summaryrefslogtreecommitdiff
path: root/drivers/powercap/dtpm_cpu.c
blob: 51c366938acd3852b37a034b07accab84819c1df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2020 Linaro Limited
 *
 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
 *
 * The DTPM CPU is based on the energy model. It hooks the CPU in the
 * DTPM tree which in turns update the power number by propagating the
 * power number from the CPU energy model information to the parents.
 *
 * The association between the power and the performance state, allows
 * to set the power of the CPU at the OPP granularity.
 *
 * The CPU hotplug is supported and the power numbers will be updated
 * if a CPU is hot plugged / unplugged.
 */
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/cpuhotplug.h>
#include <linux/dtpm.h>
#include <linux/energy_model.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/units.h>

static struct dtpm *__parent;

static DEFINE_PER_CPU(struct dtpm *, dtpm_per_cpu);

struct dtpm_cpu {
	struct freq_qos_request qos_req;
	int cpu;
};

/*
 * When a new CPU is inserted at hotplug or boot time, add the power
 * contribution and update the dtpm tree.
 */
static int power_add(struct dtpm *dtpm, struct em_perf_domain *em)
{
	u64 power_min, power_max;

	power_min = em->table[0].power;
	power_min *= MICROWATT_PER_MILLIWATT;
	power_min += dtpm->power_min;

	power_max = em->table[em->nr_perf_states - 1].power;
	power_max *= MICROWATT_PER_MILLIWATT;
	power_max += dtpm->power_max;

	return dtpm_update_power(dtpm, power_min, power_max);
}

/*
 * When a CPU is unplugged, remove its power contribution from the
 * dtpm tree.
 */
static int power_sub(struct dtpm *dtpm, struct em_perf_domain *em)
{
	u64 power_min, power_max;

	power_min = em->table[0].power;
	power_min *= MICROWATT_PER_MILLIWATT;
	power_min = dtpm->power_min - power_min;

	power_max = em->table[em->nr_perf_states - 1].power;
	power_max *= MICROWATT_PER_MILLIWATT;
	power_max = dtpm->power_max - power_max;

	return dtpm_update_power(dtpm, power_min, power_max);
}

static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
{
	struct dtpm_cpu *dtpm_cpu = dtpm->private;
	struct em_perf_domain *pd;
	struct cpumask cpus;
	unsigned long freq;
	u64 power;
	int i, nr_cpus;

	pd = em_cpu_get(dtpm_cpu->cpu);

	cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));

	nr_cpus = cpumask_weight(&cpus);

	for (i = 0; i < pd->nr_perf_states; i++) {

		power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus;

		if (power > power_limit)
			break;
	}

	freq = pd->table[i - 1].frequency;

	freq_qos_update_request(&dtpm_cpu->qos_req, freq);

	power_limit = pd->table[i - 1].power *
		MICROWATT_PER_MILLIWATT * nr_cpus;

	return power_limit;
}

static u64 get_pd_power_uw(struct dtpm *dtpm)
{
	struct dtpm_cpu *dtpm_cpu = dtpm->private;
	struct em_perf_domain *pd;
	struct cpumask cpus;
	unsigned long freq;
	int i, nr_cpus;

	pd = em_cpu_get(dtpm_cpu->cpu);
	freq = cpufreq_quick_get(dtpm_cpu->cpu);
	cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
	nr_cpus = cpumask_weight(&cpus);

	for (i = 0; i < pd->nr_perf_states; i++) {

		if (pd->table[i].frequency < freq)
			continue;

		return pd->table[i].power *
			MICROWATT_PER_MILLIWATT * nr_cpus;
	}

	return 0;
}

static void pd_release(struct dtpm *dtpm)
{
	struct dtpm_cpu *dtpm_cpu = dtpm->private;

	if (freq_qos_request_active(&dtpm_cpu->qos_req))
		freq_qos_remove_request(&dtpm_cpu->qos_req);

	kfree(dtpm_cpu);
}

static struct dtpm_ops dtpm_ops = {
	.set_power_uw = set_pd_power_limit,
	.get_power_uw = get_pd_power_uw,
	.release = pd_release,
};

static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
{
	struct cpufreq_policy *policy;
	struct em_perf_domain *pd;
	struct dtpm *dtpm;

	policy = cpufreq_cpu_get(cpu);

	if (!policy)
		return 0;

	pd = em_cpu_get(cpu);
	if (!pd)
		return -EINVAL;

	dtpm = per_cpu(dtpm_per_cpu, cpu);

	power_sub(dtpm, pd);

	if (cpumask_weight(policy->cpus) != 1)
		return 0;

	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(dtpm_per_cpu, cpu) = NULL;

	dtpm_unregister(dtpm);

	return 0;
}

static int cpuhp_dtpm_cpu_online(unsigned int cpu)
{
	struct dtpm *dtpm;
	struct dtpm_cpu *dtpm_cpu;
	struct cpufreq_policy *policy;
	struct em_perf_domain *pd;
	char name[CPUFREQ_NAME_LEN];
	int ret = -ENOMEM;

	policy = cpufreq_cpu_get(cpu);

	if (!policy)
		return 0;

	pd = em_cpu_get(cpu);
	if (!pd)
		return -EINVAL;

	dtpm = per_cpu(dtpm_per_cpu, cpu);
	if (dtpm)
		return power_add(dtpm, pd);

	dtpm = dtpm_alloc(&dtpm_ops);
	if (!dtpm)
		return -EINVAL;

	dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
	if (!dtpm_cpu)
		goto out_kfree_dtpm;

	dtpm->private = dtpm_cpu;
	dtpm_cpu->cpu = cpu;

	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(dtpm_per_cpu, cpu) = dtpm;

	sprintf(name, "cpu%d", dtpm_cpu->cpu);

	ret = dtpm_register(name, dtpm, __parent);
	if (ret)
		goto out_kfree_dtpm_cpu;

	ret = power_add(dtpm, pd);
	if (ret)
		goto out_dtpm_unregister;

	ret = freq_qos_add_request(&policy->constraints,
				   &dtpm_cpu->qos_req, FREQ_QOS_MAX,
				   pd->table[pd->nr_perf_states - 1].frequency);
	if (ret)
		goto out_power_sub;

	return 0;

out_power_sub:
	power_sub(dtpm, pd);

out_dtpm_unregister:
	dtpm_unregister(dtpm);
	dtpm_cpu = NULL;
	dtpm = NULL;

out_kfree_dtpm_cpu:
	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(dtpm_per_cpu, cpu) = NULL;
	kfree(dtpm_cpu);

out_kfree_dtpm:
	kfree(dtpm);
	return ret;
}

int dtpm_register_cpu(struct dtpm *parent)
{
	__parent = parent;

	return cpuhp_setup_state(CPUHP_AP_DTPM_CPU_ONLINE,
				 "dtpm_cpu:online",
				 cpuhp_dtpm_cpu_online,
				 cpuhp_dtpm_cpu_offline);
}