summaryrefslogtreecommitdiff
path: root/drivers/ras/amd/atl/core.c
blob: 6dc4e06305f75253488541152493801a951b334b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * AMD Address Translation Library
 *
 * core.c : Module init and base translation functions
 *
 * Copyright (c) 2023, Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
 */

#include <linux/module.h>
#include <asm/cpu_device_id.h>

#include "internal.h"

struct df_config df_cfg __read_mostly;

static int addr_over_limit(struct addr_ctx *ctx)
{
	u64 dram_limit_addr;

	if (df_cfg.rev >= DF4)
		dram_limit_addr = FIELD_GET(DF4_DRAM_LIMIT_ADDR, ctx->map.limit);
	else
		dram_limit_addr = FIELD_GET(DF2_DRAM_LIMIT_ADDR, ctx->map.limit);

	dram_limit_addr <<= DF_DRAM_BASE_LIMIT_LSB;
	dram_limit_addr |= GENMASK(DF_DRAM_BASE_LIMIT_LSB - 1, 0);

	/* Is calculated system address above DRAM limit address? */
	if (ctx->ret_addr > dram_limit_addr) {
		atl_debug(ctx, "Calculated address (0x%016llx) > DRAM limit (0x%016llx)",
			  ctx->ret_addr, dram_limit_addr);
		return -EINVAL;
	}

	return 0;
}

static bool legacy_hole_en(struct addr_ctx *ctx)
{
	u32 reg = ctx->map.base;

	if (df_cfg.rev >= DF4)
		reg = ctx->map.ctl;

	return FIELD_GET(DF_LEGACY_MMIO_HOLE_EN, reg);
}

static int add_legacy_hole(struct addr_ctx *ctx)
{
	u32 dram_hole_base;
	u8 func = 0;

	if (!legacy_hole_en(ctx))
		return 0;

	if (df_cfg.rev >= DF4)
		func = 7;

	if (df_indirect_read_broadcast(ctx->node_id, func, 0x104, &dram_hole_base))
		return -EINVAL;

	dram_hole_base &= DF_DRAM_HOLE_BASE_MASK;

	if (ctx->ret_addr >= dram_hole_base)
		ctx->ret_addr += (BIT_ULL(32) - dram_hole_base);

	return 0;
}

static u64 get_base_addr(struct addr_ctx *ctx)
{
	u64 base_addr;

	if (df_cfg.rev >= DF4)
		base_addr = FIELD_GET(DF4_BASE_ADDR, ctx->map.base);
	else
		base_addr = FIELD_GET(DF2_BASE_ADDR, ctx->map.base);

	return base_addr << DF_DRAM_BASE_LIMIT_LSB;
}

static int add_base_and_hole(struct addr_ctx *ctx)
{
	ctx->ret_addr += get_base_addr(ctx);

	if (add_legacy_hole(ctx))
		return -EINVAL;

	return 0;
}

static bool late_hole_remove(struct addr_ctx *ctx)
{
	if (df_cfg.rev == DF3p5)
		return true;

	if (df_cfg.rev == DF4)
		return true;

	if (ctx->map.intlv_mode == DF3_6CHAN)
		return true;

	return false;
}

unsigned long norm_to_sys_addr(u8 socket_id, u8 die_id, u8 coh_st_inst_id, unsigned long addr)
{
	struct addr_ctx ctx;

	if (df_cfg.rev == UNKNOWN)
		return -EINVAL;

	memset(&ctx, 0, sizeof(ctx));

	/* Start from the normalized address */
	ctx.ret_addr = addr;
	ctx.inst_id = coh_st_inst_id;

	ctx.inputs.norm_addr = addr;
	ctx.inputs.socket_id = socket_id;
	ctx.inputs.die_id = die_id;
	ctx.inputs.coh_st_inst_id = coh_st_inst_id;

	if (determine_node_id(&ctx, socket_id, die_id))
		return -EINVAL;

	if (get_address_map(&ctx))
		return -EINVAL;

	if (denormalize_address(&ctx))
		return -EINVAL;

	if (!late_hole_remove(&ctx) && add_base_and_hole(&ctx))
		return -EINVAL;

	if (dehash_address(&ctx))
		return -EINVAL;

	if (late_hole_remove(&ctx) && add_base_and_hole(&ctx))
		return -EINVAL;

	if (addr_over_limit(&ctx))
		return -EINVAL;

	return ctx.ret_addr;
}

static void check_for_legacy_df_access(void)
{
	/*
	 * All Zen-based systems before Family 19h use the legacy
	 * DF Indirect Access (FICAA/FICAD) offsets.
	 */
	if (boot_cpu_data.x86 < 0x19) {
		df_cfg.flags.legacy_ficaa = true;
		return;
	}

	/* All systems after Family 19h use the current offsets. */
	if (boot_cpu_data.x86 > 0x19)
		return;

	/* Some Family 19h systems use the legacy offsets. */
	switch (boot_cpu_data.x86_model) {
	case 0x00 ... 0x0f:
	case 0x20 ... 0x5f:
	       df_cfg.flags.legacy_ficaa = true;
	}
}

/*
 * This library provides functionality for AMD-based systems with a Data Fabric.
 * The set of systems with a Data Fabric is equivalent to the set of Zen-based systems
 * and the set of systems with the Scalable MCA feature at this time. However, these
 * are technically independent things.
 *
 * It's possible to match on the PCI IDs of the Data Fabric devices, but this will be
 * an ever expanding list. Instead, match on the SMCA and Zen features to cover all
 * relevant systems.
 */
static const struct x86_cpu_id amd_atl_cpuids[] = {
	X86_MATCH_FEATURE(X86_FEATURE_SMCA, NULL),
	X86_MATCH_FEATURE(X86_FEATURE_ZEN, NULL),
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd_atl_cpuids);

static int __init amd_atl_init(void)
{
	if (!x86_match_cpu(amd_atl_cpuids))
		return -ENODEV;

	if (!amd_nb_num())
		return -ENODEV;

	check_for_legacy_df_access();

	if (get_df_system_info())
		return -ENODEV;

	/* Increment this module's recount so that it can't be easily unloaded. */
	__module_get(THIS_MODULE);
	amd_atl_register_decoder(convert_umc_mca_addr_to_sys_addr);

	pr_info("AMD Address Translation Library initialized");
	return 0;
}

/*
 * Exit function is only needed for testing and debug. Module unload must be
 * forced to override refcount check.
 */
static void __exit amd_atl_exit(void)
{
	amd_atl_unregister_decoder();
}

module_init(amd_atl_init);
module_exit(amd_atl_exit);

MODULE_LICENSE("GPL");