summaryrefslogtreecommitdiff
path: root/drivers/ras/amd/atl/denormalize.c
blob: 1a525cfa983c3f651f65a4bb22acff95a0adf24a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * AMD Address Translation Library
 *
 * denormalize.c : Functions to account for interleaving bits
 *
 * Copyright (c) 2023, Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
 */

#include "internal.h"

/*
 * Returns the Destination Fabric ID. This is the first (lowest)
 * COH_ST Fabric ID used within a DRAM Address map.
 */
static u16 get_dst_fabric_id(struct addr_ctx *ctx)
{
	switch (df_cfg.rev) {
	case DF2:	return FIELD_GET(DF2_DST_FABRIC_ID,	ctx->map.limit);
	case DF3:	return FIELD_GET(DF3_DST_FABRIC_ID,	ctx->map.limit);
	case DF3p5:	return FIELD_GET(DF3p5_DST_FABRIC_ID,	ctx->map.limit);
	case DF4:	return FIELD_GET(DF4_DST_FABRIC_ID,	ctx->map.ctl);
	case DF4p5:	return FIELD_GET(DF4p5_DST_FABRIC_ID,	ctx->map.ctl);
	default:
			atl_debug_on_bad_df_rev();
			return 0;
	}
}

/*
 * Make a contiguous gap in address for N bits starting at bit P.
 *
 * Example:
 * address bits:		[20:0]
 * # of interleave bits    (n):	3
 * starting interleave bit (p):	8
 *
 * expanded address bits:	[20+n : n+p][n+p-1 : p][p-1 : 0]
 *				[23   :  11][10    : 8][7   : 0]
 */
static u64 make_space_for_coh_st_id_at_intlv_bit(struct addr_ctx *ctx)
{
	return expand_bits(ctx->map.intlv_bit_pos,
			   ctx->map.total_intlv_bits,
			   ctx->ret_addr);
}

/*
 * Make two gaps in address for N bits.
 * First gap is a single bit at bit P.
 * Second gap is the remaining N-1 bits at bit 12.
 *
 * Example:
 * address bits:		[20:0]
 * # of interleave bits    (n):	3
 * starting interleave bit (p):	8
 *
 * First gap
 * expanded address bits:	[20+1 : p+1][p][p-1 : 0]
 *				[21   :   9][8][7   : 0]
 *
 * Second gap uses result from first.
 *				r = n - 1; remaining interleave bits
 * expanded address bits:	[21+r : 12+r][12+r-1: 12][11 : 0]
 *				[23   :   14][13    : 12][11 : 0]
 */
static u64 make_space_for_coh_st_id_split_2_1(struct addr_ctx *ctx)
{
	/* Make a single space at the interleave bit. */
	u64 denorm_addr = expand_bits(ctx->map.intlv_bit_pos, 1, ctx->ret_addr);

	/* Done if there's only a single interleave bit. */
	if (ctx->map.total_intlv_bits <= 1)
		return denorm_addr;

	/* Make spaces for the remaining interleave bits starting at bit 12. */
	return expand_bits(12, ctx->map.total_intlv_bits - 1, denorm_addr);
}

/*
 * Make space for CS ID at bits [14:8] as follows:
 *
 * 8 channels	-> bits [10:8]
 * 16 channels	-> bits [11:8]
 * 32 channels	-> bits [14,11:8]
 *
 * 1 die	-> N/A
 * 2 dies	-> bit  [12]
 * 4 dies	-> bits [13:12]
 */
static u64 make_space_for_coh_st_id_mi300(struct addr_ctx *ctx)
{
	u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
	u64 denorm_addr;

	if (ctx->map.intlv_bit_pos != 8) {
		pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
		return ~0ULL;
	}

	/* Channel bits. Covers up to 4 bits at [11:8]. */
	denorm_addr = expand_bits(8, min(num_intlv_bits, 4), ctx->ret_addr);

	/* Die bits. Always starts at [12]. */
	denorm_addr = expand_bits(12, ilog2(ctx->map.num_intlv_dies), denorm_addr);

	/* Additional channel bit at [14]. */
	if (num_intlv_bits > 4)
		denorm_addr = expand_bits(14, 1, denorm_addr);

	return denorm_addr;
}

/*
 * Take the current calculated address and shift enough bits in the middle
 * to make a gap where the interleave bits will be inserted.
 */
static u64 make_space_for_coh_st_id(struct addr_ctx *ctx)
{
	switch (ctx->map.intlv_mode) {
	case NOHASH_2CHAN:
	case NOHASH_4CHAN:
	case NOHASH_8CHAN:
	case NOHASH_16CHAN:
	case NOHASH_32CHAN:
	case DF2_2CHAN_HASH:
		return make_space_for_coh_st_id_at_intlv_bit(ctx);

	case DF3_COD4_2CHAN_HASH:
	case DF3_COD2_4CHAN_HASH:
	case DF3_COD1_8CHAN_HASH:
	case DF4_NPS4_2CHAN_HASH:
	case DF4_NPS2_4CHAN_HASH:
	case DF4_NPS1_8CHAN_HASH:
	case DF4p5_NPS4_2CHAN_1K_HASH:
	case DF4p5_NPS4_2CHAN_2K_HASH:
	case DF4p5_NPS2_4CHAN_2K_HASH:
	case DF4p5_NPS1_8CHAN_2K_HASH:
	case DF4p5_NPS1_16CHAN_2K_HASH:
		return make_space_for_coh_st_id_split_2_1(ctx);

	case MI3_HASH_8CHAN:
	case MI3_HASH_16CHAN:
	case MI3_HASH_32CHAN:
		return make_space_for_coh_st_id_mi300(ctx);

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return ~0ULL;
	}
}

static u16 get_coh_st_id_df2(struct addr_ctx *ctx)
{
	u8 num_socket_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
	u8 num_die_intlv_bits = ilog2(ctx->map.num_intlv_dies);
	u8 num_intlv_bits;
	u16 coh_st_id, mask;

	coh_st_id = ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);

	/* Channel interleave bits */
	num_intlv_bits = order_base_2(ctx->map.num_intlv_chan);
	mask = GENMASK(num_intlv_bits - 1, 0);
	coh_st_id &= mask;

	/* Die interleave bits */
	if (num_die_intlv_bits) {
		u16 die_bits;

		mask = GENMASK(num_die_intlv_bits - 1, 0);
		die_bits = ctx->coh_st_fabric_id & df_cfg.die_id_mask;
		die_bits >>= df_cfg.die_id_shift;

		coh_st_id |= (die_bits & mask) << num_intlv_bits;
		num_intlv_bits += num_die_intlv_bits;
	}

	/* Socket interleave bits */
	if (num_socket_intlv_bits) {
		u16 socket_bits;

		mask = GENMASK(num_socket_intlv_bits - 1, 0);
		socket_bits = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
		socket_bits >>= df_cfg.socket_id_shift;

		coh_st_id |= (socket_bits & mask) << num_intlv_bits;
	}

	return coh_st_id;
}

static u16 get_coh_st_id_df4(struct addr_ctx *ctx)
{
	/*
	 * Start with the original component mask and the number of interleave
	 * bits for the channels in this map.
	 */
	u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
	u16 mask = df_cfg.component_id_mask;

	u16 socket_bits;

	/* Set the derived Coherent Station ID to the input Coherent Station Fabric ID. */
	u16 coh_st_id = ctx->coh_st_fabric_id & mask;

	/*
	 * Subtract the "base" Destination Fabric ID.
	 * This accounts for systems with disabled Coherent Stations.
	 */
	coh_st_id -= get_dst_fabric_id(ctx) & mask;

	/*
	 * Generate and use a new mask based on the number of bits
	 * needed for channel interleaving in this map.
	 */
	mask = GENMASK(num_intlv_bits - 1, 0);
	coh_st_id &= mask;

	/* Done if socket interleaving is not enabled. */
	if (ctx->map.num_intlv_sockets <= 1)
		return coh_st_id;

	/*
	 * Figure out how many bits are needed for the number of
	 * interleaved sockets. And shift the derived Coherent Station ID to account
	 * for these.
	 */
	num_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
	coh_st_id <<= num_intlv_bits;

	/* Generate a new mask for the socket interleaving bits. */
	mask = GENMASK(num_intlv_bits - 1, 0);

	/* Get the socket interleave bits from the original Coherent Station Fabric ID. */
	socket_bits = (ctx->coh_st_fabric_id & df_cfg.socket_id_mask) >> df_cfg.socket_id_shift;

	/* Apply the appropriate socket bits to the derived Coherent Station ID. */
	coh_st_id |= socket_bits & mask;

	return coh_st_id;
}

/*
 * MI300 hash has:
 * (C)hannel[3:0]	= coh_st_id[3:0]
 * (S)tack[0]		= coh_st_id[4]
 * (D)ie[1:0]		= coh_st_id[6:5]
 *
 * Hashed coh_st_id is swizzled so that Stack bit is at the end.
 * coh_st_id = SDDCCCC
 */
static u16 get_coh_st_id_mi300(struct addr_ctx *ctx)
{
	u8 channel_bits, die_bits, stack_bit;
	u16 die_id;

	/* Subtract the "base" Destination Fabric ID. */
	ctx->coh_st_fabric_id -= get_dst_fabric_id(ctx);

	die_id = (ctx->coh_st_fabric_id & df_cfg.die_id_mask) >> df_cfg.die_id_shift;

	channel_bits	= FIELD_GET(GENMASK(3, 0), ctx->coh_st_fabric_id);
	stack_bit	= FIELD_GET(BIT(4), ctx->coh_st_fabric_id) << 6;
	die_bits	= die_id << 4;

	return stack_bit | die_bits | channel_bits;
}

/*
 * Derive the correct Coherent Station ID that represents the interleave bits
 * used within the system physical address. This accounts for the
 * interleave mode, number of interleaved channels/dies/sockets, and
 * other system/mode-specific bit swizzling.
 *
 * Returns:	Coherent Station ID on success.
 *		All bits set on error.
 */
static u16 calculate_coh_st_id(struct addr_ctx *ctx)
{
	switch (ctx->map.intlv_mode) {
	case NOHASH_2CHAN:
	case NOHASH_4CHAN:
	case NOHASH_8CHAN:
	case NOHASH_16CHAN:
	case NOHASH_32CHAN:
	case DF3_COD4_2CHAN_HASH:
	case DF3_COD2_4CHAN_HASH:
	case DF3_COD1_8CHAN_HASH:
	case DF2_2CHAN_HASH:
		return get_coh_st_id_df2(ctx);

	case DF4_NPS4_2CHAN_HASH:
	case DF4_NPS2_4CHAN_HASH:
	case DF4_NPS1_8CHAN_HASH:
	case DF4p5_NPS4_2CHAN_1K_HASH:
	case DF4p5_NPS4_2CHAN_2K_HASH:
	case DF4p5_NPS2_4CHAN_2K_HASH:
	case DF4p5_NPS1_8CHAN_2K_HASH:
	case DF4p5_NPS1_16CHAN_2K_HASH:
		return get_coh_st_id_df4(ctx);

	case MI3_HASH_8CHAN:
	case MI3_HASH_16CHAN:
	case MI3_HASH_32CHAN:
		return get_coh_st_id_mi300(ctx);

	/* COH_ST ID is simply the COH_ST Fabric ID adjusted by the Destination Fabric ID. */
	case DF4p5_NPS2_4CHAN_1K_HASH:
	case DF4p5_NPS1_8CHAN_1K_HASH:
	case DF4p5_NPS1_16CHAN_1K_HASH:
		return ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return ~0;
	}
}

static u64 insert_coh_st_id_at_intlv_bit(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
	return denorm_addr | (coh_st_id << ctx->map.intlv_bit_pos);
}

static u64 insert_coh_st_id_split_2_1(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
	/* Insert coh_st_id[0] at the interleave bit. */
	denorm_addr |= (coh_st_id & BIT(0)) << ctx->map.intlv_bit_pos;

	/* Insert coh_st_id[2:1] at bit 12. */
	denorm_addr |= (coh_st_id & GENMASK(2, 1)) << 11;

	return denorm_addr;
}

static u64 insert_coh_st_id_split_2_2(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
	/* Insert coh_st_id[1:0] at bit 8. */
	denorm_addr |= (coh_st_id & GENMASK(1, 0)) << 8;

	/*
	 * Insert coh_st_id[n:2] at bit 12. 'n' could be 2 or 3.
	 * Grab both because bit 3 will be clear if unused.
	 */
	denorm_addr |= (coh_st_id & GENMASK(3, 2)) << 10;

	return denorm_addr;
}

static u64 insert_coh_st_id(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
	switch (ctx->map.intlv_mode) {
	case NOHASH_2CHAN:
	case NOHASH_4CHAN:
	case NOHASH_8CHAN:
	case NOHASH_16CHAN:
	case NOHASH_32CHAN:
	case MI3_HASH_8CHAN:
	case MI3_HASH_16CHAN:
	case MI3_HASH_32CHAN:
	case DF2_2CHAN_HASH:
		return insert_coh_st_id_at_intlv_bit(ctx, denorm_addr, coh_st_id);

	case DF3_COD4_2CHAN_HASH:
	case DF3_COD2_4CHAN_HASH:
	case DF3_COD1_8CHAN_HASH:
	case DF4_NPS4_2CHAN_HASH:
	case DF4_NPS2_4CHAN_HASH:
	case DF4_NPS1_8CHAN_HASH:
	case DF4p5_NPS4_2CHAN_1K_HASH:
	case DF4p5_NPS4_2CHAN_2K_HASH:
	case DF4p5_NPS2_4CHAN_2K_HASH:
	case DF4p5_NPS1_8CHAN_2K_HASH:
	case DF4p5_NPS1_16CHAN_2K_HASH:
		return insert_coh_st_id_split_2_1(ctx, denorm_addr, coh_st_id);

	case DF4p5_NPS2_4CHAN_1K_HASH:
	case DF4p5_NPS1_8CHAN_1K_HASH:
	case DF4p5_NPS1_16CHAN_1K_HASH:
		return insert_coh_st_id_split_2_2(ctx, denorm_addr, coh_st_id);

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return ~0ULL;
	}
}

/*
 * MI300 systems have a fixed, hardware-defined physical-to-logical
 * Coherent Station mapping. The Remap registers are not used.
 */
static const u16 phy_to_log_coh_st_map_mi300[] = {
	12, 13, 14, 15,
	 8,  9, 10, 11,
	 4,  5,  6,  7,
	 0,  1,  2,  3,
	28, 29, 30, 31,
	24, 25, 26, 27,
	20, 21, 22, 23,
	16, 17, 18, 19,
};

static u16 get_logical_coh_st_fabric_id_mi300(struct addr_ctx *ctx)
{
	if (ctx->inst_id >= ARRAY_SIZE(phy_to_log_coh_st_map_mi300)) {
		atl_debug(ctx, "Instance ID out of range");
		return ~0;
	}

	return phy_to_log_coh_st_map_mi300[ctx->inst_id] | (ctx->node_id << df_cfg.node_id_shift);
}

static u16 get_logical_coh_st_fabric_id(struct addr_ctx *ctx)
{
	u16 component_id, log_fabric_id;

	/* Start with the physical COH_ST Fabric ID. */
	u16 phys_fabric_id = ctx->coh_st_fabric_id;

	if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
		return get_logical_coh_st_fabric_id_mi300(ctx);

	/* Skip logical ID lookup if remapping is disabled. */
	if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl) &&
	    ctx->map.intlv_mode != DF3_6CHAN)
		return phys_fabric_id;

	/* Mask off the Node ID bits to get the "local" Component ID. */
	component_id = phys_fabric_id & df_cfg.component_id_mask;

	/*
	 * Search the list of logical Component IDs for the one that
	 * matches this physical Component ID.
	 */
	for (log_fabric_id = 0; log_fabric_id < MAX_COH_ST_CHANNELS; log_fabric_id++) {
		if (ctx->map.remap_array[log_fabric_id] == component_id)
			break;
	}

	if (log_fabric_id == MAX_COH_ST_CHANNELS)
		atl_debug(ctx, "COH_ST remap entry not found for 0x%x",
			  log_fabric_id);

	/* Get the Node ID bits from the physical and apply to the logical. */
	return (phys_fabric_id & df_cfg.node_id_mask) | log_fabric_id;
}

static u16 get_logical_coh_st_fabric_id_for_current_spa(struct addr_ctx *ctx,
							struct df4p5_denorm_ctx *denorm_ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
	bool hash_pa8, hash_pa9, hash_pa12, hash_pa13;
	u64 cs_id = 0;

	hash_ctl_64k	= FIELD_GET(DF4_HASH_CTL_64K,  ctx->map.ctl);
	hash_ctl_2M	= FIELD_GET(DF4_HASH_CTL_2M,   ctx->map.ctl);
	hash_ctl_1G	= FIELD_GET(DF4_HASH_CTL_1G,   ctx->map.ctl);
	hash_ctl_1T	= FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);

	hash_pa8  = FIELD_GET(BIT_ULL(8),  denorm_ctx->current_spa);
	hash_pa8 ^= FIELD_GET(BIT_ULL(14), denorm_ctx->current_spa);
	hash_pa8 ^= FIELD_GET(BIT_ULL(16), denorm_ctx->current_spa) & hash_ctl_64k;
	hash_pa8 ^= FIELD_GET(BIT_ULL(21), denorm_ctx->current_spa) & hash_ctl_2M;
	hash_pa8 ^= FIELD_GET(BIT_ULL(30), denorm_ctx->current_spa) & hash_ctl_1G;
	hash_pa8 ^= FIELD_GET(BIT_ULL(40), denorm_ctx->current_spa) & hash_ctl_1T;

	hash_pa9  = FIELD_GET(BIT_ULL(9),  denorm_ctx->current_spa);
	hash_pa9 ^= FIELD_GET(BIT_ULL(17), denorm_ctx->current_spa) & hash_ctl_64k;
	hash_pa9 ^= FIELD_GET(BIT_ULL(22), denorm_ctx->current_spa) & hash_ctl_2M;
	hash_pa9 ^= FIELD_GET(BIT_ULL(31), denorm_ctx->current_spa) & hash_ctl_1G;
	hash_pa9 ^= FIELD_GET(BIT_ULL(41), denorm_ctx->current_spa) & hash_ctl_1T;

	hash_pa12  = FIELD_GET(BIT_ULL(12), denorm_ctx->current_spa);
	hash_pa12 ^= FIELD_GET(BIT_ULL(18), denorm_ctx->current_spa) & hash_ctl_64k;
	hash_pa12 ^= FIELD_GET(BIT_ULL(23), denorm_ctx->current_spa) & hash_ctl_2M;
	hash_pa12 ^= FIELD_GET(BIT_ULL(32), denorm_ctx->current_spa) & hash_ctl_1G;
	hash_pa12 ^= FIELD_GET(BIT_ULL(42), denorm_ctx->current_spa) & hash_ctl_1T;

	hash_pa13  = FIELD_GET(BIT_ULL(13), denorm_ctx->current_spa);
	hash_pa13 ^= FIELD_GET(BIT_ULL(19), denorm_ctx->current_spa) & hash_ctl_64k;
	hash_pa13 ^= FIELD_GET(BIT_ULL(24), denorm_ctx->current_spa) & hash_ctl_2M;
	hash_pa13 ^= FIELD_GET(BIT_ULL(33), denorm_ctx->current_spa) & hash_ctl_1G;
	hash_pa13 ^= FIELD_GET(BIT_ULL(43), denorm_ctx->current_spa) & hash_ctl_1T;

	switch (ctx->map.intlv_mode) {
	case DF4p5_NPS0_24CHAN_1K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 13), denorm_ctx->current_spa) << 3;
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 2;
		cs_id |= (hash_pa9 | (hash_pa12 << 1));
		cs_id |= hash_pa8 << df_cfg.socket_id_shift;
		break;

	case DF4p5_NPS0_24CHAN_2K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 14), denorm_ctx->current_spa) << 4;
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 2;
		cs_id |= (hash_pa12 | (hash_pa13 << 1));
		cs_id |= hash_pa8 << df_cfg.socket_id_shift;
		break;

	case DF4p5_NPS1_12CHAN_1K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 12), denorm_ctx->current_spa) << 2;
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 2;
		cs_id |= (hash_pa8 | (hash_pa9 << 1));
		break;

	case DF4p5_NPS1_12CHAN_2K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 13), denorm_ctx->current_spa) << 3;
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 2;
		cs_id |= (hash_pa8 | (hash_pa12 << 1));
		break;

	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 12), denorm_ctx->current_spa) << 2;
		cs_id |= (FIELD_GET(BIT_ULL(9), denorm_ctx->current_spa) << 1);
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 1;
		cs_id |= hash_pa8;
		break;

	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 12), denorm_ctx->current_spa) << 2;
		cs_id %= denorm_ctx->mod_value;
		cs_id <<= 1;
		cs_id |= hash_pa8;
		break;

	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 12), denorm_ctx->current_spa) << 2;
		cs_id |= FIELD_GET(GENMASK_ULL(9, 8), denorm_ctx->current_spa);
		cs_id %= denorm_ctx->mod_value;
		break;

	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		cs_id = FIELD_GET(GENMASK_ULL(63, 12), denorm_ctx->current_spa) << 2;
		cs_id |= FIELD_GET(BIT_ULL(8), denorm_ctx->current_spa) << 1;
		cs_id %= denorm_ctx->mod_value;
		break;

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return 0;
	}

	if (cs_id > 0xffff) {
		atl_debug(ctx, "Translation error: Resulting cs_id larger than u16\n");
		return 0;
	}

	return cs_id;
}

static int denorm_addr_common(struct addr_ctx *ctx)
{
	u64 denorm_addr;
	u16 coh_st_id;

	/*
	 * Convert the original physical COH_ST Fabric ID to a logical value.
	 * This is required for non-power-of-two and other interleaving modes.
	 */
	ctx->coh_st_fabric_id = get_logical_coh_st_fabric_id(ctx);

	denorm_addr = make_space_for_coh_st_id(ctx);
	coh_st_id = calculate_coh_st_id(ctx);
	ctx->ret_addr = insert_coh_st_id(ctx, denorm_addr, coh_st_id);
	return 0;
}

static int denorm_addr_df3_6chan(struct addr_ctx *ctx)
{
	u16 coh_st_id = ctx->coh_st_fabric_id & df_cfg.component_id_mask;
	u8 total_intlv_bits = ctx->map.total_intlv_bits;
	u8 low_bit, intlv_bit = ctx->map.intlv_bit_pos;
	u64 msb_intlv_bits, temp_addr_a, temp_addr_b;
	u8 np2_bits = ctx->map.np2_bits;

	if (ctx->map.intlv_mode != DF3_6CHAN)
		return -EINVAL;

	/*
	 * 'np2_bits' holds the number of bits needed to cover the
	 * amount of memory (rounded up) in this map using 64K chunks.
	 *
	 * Example:
	 * Total memory in map:			6GB
	 * Rounded up to next power-of-2:	8GB
	 * Number of 64K chunks:		0x20000
	 * np2_bits = log2(# of chunks):	17
	 *
	 * Get the two most-significant interleave bits from the
	 * input address based on the following:
	 *
	 * [15 + np2_bits - total_intlv_bits : 14 + np2_bits - total_intlv_bits]
	 */
	low_bit = 14 + np2_bits - total_intlv_bits;
	msb_intlv_bits = ctx->ret_addr >> low_bit;
	msb_intlv_bits &= 0x3;

	/*
	 * If MSB are 11b, then logical COH_ST ID is 6 or 7.
	 * Need to adjust based on the mod3 result.
	 */
	if (msb_intlv_bits == 3) {
		u8 addr_mod, phys_addr_msb, msb_coh_st_id;

		/* Get the remaining interleave bits from the input address. */
		temp_addr_b = GENMASK_ULL(low_bit - 1, intlv_bit) & ctx->ret_addr;
		temp_addr_b >>= intlv_bit;

		/* Calculate the logical COH_ST offset based on mod3. */
		addr_mod = temp_addr_b % 3;

		/* Get COH_ST ID bits [2:1]. */
		msb_coh_st_id = (coh_st_id >> 1) & 0x3;

		/* Get the bit that starts the physical address bits. */
		phys_addr_msb = (intlv_bit + np2_bits + 1);
		phys_addr_msb &= BIT(0);
		phys_addr_msb++;
		phys_addr_msb *= 3 - addr_mod + msb_coh_st_id;
		phys_addr_msb %= 3;

		/* Move the physical address MSB to the correct place. */
		temp_addr_b |= phys_addr_msb << (low_bit - total_intlv_bits - intlv_bit);

		/* Generate a new COH_ST ID as follows: coh_st_id = [1, 1, coh_st_id[0]] */
		coh_st_id &= BIT(0);
		coh_st_id |= GENMASK(2, 1);
	} else {
		temp_addr_b = GENMASK_ULL(63, intlv_bit) & ctx->ret_addr;
		temp_addr_b >>= intlv_bit;
	}

	temp_addr_a = GENMASK_ULL(intlv_bit - 1, 0) & ctx->ret_addr;
	temp_addr_b <<= intlv_bit + total_intlv_bits;

	ctx->ret_addr = temp_addr_a | temp_addr_b;
	ctx->ret_addr |= coh_st_id << intlv_bit;
	return 0;
}

static int denorm_addr_df4_np2(struct addr_ctx *ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
	u16 group, group_offset, log_coh_st_offset;
	unsigned int mod_value, shift_value;
	u16 mask = df_cfg.component_id_mask;
	u64 temp_addr_a, temp_addr_b;
	bool hash_pa8, hashed_bit;

	switch (ctx->map.intlv_mode) {
	case DF4_NPS4_3CHAN_HASH:
		mod_value	= 3;
		shift_value	= 13;
		break;
	case DF4_NPS2_6CHAN_HASH:
		mod_value	= 3;
		shift_value	= 12;
		break;
	case DF4_NPS1_12CHAN_HASH:
		mod_value	= 3;
		shift_value	= 11;
		break;
	case DF4_NPS2_5CHAN_HASH:
		mod_value	= 5;
		shift_value	= 13;
		break;
	case DF4_NPS1_10CHAN_HASH:
		mod_value	= 5;
		shift_value	= 12;
		break;
	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return -EINVAL;
	};

	if (ctx->map.num_intlv_sockets == 1) {
		hash_pa8	= BIT_ULL(shift_value) & ctx->ret_addr;
		temp_addr_a	= remove_bits(shift_value, shift_value, ctx->ret_addr);
	} else {
		hash_pa8	= ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
		temp_addr_a	= ctx->ret_addr;
	}

	/* Make a gap for the real bit [8]. */
	temp_addr_a = expand_bits(8, 1, temp_addr_a);

	/* Make an additional gap for bits [13:12], as appropriate.*/
	if (ctx->map.intlv_mode == DF4_NPS2_6CHAN_HASH ||
	    ctx->map.intlv_mode == DF4_NPS1_10CHAN_HASH) {
		temp_addr_a = expand_bits(13, 1, temp_addr_a);
	} else if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH) {
		temp_addr_a = expand_bits(12, 2, temp_addr_a);
	}

	/* Keep bits [13:0]. */
	temp_addr_a &= GENMASK_ULL(13, 0);

	/* Get the appropriate high bits. */
	shift_value += 1 - ilog2(ctx->map.num_intlv_sockets);
	temp_addr_b = GENMASK_ULL(63, shift_value) & ctx->ret_addr;
	temp_addr_b >>= shift_value;
	temp_addr_b *= mod_value;

	/*
	 * Coherent Stations are divided into groups.
	 *
	 * Multiples of 3 (mod3) are divided into quadrants.
	 * e.g. NP4_3CHAN ->	[0, 1, 2] [6, 7, 8]
	 *			[3, 4, 5] [9, 10, 11]
	 *
	 * Multiples of 5 (mod5) are divided into sides.
	 * e.g. NP2_5CHAN ->	[0, 1, 2, 3, 4] [5, 6, 7, 8, 9]
	 */

	 /*
	  * Calculate the logical offset for the COH_ST within its DRAM Address map.
	  * e.g. if map includes [5, 6, 7, 8, 9] and target instance is '8', then
	  *	 log_coh_st_offset = 8 - 5 = 3
	  */
	log_coh_st_offset = (ctx->coh_st_fabric_id & mask) - (get_dst_fabric_id(ctx) & mask);

	/*
	 * Figure out the group number.
	 *
	 * Following above example,
	 * log_coh_st_offset = 3
	 * mod_value = 5
	 * group = 3 / 5 = 0
	 */
	group = log_coh_st_offset / mod_value;

	/*
	 * Figure out the offset within the group.
	 *
	 * Following above example,
	 * log_coh_st_offset = 3
	 * mod_value = 5
	 * group_offset = 3 % 5 = 3
	 */
	group_offset = log_coh_st_offset % mod_value;

	/* Adjust group_offset if the hashed bit [8] is set. */
	if (hash_pa8) {
		if (!group_offset)
			group_offset = mod_value - 1;
		else
			group_offset--;
	}

	/* Add in the group offset to the high bits. */
	temp_addr_b += group_offset;

	/* Shift the high bits to the proper starting position. */
	temp_addr_b <<= 14;

	/* Combine the high and low bits together. */
	ctx->ret_addr = temp_addr_a | temp_addr_b;

	/* Account for hashing here instead of in dehash_address(). */
	hash_ctl_64k	= FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
	hash_ctl_2M	= FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
	hash_ctl_1G	= FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);

	hashed_bit = !!hash_pa8;
	hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;

	ctx->ret_addr |= hashed_bit << 8;

	/* Done for 3 and 5 channel. */
	if (ctx->map.intlv_mode == DF4_NPS4_3CHAN_HASH ||
	    ctx->map.intlv_mode == DF4_NPS2_5CHAN_HASH)
		return 0;

	/* Select the proper 'group' bit to use for Bit 13. */
	if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH)
		hashed_bit = !!(group & BIT(1));
	else
		hashed_bit = group & BIT(0);

	hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;

	ctx->ret_addr |= hashed_bit << 13;

	/* Done for 6 and 10 channel. */
	if (ctx->map.intlv_mode != DF4_NPS1_12CHAN_HASH)
		return 0;

	hashed_bit = group & BIT(0);
	hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;

	ctx->ret_addr |= hashed_bit << 12;
	return 0;
}

static u64 normalize_addr_df4p5_np2(struct addr_ctx *ctx, struct df4p5_denorm_ctx *denorm_ctx,
				    u64 addr)
{
	u64 temp_addr_a = 0, temp_addr_b = 0;

	switch (ctx->map.intlv_mode) {
	case DF4p5_NPS0_24CHAN_1K_HASH:
	case DF4p5_NPS1_12CHAN_1K_HASH:
	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
		temp_addr_a = FIELD_GET(GENMASK_ULL(11, 10), addr) << 8;
		break;

	case DF4p5_NPS0_24CHAN_2K_HASH:
	case DF4p5_NPS1_12CHAN_2K_HASH:
	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		temp_addr_a = FIELD_GET(GENMASK_ULL(11, 9), addr) << 8;
		break;

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return 0;
	}

	switch (ctx->map.intlv_mode) {
	case DF4p5_NPS0_24CHAN_1K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 13), addr) / denorm_ctx->mod_value;
		temp_addr_b <<= 10;
		break;

	case DF4p5_NPS0_24CHAN_2K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 14), addr) / denorm_ctx->mod_value;
		temp_addr_b <<= 11;
		break;

	case DF4p5_NPS1_12CHAN_1K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 12), addr) / denorm_ctx->mod_value;
		temp_addr_b <<= 10;
		break;

	case DF4p5_NPS1_12CHAN_2K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 13), addr) / denorm_ctx->mod_value;
		temp_addr_b <<= 11;
		break;

	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 12), addr) << 1;
		temp_addr_b |= FIELD_GET(BIT_ULL(9), addr);
		temp_addr_b /= denorm_ctx->mod_value;
		temp_addr_b <<= 10;
		break;

	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 12), addr) / denorm_ctx->mod_value;
		temp_addr_b <<= 11;
		break;

	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 12), addr) << 2;
		temp_addr_b |= FIELD_GET(GENMASK_ULL(9, 8), addr);
		temp_addr_b /= denorm_ctx->mod_value;
		temp_addr_b <<= 10;
		break;

	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		temp_addr_b = FIELD_GET(GENMASK_ULL(63, 12), addr) << 1;
		temp_addr_b |= FIELD_GET(BIT_ULL(8), addr);
		temp_addr_b /= denorm_ctx->mod_value;
		temp_addr_b <<= 11;
		break;

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return 0;
	}

	return denorm_ctx->base_denorm_addr | temp_addr_a | temp_addr_b;
}

static void recalculate_hashed_bits_df4p5_np2(struct addr_ctx *ctx,
					      struct df4p5_denorm_ctx *denorm_ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T, hashed_bit;

	if (!denorm_ctx->rehash_vector)
		return;

	hash_ctl_64k	= FIELD_GET(DF4_HASH_CTL_64K,  ctx->map.ctl);
	hash_ctl_2M	= FIELD_GET(DF4_HASH_CTL_2M,   ctx->map.ctl);
	hash_ctl_1G	= FIELD_GET(DF4_HASH_CTL_1G,   ctx->map.ctl);
	hash_ctl_1T	= FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);

	if (denorm_ctx->rehash_vector & BIT_ULL(8)) {
		hashed_bit  = FIELD_GET(BIT_ULL(8),  denorm_ctx->current_spa);
		hashed_bit ^= FIELD_GET(BIT_ULL(14), denorm_ctx->current_spa);
		hashed_bit ^= FIELD_GET(BIT_ULL(16), denorm_ctx->current_spa) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(21), denorm_ctx->current_spa) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(30), denorm_ctx->current_spa) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(40), denorm_ctx->current_spa) & hash_ctl_1T;

		if (FIELD_GET(BIT_ULL(8), denorm_ctx->current_spa) != hashed_bit)
			denorm_ctx->current_spa ^= BIT_ULL(8);
	}

	if (denorm_ctx->rehash_vector & BIT_ULL(9)) {
		hashed_bit  = FIELD_GET(BIT_ULL(9),  denorm_ctx->current_spa);
		hashed_bit ^= FIELD_GET(BIT_ULL(17), denorm_ctx->current_spa) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(22), denorm_ctx->current_spa) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(31), denorm_ctx->current_spa) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(41), denorm_ctx->current_spa) & hash_ctl_1T;

		if (FIELD_GET(BIT_ULL(9), denorm_ctx->current_spa) != hashed_bit)
			denorm_ctx->current_spa ^= BIT_ULL(9);
	}

	if (denorm_ctx->rehash_vector & BIT_ULL(12)) {
		hashed_bit  = FIELD_GET(BIT_ULL(12), denorm_ctx->current_spa);
		hashed_bit ^= FIELD_GET(BIT_ULL(18), denorm_ctx->current_spa) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(23), denorm_ctx->current_spa) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(32), denorm_ctx->current_spa) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(42), denorm_ctx->current_spa) & hash_ctl_1T;

		if (FIELD_GET(BIT_ULL(12), denorm_ctx->current_spa) != hashed_bit)
			denorm_ctx->current_spa ^= BIT_ULL(12);
	}

	if (denorm_ctx->rehash_vector & BIT_ULL(13)) {
		hashed_bit  = FIELD_GET(BIT_ULL(13), denorm_ctx->current_spa);
		hashed_bit ^= FIELD_GET(BIT_ULL(19), denorm_ctx->current_spa) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(24), denorm_ctx->current_spa) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(33), denorm_ctx->current_spa) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(43), denorm_ctx->current_spa) & hash_ctl_1T;

		if (FIELD_GET(BIT_ULL(13), denorm_ctx->current_spa) != hashed_bit)
			denorm_ctx->current_spa ^= BIT_ULL(13);
	}
}

static bool match_logical_coh_st_fabric_id(struct addr_ctx *ctx,
					   struct df4p5_denorm_ctx *denorm_ctx)
{
	/*
	 * The logical CS fabric ID of the permutation must be calculated from the
	 * current SPA with the base and with the MMIO hole.
	 */
	u16 id = get_logical_coh_st_fabric_id_for_current_spa(ctx, denorm_ctx);

	atl_debug(ctx, "Checking calculated logical coherent station fabric id:\n");
	atl_debug(ctx, "  calculated fabric id         = 0x%x\n", id);
	atl_debug(ctx, "  expected fabric id           = 0x%x\n", denorm_ctx->coh_st_fabric_id);

	return denorm_ctx->coh_st_fabric_id == id;
}

static bool match_norm_addr(struct addr_ctx *ctx, struct df4p5_denorm_ctx *denorm_ctx)
{
	u64 addr = remove_base_and_hole(ctx, denorm_ctx->current_spa);

	/*
	 * The normalized address must be calculated with the current SPA without
	 * the base and without the MMIO hole.
	 */
	addr = normalize_addr_df4p5_np2(ctx, denorm_ctx, addr);

	atl_debug(ctx, "Checking calculated normalized address:\n");
	atl_debug(ctx, "  calculated normalized addr = 0x%016llx\n", addr);
	atl_debug(ctx, "  expected normalized addr   = 0x%016llx\n", ctx->ret_addr);

	return addr == ctx->ret_addr;
}

static int check_permutations(struct addr_ctx *ctx, struct df4p5_denorm_ctx *denorm_ctx)
{
	u64 test_perm, temp_addr, denorm_addr, num_perms;
	unsigned int dropped_remainder;

	denorm_ctx->div_addr *= denorm_ctx->mod_value;

	/*
	 * The high order bits of num_permutations represent the permutations
	 * of the dropped remainder. This will be either 0-3 or 0-5 depending
	 * on the interleave mode. The low order bits represent the
	 * permutations of other "lost" bits which will be any combination of
	 * 1, 2, or 3 bits depending on the interleave mode.
	 */
	num_perms = denorm_ctx->mod_value << denorm_ctx->perm_shift;

	for (test_perm = 0; test_perm < num_perms; test_perm++) {
		denorm_addr = denorm_ctx->base_denorm_addr;
		dropped_remainder = test_perm >> denorm_ctx->perm_shift;
		temp_addr = denorm_ctx->div_addr + dropped_remainder;

		switch (ctx->map.intlv_mode) {
		case DF4p5_NPS0_24CHAN_2K_HASH:
			denorm_addr |= temp_addr << 14;
			break;

		case DF4p5_NPS0_24CHAN_1K_HASH:
		case DF4p5_NPS1_12CHAN_2K_HASH:
			denorm_addr |= temp_addr << 13;
			break;

		case DF4p5_NPS1_12CHAN_1K_HASH:
		case DF4p5_NPS2_6CHAN_2K_HASH:
		case DF4p5_NPS1_10CHAN_2K_HASH:
			denorm_addr |= temp_addr << 12;
			break;

		case DF4p5_NPS2_6CHAN_1K_HASH:
		case DF4p5_NPS1_10CHAN_1K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), temp_addr) << 9;
			denorm_addr |= FIELD_GET(GENMASK_ULL(63, 1), temp_addr) << 12;
			break;

		case DF4p5_NPS4_3CHAN_1K_HASH:
		case DF4p5_NPS2_5CHAN_1K_HASH:
			denorm_addr |= FIELD_GET(GENMASK_ULL(1, 0), temp_addr) << 8;
			denorm_addr |= FIELD_GET(GENMASK_ULL(63, 2), (temp_addr)) << 12;
			break;

		case DF4p5_NPS4_3CHAN_2K_HASH:
		case DF4p5_NPS2_5CHAN_2K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), temp_addr) << 8;
			denorm_addr |= FIELD_GET(GENMASK_ULL(63, 1), temp_addr) << 12;
			break;

		default:
			atl_debug_on_bad_intlv_mode(ctx);
			return -EINVAL;
		}

		switch (ctx->map.intlv_mode) {
		case DF4p5_NPS0_24CHAN_1K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), test_perm) << 8;
			denorm_addr |= FIELD_GET(BIT_ULL(1), test_perm) << 9;
			denorm_addr |= FIELD_GET(BIT_ULL(2), test_perm) << 12;
			break;

		case DF4p5_NPS0_24CHAN_2K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), test_perm) << 8;
			denorm_addr |= FIELD_GET(BIT_ULL(1), test_perm) << 12;
			denorm_addr |= FIELD_GET(BIT_ULL(2), test_perm) << 13;
			break;

		case DF4p5_NPS1_12CHAN_2K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), test_perm) << 8;
			denorm_addr |= FIELD_GET(BIT_ULL(1), test_perm) << 12;
			break;

		case DF4p5_NPS1_12CHAN_1K_HASH:
		case DF4p5_NPS4_3CHAN_1K_HASH:
		case DF4p5_NPS2_5CHAN_1K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), test_perm) << 8;
			denorm_addr |= FIELD_GET(BIT_ULL(1), test_perm) << 9;
			break;

		case DF4p5_NPS2_6CHAN_1K_HASH:
		case DF4p5_NPS2_6CHAN_2K_HASH:
		case DF4p5_NPS4_3CHAN_2K_HASH:
		case DF4p5_NPS1_10CHAN_1K_HASH:
		case DF4p5_NPS1_10CHAN_2K_HASH:
		case DF4p5_NPS2_5CHAN_2K_HASH:
			denorm_addr |= FIELD_GET(BIT_ULL(0), test_perm) << 8;
			break;

		default:
			atl_debug_on_bad_intlv_mode(ctx);
			return -EINVAL;
		}

		denorm_ctx->current_spa = add_base_and_hole(ctx, denorm_addr);
		recalculate_hashed_bits_df4p5_np2(ctx, denorm_ctx);

		atl_debug(ctx, "Checking potential system physical address 0x%016llx\n",
			  denorm_ctx->current_spa);

		if (!match_logical_coh_st_fabric_id(ctx, denorm_ctx))
			continue;

		if (!match_norm_addr(ctx, denorm_ctx))
			continue;

		if (denorm_ctx->resolved_spa == INVALID_SPA ||
		    denorm_ctx->current_spa > denorm_ctx->resolved_spa)
			denorm_ctx->resolved_spa = denorm_ctx->current_spa;
	}

	if (denorm_ctx->resolved_spa == INVALID_SPA) {
		atl_debug(ctx, "Failed to find valid SPA for normalized address 0x%016llx\n",
			  ctx->ret_addr);
		return -EINVAL;
	}

	/* Return the resolved SPA without the base, without the MMIO hole */
	ctx->ret_addr = remove_base_and_hole(ctx, denorm_ctx->resolved_spa);

	return 0;
}

static int init_df4p5_denorm_ctx(struct addr_ctx *ctx, struct df4p5_denorm_ctx *denorm_ctx)
{
	denorm_ctx->current_spa = INVALID_SPA;
	denorm_ctx->resolved_spa = INVALID_SPA;

	switch (ctx->map.intlv_mode) {
	case DF4p5_NPS0_24CHAN_1K_HASH:
		denorm_ctx->perm_shift    = 3;
		denorm_ctx->rehash_vector = BIT(8) | BIT(9) | BIT(12);
		break;

	case DF4p5_NPS0_24CHAN_2K_HASH:
		denorm_ctx->perm_shift    = 3;
		denorm_ctx->rehash_vector = BIT(8) | BIT(12) | BIT(13);
		break;

	case DF4p5_NPS1_12CHAN_1K_HASH:
		denorm_ctx->perm_shift    = 2;
		denorm_ctx->rehash_vector = BIT(8);
		break;

	case DF4p5_NPS1_12CHAN_2K_HASH:
		denorm_ctx->perm_shift    = 2;
		denorm_ctx->rehash_vector = BIT(8) | BIT(12);
		break;

	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
		denorm_ctx->perm_shift    = 1;
		denorm_ctx->rehash_vector = BIT(8);
		break;

	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
		denorm_ctx->perm_shift    = 2;
		denorm_ctx->rehash_vector = 0;
		break;

	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		denorm_ctx->perm_shift    = 1;
		denorm_ctx->rehash_vector = 0;
		break;

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return -EINVAL;
	}

	denorm_ctx->base_denorm_addr = FIELD_GET(GENMASK_ULL(7, 0), ctx->ret_addr);

	switch (ctx->map.intlv_mode) {
	case DF4p5_NPS0_24CHAN_1K_HASH:
	case DF4p5_NPS1_12CHAN_1K_HASH:
	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
		denorm_ctx->base_denorm_addr |= FIELD_GET(GENMASK_ULL(9, 8), ctx->ret_addr) << 10;
		denorm_ctx->div_addr          = FIELD_GET(GENMASK_ULL(63, 10), ctx->ret_addr);
		break;

	case DF4p5_NPS0_24CHAN_2K_HASH:
	case DF4p5_NPS1_12CHAN_2K_HASH:
	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		denorm_ctx->base_denorm_addr |= FIELD_GET(GENMASK_ULL(10, 8), ctx->ret_addr) << 9;
		denorm_ctx->div_addr          = FIELD_GET(GENMASK_ULL(63, 11), ctx->ret_addr);
		break;

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return -EINVAL;
	}

	if (ctx->map.num_intlv_chan % 3 == 0)
		denorm_ctx->mod_value = 3;
	else
		denorm_ctx->mod_value = 5;

	denorm_ctx->coh_st_fabric_id = get_logical_coh_st_fabric_id(ctx) - get_dst_fabric_id(ctx);

	atl_debug(ctx, "Initialized df4p5_denorm_ctx:");
	atl_debug(ctx, "  mod_value         = %d", denorm_ctx->mod_value);
	atl_debug(ctx, "  perm_shift        = %d", denorm_ctx->perm_shift);
	atl_debug(ctx, "  rehash_vector     = 0x%x", denorm_ctx->rehash_vector);
	atl_debug(ctx, "  base_denorm_addr  = 0x%016llx", denorm_ctx->base_denorm_addr);
	atl_debug(ctx, "  div_addr          = 0x%016llx", denorm_ctx->div_addr);
	atl_debug(ctx, "  coh_st_fabric_id  = 0x%x", denorm_ctx->coh_st_fabric_id);

	return 0;
}

/*
 * For DF 4.5, parts of the physical address can be directly pulled from the
 * normalized address. The exact bits will differ between interleave modes, but
 * using NPS0_24CHAN_1K_HASH as an example, the normalized address consists of
 * bits [63:13] (divided by 3), bits [11:10], and bits [7:0] of the system
 * physical address.
 *
 * In this case, there is no way to reconstruct the missing bits (bits 8, 9,
 * and 12) from the normalized address. Additionally, when bits [63:13] are
 * divided by 3, the remainder is dropped. Determine the proper combination of
 * "lost" bits and dropped remainder by iterating through each possible
 * permutation of these bits and then normalizing the generated system physical
 * addresses. If the normalized address matches the address we are trying to
 * translate, then we have found the correct permutation of bits.
 */
static int denorm_addr_df4p5_np2(struct addr_ctx *ctx)
{
	struct df4p5_denorm_ctx denorm_ctx;
	int ret = 0;

	memset(&denorm_ctx, 0, sizeof(denorm_ctx));

	atl_debug(ctx, "Denormalizing DF 4.5 normalized address 0x%016llx", ctx->ret_addr);

	ret = init_df4p5_denorm_ctx(ctx, &denorm_ctx);
	if (ret)
		return ret;

	return check_permutations(ctx, &denorm_ctx);
}

int denormalize_address(struct addr_ctx *ctx)
{
	switch (ctx->map.intlv_mode) {
	case NONE:
		return 0;
	case DF4_NPS4_3CHAN_HASH:
	case DF4_NPS2_6CHAN_HASH:
	case DF4_NPS1_12CHAN_HASH:
	case DF4_NPS2_5CHAN_HASH:
	case DF4_NPS1_10CHAN_HASH:
		return denorm_addr_df4_np2(ctx);
	case DF4p5_NPS0_24CHAN_1K_HASH:
	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS1_12CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS1_12CHAN_2K_HASH:
	case DF4p5_NPS0_24CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
		return denorm_addr_df4p5_np2(ctx);
	case DF3_6CHAN:
		return denorm_addr_df3_6chan(ctx);
	default:
		return denorm_addr_common(ctx);
	}
}