rspi_write8(rspi, spcr, RSPI_SPCR);

	return rspi_common_transfer(rspi, xfer);
}

static int rspi_rz_transfer_one(struct spi_controller *ctlr,
				struct spi_device *spi,
				struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);

	rspi_rz_receive_init(rspi);

	return rspi_common_transfer(rspi, xfer);
}

static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
					u8 *rx, unsigned int len)
{
	unsigned int i, n;
	int ret;

	while (len > 0) {
		n = qspi_set_send_trigger(rspi, len);
		qspi_set_receive_trigger(rspi, len);
		ret = rspi_wait_for_tx_empty(rspi);
		if (ret < 0) {
			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
			return ret;
		}
		for (i = 0; i < n; i++)
			rspi_write_data(rspi, *tx++);

		ret = rspi_wait_for_rx_full(rspi);
		if (ret < 0) {
			dev_err(&rspi->ctlr->dev, "receive timeout\n");
			return ret;
		}
		for (i = 0; i < n; i++)
			*rx++ = rspi_read_data(rspi);

		len -= n;
	}

	return 0;
}

static int qspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
{
	int ret;

	qspi_receive_init(rspi);

	ret = rspi_dma_check_then_transfer(rspi, xfer);
	if (ret != -EAGAIN)
		return ret;

	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
					    xfer->rx_buf, xfer->len);
}

static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
{
	const u8 *tx = xfer->tx_buf;
	unsigned int n = xfer->len;
	unsigned int i, len;
	int ret;

	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
		if (ret != -EAGAIN)
			return ret;
	}

	while (n > 0) {
		len = qspi_set_send_trigger(rspi, n);
		ret = rspi_wait_for_tx_empty(rspi);
		if (ret < 0) {
			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
			return ret;
		}
		for (i = 0; i < len; i++)
			rspi_write_data(rspi, *tx++);

		n -= len;
	}

	/* Wait for the last transmission */
	rspi_wait_for_tx_empty(rspi);

	return 0;
}

static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
{
	u8 *rx = xfer->rx_buf;
	unsigned int n = xfer->len;
	unsigned int i, len;
	int ret;

	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
		ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
		if (ret != -EAGAIN)
			return ret;
	}

	while (n > 0) {
		len = qspi_set_receive_trigger(rspi, n);
		ret = rspi_wait_for_rx_full(rspi);
		if (ret < 0) {
			dev_err(&rspi->ctlr->dev, "receive timeout\n");
			return ret;
		}
		for (i = 0; i < len; i++)
			*rx++ = rspi_read_data(rspi);

		n -= len;
	}

	return 0;
}

static int qspi_transfer_one(struct spi_controller *ctlr,
			     struct spi_device *spi, struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);

	xfer->effective_speed_hz = rspi->speed_hz;
	if (spi->mode & SPI_LOOP) {
		return qspi_transfer_out_in(rspi, xfer);
	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
		/* Quad or Dual SPI Write */
		return qspi_transfer_out(rspi, xfer);
	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
		/* Quad or Dual SPI Read */
		return qspi_transfer_in(rspi, xfer);
	} else {
		/* Single SPI Transfer */
		return qspi_transfer_out_in(rspi, xfer);
	}
}

static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
{
	if (xfer->tx_buf)
		switch (xfer->tx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL;
		default:
			return 0;
		}
	if (xfer->rx_buf)
		switch (xfer->rx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
		default:
			return 0;
		}

	return 0;
}

static int qspi_setup_sequencer(struct rspi_data *rspi,
				const struct spi_message *msg)
{
	const struct spi_transfer *xfer;
	unsigned int i = 0, len = 0;
	u16 current_mode = 0xffff, mode;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		mode = qspi_transfer_mode(xfer);
		if (mode == current_mode) {
			len += xfer->len;
			continue;
		}

		/* Transfer mode change */
		if (i) {
			/* Set transfer data length of previous transfer */
			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		}

		if (i >= QSPI_NUM_SPCMD) {
			dev_err(&msg->spi->dev,
				"Too many different transfer modes");
			return -EINVAL;
		}

		/* Program transfer mode for this transfer */
		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
		current_mode = mode;
		len = xfer->len;
		i++;
	}
	if (i) {
		/* Set final transfer data length and sequence length */
		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		rspi_write8(rspi, i - 1, RSPI_SPSCR);
	}

	return 0;
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
	u8 sslp;

	if (spi->cs_gpiod)
		return 0;

	pm_runtime_get_sync(&rspi->pdev->dev);
	spin_lock_irq(&rspi->lock);

	sslp = rspi_read8(rspi, RSPI_SSLP);
	if (spi->mode & SPI_CS_HIGH)
		sslp |= SSLP_SSLP(spi->chip_select);
	else
		sslp &= ~SSLP_SSLP(spi->chip_select);
	rspi_write8(rspi, sslp, RSPI_SSLP);

	spin_unlock_irq(&rspi->lock);
	pm_runtime_put(&rspi->pdev->dev);
	return 0;
}

static int rspi_prepare_message(struct spi_controller *ctlr,
				struct spi_message *msg)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
	struct spi_device *spi = msg->spi;
	const struct spi_transfer *xfer;
	int ret;

	/*
	 * As the Bit Rate Register must not be changed while the device is
	 * active, all transfers in a message must use the same bit rate.
	 * In theory, the sequencer could be enabled, and each Command Register
	 * could divide the base bit rate by a different value.
	 * However, most RSPI variants do not have Transfer Data Length
	 * Multiplier Setting Registers, so each sequence step would be limited
	 * to a single word, making this feature unsuitable for large
	 * transfers, which would gain most from it.
	 */
	rspi->speed_hz = spi->max_speed_hz;
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->speed_hz < rspi->speed_hz)
			rspi->speed_hz = xfer->speed_hz;
	}

	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;
	if (spi->mode & SPI_LSB_FIRST)
		rspi->spcmd |= SPCMD_LSBF;

	/* Configure slave signal to assert */
	rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
						: spi->chip_select);

	/* CMOS output mode and MOSI signal from previous transfer */
	rspi->sppcr = 0;
	if (spi->mode & SPI_LOOP)
		rspi->sppcr |= SPPCR_SPLP;

	rspi->ops->set_config_register(rspi, 8);

	if (msg->spi->mode &
	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
		/* Setup sequencer for messages with multiple transfer modes */
		ret = qspi_setup_sequencer(rspi, msg);
		if (ret < 0)
			return ret;
	}

	/* Enable SPI function in master mode */
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
	return 0;
}

static int rspi_unprepare_message(struct spi_controller *ctlr,
				  struct spi_message *msg)
{
	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);

	/* Disable SPI function */
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);

	/* Reset sequencer for Single SPI Transfers */
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
	rspi_write8(rspi, 0, RSPI_SPSCR);
	return 0;
}

static irqreturn_t rspi_irq_mux(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;
	irqreturn_t ret = IRQ_NONE;
	u8 disable_irq = 0;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

static irqreturn_t rspi_irq_rx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF) {
		rspi_disable_irq(rspi, SPCR_SPRIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

static irqreturn_t rspi_irq_tx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPTEF) {
		rspi_disable_irq(rspi, SPCR_SPTIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

static struct dma_chan *rspi_request_dma_chan(struct device *dev,
					      enum dma_transfer_direction dir,
					      unsigned int id,
					      dma_addr_t port_addr)
{
	dma_cap_mask_t mask;
	struct dma_chan *chan;
	struct dma_slave_config cfg;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
				(void *)(unsigned long)id, dev,
				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
	if (!chan) {
		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.dst_addr = port_addr + RSPI_SPDR;
	cfg.src_addr = port_addr + RSPI_SPDR;
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	cfg.direction = dir;

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
			    const struct resource *res)
{
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
	unsigned int dma_tx_id, dma_rx_id;

	if (dev->of_node) {
		/* In the OF case we will get the slave IDs from the DT */
		dma_tx_id = 0;
		dma_rx_id = 0;
	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
		dma_tx_id = rspi_pd->dma_tx_id;
		dma_rx_id = rspi_pd->dma_rx_id;
	} else {
		/* The driver assumes no error. */
		return 0;
	}

	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
					     res->start);
	if (!ctlr->dma_tx)
		return -ENODEV;

	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
					     res->start);
	if (!ctlr->dma_rx) {
		dma_release_channel(ctlr->dma_tx);
		ctlr->dma_tx = NULL;
		return -ENODEV;
	}

	ctlr->can_dma = rspi_can_dma;
	dev_info(dev, "DMA available");
	return 0;
}

static void rspi_release_dma(struct spi_controller *ctlr)
{
	if (ctlr->dma_tx)
		dma_release_channel(ctlr->dma_tx);
	if (ctlr->dma_rx)
		dma_release_channel(ctlr->dma_rx);
}

static int rspi_remove(struct platform_device *pdev)
{
	struct rspi_data *rspi = platform_get_drvdata(pdev);

	rspi_release_dma(rspi->ctlr);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

static const struct spi_ops rspi_ops = {
	.set_config_register =	rspi_set_config_register,
	.transfer_one =		rspi_transfer_one,
	.min_div =		2,
	.max_div =		4096,
	.flags =		SPI_CONTROLLER_MUST_TX,
	.fifo_size =		8,
	.num_hw_ss =		2,
};

static const struct spi_ops rspi_rz_ops = {
	.set_config_register =	rspi_rz_set_config_register,
	.transfer_one =		rspi_rz_transfer_one,
	.min_div =		2,
	.max_div =		4096,
	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
	.fifo_size =		8,	/* 8 for TX, 32 for RX */
	.num_hw_ss =		1,
};

static const struct spi_ops qspi_ops = {
	.set_config_register =	qspi_set_config_register,
	.transfer_one =		qspi_transfer_one,
	.extra_mode_bits =	SPI_TX_DUAL | SPI_TX_QUAD |
				SPI_RX_DUAL | SPI_RX_QUAD,
	.min_div =		1,
	.max_div =		4080,
	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
	.fifo_size =		32,
	.num_hw_ss =		1,
};

#ifdef CONFIG_OF
static const struct of_device_id rspi_of_match[] = {
	/* RSPI on legacy SH */
	{ .compatible = "renesas,rspi", .data = &rspi_ops },
	/* RSPI on RZ/A1H */
	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
	/* QSPI on R-Car Gen2 */
	{ .compatible = "renesas,qspi", .data = &qspi_ops },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, rspi_of_match);

static void rspi_reset_control_assert(void *data)
{
	reset_control_assert(data);
}

static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
{
	struct reset_control *rstc;
	u32 num_cs;
	int error;

	/* Parse DT properties */
	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
	if (error) {
		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
		return error;
	}

	ctlr->num_chipselect = num_cs;

	rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
	if (IS_ERR(rstc))
		return dev_err_probe(dev, PTR_ERR(rstc),
					     "failed to get reset ctrl\n");

	error = reset_control_deassert(rstc);
	if (error) {
		dev_err(dev, "failed to deassert reset %d\n", error);
		return error;
	}

	error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
	if (error) {
		dev_err(dev, "failed to register assert devm action, %d\n", error);
		return error;
	}

	return 0;
}
#else
#define rspi_of_match	NULL
static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
{
	return -EINVAL;
}
#endif /* CONFIG_OF */

static int rspi_request_irq(struct device *dev, unsigned int irq,
			    irq_handler_t handler, const char *suffix,
			    void *dev_id)
{
	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
					  dev_name(dev), suffix);
	if (!name)
		return -ENOMEM;

	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
}

static int rspi_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct spi_controller *ctlr;
	struct rspi_data *rspi;
	int ret;
	const struct rspi_plat_data *rspi_pd;
	const struct spi_ops *ops;
	unsigned long clksrc;

	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (ctlr == NULL)
		return -ENOMEM;

	ops = of_device_get_match_data(&pdev->dev);
	if (ops) {
		ret = rspi_parse_dt(&pdev->dev, ctlr);
		if (ret)
			goto error1;
	} else {
		ops = (struct spi_ops *)pdev->id_entry->driver_data;
		rspi_pd = dev_get_platdata(&pdev->dev);
		if (rspi_pd && rspi_pd->num_chipselect)
			ctlr->num_chipselect = rspi_pd->num_chipselect;
		else
			ctlr->num_chipselect = 2; /* default */
	}

	rspi = spi_controller_get_devdata(ctlr);
	platform_set_drvdata(pdev, rspi);
	rspi->ops = ops;
	rspi->ctlr = ctlr;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
		goto error1;
	}

	rspi->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
		goto error1;
	}

	rspi->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	init_waitqueue_head(&rspi->wait);
	spin_lock_init(&rspi->lock);

	ctlr->bus_num = pdev->id;
	ctlr->setup = rspi_setup;
	ctlr->auto_runtime_pm = true;
	ctlr->transfer_one = ops->transfer_one;
	ctlr->prepare_message = rspi_prepare_message;
	ctlr->unprepare_message = rspi_unprepare_message;
	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
			  SPI_LOOP | ops->extra_mode_bits;
	clksrc = clk_get_rate(rspi->clk);
	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
	ctlr->flags = ops->flags;
	ctlr->dev.of_node = pdev->dev.of_node;
	ctlr->use_gpio_descriptors = true;
	ctlr->max_native_cs = rspi->ops->num_hw_ss;

	ret = platform_get_irq_byname_optional(pdev, "rx");
	if (ret < 0) {
		ret = platform_get_irq_byname_optional(pdev, "mux");
		if (ret < 0)
			ret = platform_get_irq(pdev, 0);
		if (ret >= 0)
			rspi->rx_irq = rspi->tx_irq = ret;
	} else {
		rspi->rx_irq = ret;
		ret = platform_get_irq_byname(pdev, "tx");
		if (ret >= 0)
			rspi->tx_irq = ret;
	}

	if (rspi->rx_irq == rspi->tx_irq) {
		/* Single multiplexed interrupt */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
				       "mux", rspi);
	} else {
		/* Multi-interrupt mode, only SPRI and SPTI are used */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
				       "rx", rspi);
		if (!ret)
			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
					       rspi_irq_tx, "tx", rspi);
	}
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
		goto error2;
	}

	ret = rspi_request_dma(&pdev->dev, ctlr, res);
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");

	ret = devm_spi_register_controller(&pdev->dev, ctlr);
	if (ret < 0) {
		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
		goto error3;
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

error3:
	rspi_release_dma(ctlr);
error2:
	pm_runtime_disable(&pdev->dev);
error1:
	spi_controller_put(ctlr);

	return ret;
}

static const struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

#ifdef CONFIG_PM_SLEEP
static int rspi_suspend(struct device *dev)
{
	struct rspi_data *rspi = dev_get_drvdata(dev);

	return spi_controller_suspend(rspi->ctlr);
}

static int rspi_resume(struct device *dev)
{
	struct rspi_data *rspi = dev_get_drvdata(dev);

	return spi_controller_resume(rspi->ctlr);
}

static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
#define DEV_PM_OPS	&rspi_pm_ops
#else
#define DEV_PM_OPS	NULL
#endif /* CONFIG_PM_SLEEP */

static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
	.remove =	rspi_remove,
	.id_table =	spi_driver_ids,
	.driver		= {
		.name = "renesas_spi",
		.pm = DEV_PM_OPS,
		.of_match_table = of_match_ptr(rspi_of_match),
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");