summaryrefslogtreecommitdiff
path: root/drivers/nvme/host/hwmon.c
blob: 316f3e4ca7cc60da613e5f246f9e5a861d60e14f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// SPDX-License-Identifier: GPL-2.0
/*
 * NVM Express hardware monitoring support
 * Copyright (c) 2019, Guenter Roeck
 */

#include <linux/hwmon.h>
#include <linux/units.h>
#include <asm/unaligned.h>

#include "nvme.h"

struct nvme_hwmon_data {
	struct nvme_ctrl *ctrl;
	struct nvme_smart_log *log;
	struct mutex read_lock;
};

static int nvme_get_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
				long *temp)
{
	unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
	u32 status;
	int ret;

	if (under)
		threshold |= NVME_TEMP_THRESH_TYPE_UNDER;

	ret = nvme_get_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
				&status);
	if (ret > 0)
		return -EIO;
	if (ret < 0)
		return ret;
	*temp = kelvin_to_millicelsius(status & NVME_TEMP_THRESH_MASK);

	return 0;
}

static int nvme_set_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
				long temp)
{
	unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
	int ret;

	temp = millicelsius_to_kelvin(temp);
	threshold |= clamp_val(temp, 0, NVME_TEMP_THRESH_MASK);

	if (under)
		threshold |= NVME_TEMP_THRESH_TYPE_UNDER;

	ret = nvme_set_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
				NULL);
	if (ret > 0)
		return -EIO;

	return ret;
}

static int nvme_hwmon_get_smart_log(struct nvme_hwmon_data *data)
{
	return nvme_get_log(data->ctrl, NVME_NSID_ALL, NVME_LOG_SMART, 0,
			   NVME_CSI_NVM, data->log, sizeof(*data->log), 0);
}

static int nvme_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			   u32 attr, int channel, long *val)
{
	struct nvme_hwmon_data *data = dev_get_drvdata(dev);
	struct nvme_smart_log *log = data->log;
	int temp;
	int err;

	/*
	 * First handle attributes which don't require us to read
	 * the smart log.
	 */
	switch (attr) {
	case hwmon_temp_max:
		return nvme_get_temp_thresh(data->ctrl, channel, false, val);
	case hwmon_temp_min:
		return nvme_get_temp_thresh(data->ctrl, channel, true, val);
	case hwmon_temp_crit:
		*val = kelvin_to_millicelsius(data->ctrl->cctemp);
		return 0;
	default:
		break;
	}

	mutex_lock(&data->read_lock);
	err = nvme_hwmon_get_smart_log(data);
	if (err)
		goto unlock;

	switch (attr) {
	case hwmon_temp_input:
		if (!channel)
			temp = get_unaligned_le16(log->temperature);
		else
			temp = le16_to_cpu(log->temp_sensor[channel - 1]);
		*val = kelvin_to_millicelsius(temp);
		break;
	case hwmon_temp_alarm:
		*val = !!(log->critical_warning & NVME_SMART_CRIT_TEMPERATURE);
		break;
	default:
		err = -EOPNOTSUPP;
		break;
	}
unlock:
	mutex_unlock(&data->read_lock);
	return err;
}

static int nvme_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
			    u32 attr, int channel, long val)
{
	struct nvme_hwmon_data *data = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_temp_max:
		return nvme_set_temp_thresh(data->ctrl, channel, false, val);
	case hwmon_temp_min:
		return nvme_set_temp_thresh(data->ctrl, channel, true, val);
	default:
		break;
	}

	return -EOPNOTSUPP;
}

static const char * const nvme_hwmon_sensor_names[] = {
	"Composite",
	"Sensor 1",
	"Sensor 2",
	"Sensor 3",
	"Sensor 4",
	"Sensor 5",
	"Sensor 6",
	"Sensor 7",
	"Sensor 8",
};

static int nvme_hwmon_read_string(struct device *dev,
				  enum hwmon_sensor_types type, u32 attr,
				  int channel, const char **str)
{
	*str = nvme_hwmon_sensor_names[channel];
	return 0;
}

static umode_t nvme_hwmon_is_visible(const void *_data,
				     enum hwmon_sensor_types type,
				     u32 attr, int channel)
{
	const struct nvme_hwmon_data *data = _data;

	switch (attr) {
	case hwmon_temp_crit:
		if (!channel && data->ctrl->cctemp)
			return 0444;
		break;
	case hwmon_temp_max:
	case hwmon_temp_min:
		if ((!channel && data->ctrl->wctemp) ||
		    (channel && data->log->temp_sensor[channel - 1] &&
		     !(data->ctrl->quirks &
		       NVME_QUIRK_NO_SECONDARY_TEMP_THRESH))) {
			if (data->ctrl->quirks &
			    NVME_QUIRK_NO_TEMP_THRESH_CHANGE)
				return 0444;
			return 0644;
		}
		break;
	case hwmon_temp_alarm:
		if (!channel)
			return 0444;
		break;
	case hwmon_temp_input:
	case hwmon_temp_label:
		if (!channel || data->log->temp_sensor[channel - 1])
			return 0444;
		break;
	default:
		break;
	}
	return 0;
}

static const struct hwmon_channel_info *nvme_hwmon_info[] = {
	HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
	HWMON_CHANNEL_INFO(temp,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_CRIT | HWMON_T_LABEL | HWMON_T_ALARM,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL,
			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
				HWMON_T_LABEL),
	NULL
};

static const struct hwmon_ops nvme_hwmon_ops = {
	.is_visible	= nvme_hwmon_is_visible,
	.read		= nvme_hwmon_read,
	.read_string	= nvme_hwmon_read_string,
	.write		= nvme_hwmon_write,
};

static const struct hwmon_chip_info nvme_hwmon_chip_info = {
	.ops	= &nvme_hwmon_ops,
	.info	= nvme_hwmon_info,
};

int nvme_hwmon_init(struct nvme_ctrl *ctrl)
{
	struct device *dev = ctrl->device;
	struct nvme_hwmon_data *data;
	struct device *hwmon;
	int err;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->log = kzalloc(sizeof(*data->log), GFP_KERNEL);
	if (!data->log) {
		err = -ENOMEM;
		goto err_free_data;
	}

	data->ctrl = ctrl;
	mutex_init(&data->read_lock);

	err = nvme_hwmon_get_smart_log(data);
	if (err) {
		dev_warn(dev, "Failed to read smart log (error %d)\n", err);
		goto err_free_log;
	}

	hwmon = hwmon_device_register_with_info(dev, "nvme",
						data, &nvme_hwmon_chip_info,
						NULL);
	if (IS_ERR(hwmon)) {
		dev_warn(dev, "Failed to instantiate hwmon device\n");
		err = PTR_ERR(hwmon);
		goto err_free_log;
	}
	ctrl->hwmon_device = hwmon;
	return 0;

err_free_log:
	kfree(data->log);
err_free_data:
	kfree(data);
	return err;
}

void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
{
	if (ctrl->hwmon_device) {
		struct nvme_hwmon_data *data =
			dev_get_drvdata(ctrl->hwmon_device);

		hwmon_device_unregister(ctrl->hwmon_device);
		ctrl->hwmon_device = NULL;
		kfree(data->log);
		kfree(data);
	}
}