1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2023 Intel Corporation */
#include <net/libeth/rx.h>
#include "idpf.h"
#include "idpf_virtchnl.h"
static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
unsigned int count);
/**
* idpf_buf_lifo_push - push a buffer pointer onto stack
* @stack: pointer to stack struct
* @buf: pointer to buf to push
*
* Returns 0 on success, negative on failure
**/
static int idpf_buf_lifo_push(struct idpf_buf_lifo *stack,
struct idpf_tx_stash *buf)
{
if (unlikely(stack->top == stack->size))
return -ENOSPC;
stack->bufs[stack->top++] = buf;
return 0;
}
/**
* idpf_buf_lifo_pop - pop a buffer pointer from stack
* @stack: pointer to stack struct
**/
static struct idpf_tx_stash *idpf_buf_lifo_pop(struct idpf_buf_lifo *stack)
{
if (unlikely(!stack->top))
return NULL;
return stack->bufs[--stack->top];
}
/**
* idpf_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: TX queue
*/
void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct idpf_adapter *adapter = idpf_netdev_to_adapter(netdev);
adapter->tx_timeout_count++;
netdev_err(netdev, "Detected Tx timeout: Count %d, Queue %d\n",
adapter->tx_timeout_count, txqueue);
if (!idpf_is_reset_in_prog(adapter)) {
set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
queue_delayed_work(adapter->vc_event_wq,
&adapter->vc_event_task,
msecs_to_jiffies(10));
}
}
/**
* idpf_tx_buf_rel - Release a Tx buffer
* @tx_q: the queue that owns the buffer
* @tx_buf: the buffer to free
*/
static void idpf_tx_buf_rel(struct idpf_tx_queue *tx_q,
struct idpf_tx_buf *tx_buf)
{
if (tx_buf->skb) {
if (dma_unmap_len(tx_buf, len))
dma_unmap_single(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dev_kfree_skb_any(tx_buf->skb);
} else if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
}
tx_buf->next_to_watch = NULL;
tx_buf->skb = NULL;
tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
dma_unmap_len_set(tx_buf, len, 0);
}
/**
* idpf_tx_buf_rel_all - Free any empty Tx buffers
* @txq: queue to be cleaned
*/
static void idpf_tx_buf_rel_all(struct idpf_tx_queue *txq)
{
struct idpf_buf_lifo *buf_stack;
u16 i;
/* Buffers already cleared, nothing to do */
if (!txq->tx_buf)
return;
/* Free all the Tx buffer sk_buffs */
for (i = 0; i < txq->desc_count; i++)
idpf_tx_buf_rel(txq, &txq->tx_buf[i]);
kfree(txq->tx_buf);
txq->tx_buf = NULL;
if (!idpf_queue_has(FLOW_SCH_EN, txq))
return;
buf_stack = &txq->stash->buf_stack;
if (!buf_stack->bufs)
return;
for (i = 0; i < buf_stack->size; i++)
kfree(buf_stack->bufs[i]);
kfree(buf_stack->bufs);
buf_stack->bufs = NULL;
}
/**
* idpf_tx_desc_rel - Free Tx resources per queue
* @txq: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
static void idpf_tx_desc_rel(struct idpf_tx_queue *txq)
{
idpf_tx_buf_rel_all(txq);
if (!txq->desc_ring)
return;
dmam_free_coherent(txq->dev, txq->size, txq->desc_ring, txq->dma);
txq->desc_ring = NULL;
txq->next_to_use = 0;
txq->next_to_clean = 0;
}
/**
* idpf_compl_desc_rel - Free completion resources per queue
* @complq: completion queue
*
* Free all completion software resources.
*/
static void idpf_compl_desc_rel(struct idpf_compl_queue *complq)
{
if (!complq->comp)
return;
dma_free_coherent(complq->netdev->dev.parent, complq->size,
complq->comp, complq->dma);
complq->comp = NULL;
complq->next_to_use = 0;
complq->next_to_clean = 0;
}
/**
* idpf_tx_desc_rel_all - Free Tx Resources for All Queues
* @vport: virtual port structure
*
* Free all transmit software resources
*/
static void idpf_tx_desc_rel_all(struct idpf_vport *vport)
{
int i, j;
if (!vport->txq_grps)
return;
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
for (j = 0; j < txq_grp->num_txq; j++)
idpf_tx_desc_rel(txq_grp->txqs[j]);
if (idpf_is_queue_model_split(vport->txq_model))
idpf_compl_desc_rel(txq_grp->complq);
}
}
/**
* idpf_tx_buf_alloc_all - Allocate memory for all buffer resources
* @tx_q: queue for which the buffers are allocated
*
* Returns 0 on success, negative on failure
*/
static int idpf_tx_buf_alloc_all(struct idpf_tx_queue *tx_q)
{
struct idpf_buf_lifo *buf_stack;
int buf_size;
int i;
/* Allocate book keeping buffers only. Buffers to be supplied to HW
* are allocated by kernel network stack and received as part of skb
*/
buf_size = sizeof(struct idpf_tx_buf) * tx_q->desc_count;
tx_q->tx_buf = kzalloc(buf_size, GFP_KERNEL);
if (!tx_q->tx_buf)
return -ENOMEM;
/* Initialize tx_bufs with invalid completion tags */
for (i = 0; i < tx_q->desc_count; i++)
tx_q->tx_buf[i].compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
if (!idpf_queue_has(FLOW_SCH_EN, tx_q))
return 0;
buf_stack = &tx_q->stash->buf_stack;
/* Initialize tx buf stack for out-of-order completions if
* flow scheduling offload is enabled
*/
buf_stack->bufs = kcalloc(tx_q->desc_count, sizeof(*buf_stack->bufs),
GFP_KERNEL);
if (!buf_stack->bufs)
return -ENOMEM;
buf_stack->size = tx_q->desc_count;
buf_stack->top = tx_q->desc_count;
for (i = 0; i < tx_q->desc_count; i++) {
buf_stack->bufs[i] = kzalloc(sizeof(*buf_stack->bufs[i]),
GFP_KERNEL);
if (!buf_stack->bufs[i])
return -ENOMEM;
}
return 0;
}
/**
* idpf_tx_desc_alloc - Allocate the Tx descriptors
* @vport: vport to allocate resources for
* @tx_q: the tx ring to set up
*
* Returns 0 on success, negative on failure
*/
static int idpf_tx_desc_alloc(const struct idpf_vport *vport,
struct idpf_tx_queue *tx_q)
{
struct device *dev = tx_q->dev;
int err;
err = idpf_tx_buf_alloc_all(tx_q);
if (err)
goto err_alloc;
tx_q->size = tx_q->desc_count * sizeof(*tx_q->base_tx);
/* Allocate descriptors also round up to nearest 4K */
tx_q->size = ALIGN(tx_q->size, 4096);
tx_q->desc_ring = dmam_alloc_coherent(dev, tx_q->size, &tx_q->dma,
GFP_KERNEL);
if (!tx_q->desc_ring) {
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
tx_q->size);
err = -ENOMEM;
goto err_alloc;
}
tx_q->next_to_use = 0;
tx_q->next_to_clean = 0;
idpf_queue_set(GEN_CHK, tx_q);
return 0;
err_alloc:
idpf_tx_desc_rel(tx_q);
return err;
}
/**
* idpf_compl_desc_alloc - allocate completion descriptors
* @vport: vport to allocate resources for
* @complq: completion queue to set up
*
* Return: 0 on success, -errno on failure.
*/
static int idpf_compl_desc_alloc(const struct idpf_vport *vport,
struct idpf_compl_queue *complq)
{
complq->size = array_size(complq->desc_count, sizeof(*complq->comp));
complq->comp = dma_alloc_coherent(complq->netdev->dev.parent,
complq->size, &complq->dma,
GFP_KERNEL);
if (!complq->comp)
return -ENOMEM;
complq->next_to_use = 0;
complq->next_to_clean = 0;
idpf_queue_set(GEN_CHK, complq);
return 0;
}
/**
* idpf_tx_desc_alloc_all - allocate all queues Tx resources
* @vport: virtual port private structure
*
* Returns 0 on success, negative on failure
*/
static int idpf_tx_desc_alloc_all(struct idpf_vport *vport)
{
int err = 0;
int i, j;
/* Setup buffer queues. In single queue model buffer queues and
* completion queues will be same
*/
for (i = 0; i < vport->num_txq_grp; i++) {
for (j = 0; j < vport->txq_grps[i].num_txq; j++) {
struct idpf_tx_queue *txq = vport->txq_grps[i].txqs[j];
u8 gen_bits = 0;
u16 bufidx_mask;
err = idpf_tx_desc_alloc(vport, txq);
if (err) {
pci_err(vport->adapter->pdev,
"Allocation for Tx Queue %u failed\n",
i);
goto err_out;
}
if (!idpf_is_queue_model_split(vport->txq_model))
continue;
txq->compl_tag_cur_gen = 0;
/* Determine the number of bits in the bufid
* mask and add one to get the start of the
* generation bits
*/
bufidx_mask = txq->desc_count - 1;
while (bufidx_mask >> 1) {
txq->compl_tag_gen_s++;
bufidx_mask = bufidx_mask >> 1;
}
txq->compl_tag_gen_s++;
gen_bits = IDPF_TX_SPLITQ_COMPL_TAG_WIDTH -
txq->compl_tag_gen_s;
txq->compl_tag_gen_max = GETMAXVAL(gen_bits);
/* Set bufid mask based on location of first
* gen bit; it cannot simply be the descriptor
* ring size-1 since we can have size values
* where not all of those bits are set.
*/
txq->compl_tag_bufid_m =
GETMAXVAL(txq->compl_tag_gen_s);
}
if (!idpf_is_queue_model_split(vport->txq_model))
continue;
/* Setup completion queues */
err = idpf_compl_desc_alloc(vport, vport->txq_grps[i].complq);
if (err) {
pci_err(vport->adapter->pdev,
"Allocation for Tx Completion Queue %u failed\n",
i);
goto err_out;
}
}
err_out:
if (err)
idpf_tx_desc_rel_all(vport);
return err;
}
/**
* idpf_rx_page_rel - Release an rx buffer page
* @rx_buf: the buffer to free
*/
static void idpf_rx_page_rel(struct libeth_fqe *rx_buf)
{
if (unlikely(!rx_buf->page))
return;
page_pool_put_full_page(rx_buf->page->pp, rx_buf->page, false);
rx_buf->page = NULL;
rx_buf->offset = 0;
}
/**
* idpf_rx_hdr_buf_rel_all - Release header buffer memory
* @bufq: queue to use
*/
static void idpf_rx_hdr_buf_rel_all(struct idpf_buf_queue *bufq)
{
struct libeth_fq fq = {
.fqes = bufq->hdr_buf,
.pp = bufq->hdr_pp,
};
for (u32 i = 0; i < bufq->desc_count; i++)
idpf_rx_page_rel(&bufq->hdr_buf[i]);
libeth_rx_fq_destroy(&fq);
bufq->hdr_buf = NULL;
bufq->hdr_pp = NULL;
}
/**
* idpf_rx_buf_rel_bufq - Free all Rx buffer resources for a buffer queue
* @bufq: queue to be cleaned
*/
static void idpf_rx_buf_rel_bufq(struct idpf_buf_queue *bufq)
{
struct libeth_fq fq = {
.fqes = bufq->buf,
.pp = bufq->pp,
};
/* queue already cleared, nothing to do */
if (!bufq->buf)
return;
/* Free all the bufs allocated and given to hw on Rx queue */
for (u32 i = 0; i < bufq->desc_count; i++)
idpf_rx_page_rel(&bufq->buf[i]);
if (idpf_queue_has(HSPLIT_EN, bufq))
idpf_rx_hdr_buf_rel_all(bufq);
libeth_rx_fq_destroy(&fq);
bufq->buf = NULL;
bufq->pp = NULL;
}
/**
* idpf_rx_buf_rel_all - Free all Rx buffer resources for a receive queue
* @rxq: queue to be cleaned
*/
static void idpf_rx_buf_rel_all(struct idpf_rx_queue *rxq)
{
struct libeth_fq fq = {
.fqes = rxq->rx_buf,
.pp = rxq->pp,
};
if (!rxq->rx_buf)
return;
for (u32 i = 0; i < rxq->desc_count; i++)
idpf_rx_page_rel(&rxq->rx_buf[i]);
libeth_rx_fq_destroy(&fq);
rxq->rx_buf = NULL;
rxq->pp = NULL;
}
/**
* idpf_rx_desc_rel - Free a specific Rx q resources
* @rxq: queue to clean the resources from
* @dev: device to free DMA memory
* @model: single or split queue model
*
* Free a specific rx queue resources
*/
static void idpf_rx_desc_rel(struct idpf_rx_queue *rxq, struct device *dev,
u32 model)
{
if (!rxq)
return;
if (rxq->skb) {
dev_kfree_skb_any(rxq->skb);
rxq->skb = NULL;
}
if (!idpf_is_queue_model_split(model))
idpf_rx_buf_rel_all(rxq);
rxq->next_to_alloc = 0;
rxq->next_to_clean = 0;
rxq->next_to_use = 0;
if (!rxq->desc_ring)
return;
dmam_free_coherent(dev, rxq->size, rxq->desc_ring, rxq->dma);
rxq->desc_ring = NULL;
}
/**
* idpf_rx_desc_rel_bufq - free buffer queue resources
* @bufq: buffer queue to clean the resources from
* @dev: device to free DMA memory
*/
static void idpf_rx_desc_rel_bufq(struct idpf_buf_queue *bufq,
struct device *dev)
{
if (!bufq)
return;
idpf_rx_buf_rel_bufq(bufq);
bufq->next_to_alloc = 0;
bufq->next_to_clean = 0;
bufq->next_to_use = 0;
if (!bufq->split_buf)
return;
dma_free_coherent(dev, bufq->size, bufq->split_buf, bufq->dma);
bufq->split_buf = NULL;
}
/**
* idpf_rx_desc_rel_all - Free Rx Resources for All Queues
* @vport: virtual port structure
*
* Free all rx queues resources
*/
static void idpf_rx_desc_rel_all(struct idpf_vport *vport)
{
struct device *dev = &vport->adapter->pdev->dev;
struct idpf_rxq_group *rx_qgrp;
u16 num_rxq;
int i, j;
if (!vport->rxq_grps)
return;
for (i = 0; i < vport->num_rxq_grp; i++) {
rx_qgrp = &vport->rxq_grps[i];
if (!idpf_is_queue_model_split(vport->rxq_model)) {
for (j = 0; j < rx_qgrp->singleq.num_rxq; j++)
idpf_rx_desc_rel(rx_qgrp->singleq.rxqs[j], dev,
VIRTCHNL2_QUEUE_MODEL_SINGLE);
continue;
}
num_rxq = rx_qgrp->splitq.num_rxq_sets;
for (j = 0; j < num_rxq; j++)
idpf_rx_desc_rel(&rx_qgrp->splitq.rxq_sets[j]->rxq,
dev, VIRTCHNL2_QUEUE_MODEL_SPLIT);
if (!rx_qgrp->splitq.bufq_sets)
continue;
for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
struct idpf_bufq_set *bufq_set =
&rx_qgrp->splitq.bufq_sets[j];
idpf_rx_desc_rel_bufq(&bufq_set->bufq, dev);
}
}
}
/**
* idpf_rx_buf_hw_update - Store the new tail and head values
* @bufq: queue to bump
* @val: new head index
*/
static void idpf_rx_buf_hw_update(struct idpf_buf_queue *bufq, u32 val)
{
bufq->next_to_use = val;
if (unlikely(!bufq->tail))
return;
/* writel has an implicit memory barrier */
writel(val, bufq->tail);
}
/**
* idpf_rx_hdr_buf_alloc_all - Allocate memory for header buffers
* @bufq: ring to use
*
* Returns 0 on success, negative on failure.
*/
static int idpf_rx_hdr_buf_alloc_all(struct idpf_buf_queue *bufq)
{
struct libeth_fq fq = {
.count = bufq->desc_count,
.type = LIBETH_FQE_HDR,
.nid = idpf_q_vector_to_mem(bufq->q_vector),
};
int ret;
ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
if (ret)
return ret;
bufq->hdr_pp = fq.pp;
bufq->hdr_buf = fq.fqes;
bufq->hdr_truesize = fq.truesize;
bufq->rx_hbuf_size = fq.buf_len;
return 0;
}
/**
* idpf_rx_post_buf_refill - Post buffer id to refill queue
* @refillq: refill queue to post to
* @buf_id: buffer id to post
*/
static void idpf_rx_post_buf_refill(struct idpf_sw_queue *refillq, u16 buf_id)
{
u32 nta = refillq->next_to_use;
/* store the buffer ID and the SW maintained GEN bit to the refillq */
refillq->ring[nta] =
FIELD_PREP(IDPF_RX_BI_BUFID_M, buf_id) |
FIELD_PREP(IDPF_RX_BI_GEN_M,
idpf_queue_has(GEN_CHK, refillq));
if (unlikely(++nta == refillq->desc_count)) {
nta = 0;
idpf_queue_change(GEN_CHK, refillq);
}
refillq->next_to_use = nta;
}
/**
* idpf_rx_post_buf_desc - Post buffer to bufq descriptor ring
* @bufq: buffer queue to post to
* @buf_id: buffer id to post
*
* Returns false if buffer could not be allocated, true otherwise.
*/
static bool idpf_rx_post_buf_desc(struct idpf_buf_queue *bufq, u16 buf_id)
{
struct virtchnl2_splitq_rx_buf_desc *splitq_rx_desc = NULL;
struct libeth_fq_fp fq = {
.count = bufq->desc_count,
};
u16 nta = bufq->next_to_alloc;
dma_addr_t addr;
splitq_rx_desc = &bufq->split_buf[nta];
if (idpf_queue_has(HSPLIT_EN, bufq)) {
fq.pp = bufq->hdr_pp;
fq.fqes = bufq->hdr_buf;
fq.truesize = bufq->hdr_truesize;
addr = libeth_rx_alloc(&fq, buf_id);
if (addr == DMA_MAPPING_ERROR)
return false;
splitq_rx_desc->hdr_addr = cpu_to_le64(addr);
}
fq.pp = bufq->pp;
fq.fqes = bufq->buf;
fq.truesize = bufq->truesize;
addr = libeth_rx_alloc(&fq, buf_id);
if (addr == DMA_MAPPING_ERROR)
return false;
splitq_rx_desc->pkt_addr = cpu_to_le64(addr);
splitq_rx_desc->qword0.buf_id = cpu_to_le16(buf_id);
nta++;
if (unlikely(nta == bufq->desc_count))
nta = 0;
bufq->next_to_alloc = nta;
return true;
}
/**
* idpf_rx_post_init_bufs - Post initial buffers to bufq
* @bufq: buffer queue to post working set to
* @working_set: number of buffers to put in working set
*
* Returns true if @working_set bufs were posted successfully, false otherwise.
*/
static bool idpf_rx_post_init_bufs(struct idpf_buf_queue *bufq,
u16 working_set)
{
int i;
for (i = 0; i < working_set; i++) {
if (!idpf_rx_post_buf_desc(bufq, i))
return false;
}
idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq->next_to_alloc,
IDPF_RX_BUF_STRIDE));
return true;
}
/**
* idpf_rx_buf_alloc_singleq - Allocate memory for all buffer resources
* @rxq: queue for which the buffers are allocated
*
* Return: 0 on success, -ENOMEM on failure.
*/
static int idpf_rx_buf_alloc_singleq(struct idpf_rx_queue *rxq)
{
if (idpf_rx_singleq_buf_hw_alloc_all(rxq, rxq->desc_count - 1))
goto err;
return 0;
err:
idpf_rx_buf_rel_all(rxq);
return -ENOMEM;
}
/**
* idpf_rx_bufs_init_singleq - Initialize page pool and allocate Rx bufs
* @rxq: buffer queue to create page pool for
*
* Return: 0 on success, -errno on failure.
*/
static int idpf_rx_bufs_init_singleq(struct idpf_rx_queue *rxq)
{
struct libeth_fq fq = {
.count = rxq->desc_count,
.type = LIBETH_FQE_MTU,
.nid = idpf_q_vector_to_mem(rxq->q_vector),
};
int ret;
ret = libeth_rx_fq_create(&fq, &rxq->q_vector->napi);
if (ret)
return ret;
rxq->pp = fq.pp;
rxq->rx_buf = fq.fqes;
rxq->truesize = fq.truesize;
rxq->rx_buf_size = fq.buf_len;
return idpf_rx_buf_alloc_singleq(rxq);
}
/**
* idpf_rx_buf_alloc_all - Allocate memory for all buffer resources
* @rxbufq: queue for which the buffers are allocated
*
* Returns 0 on success, negative on failure
*/
static int idpf_rx_buf_alloc_all(struct idpf_buf_queue *rxbufq)
{
int err = 0;
if (idpf_queue_has(HSPLIT_EN, rxbufq)) {
err = idpf_rx_hdr_buf_alloc_all(rxbufq);
if (err)
goto rx_buf_alloc_all_out;
}
/* Allocate buffers to be given to HW. */
if (!idpf_rx_post_init_bufs(rxbufq, IDPF_RX_BUFQ_WORKING_SET(rxbufq)))
err = -ENOMEM;
rx_buf_alloc_all_out:
if (err)
idpf_rx_buf_rel_bufq(rxbufq);
return err;
}
/**
* idpf_rx_bufs_init - Initialize page pool, allocate rx bufs, and post to HW
* @bufq: buffer queue to create page pool for
* @type: type of Rx buffers to allocate
*
* Returns 0 on success, negative on failure
*/
static int idpf_rx_bufs_init(struct idpf_buf_queue *bufq,
enum libeth_fqe_type type)
{
struct libeth_fq fq = {
.truesize = bufq->truesize,
.count = bufq->desc_count,
.type = type,
.hsplit = idpf_queue_has(HSPLIT_EN, bufq),
.nid = idpf_q_vector_to_mem(bufq->q_vector),
};
int ret;
ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
if (ret)
return ret;
bufq->pp = fq.pp;
bufq->buf = fq.fqes;
bufq->truesize = fq.truesize;
bufq->rx_buf_size = fq.buf_len;
return idpf_rx_buf_alloc_all(bufq);
}
/**
* idpf_rx_bufs_init_all - Initialize all RX bufs
* @vport: virtual port struct
*
* Returns 0 on success, negative on failure
*/
int idpf_rx_bufs_init_all(struct idpf_vport *vport)
{
bool split = idpf_is_queue_model_split(vport->rxq_model);
int i, j, err;
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u32 truesize = 0;
/* Allocate bufs for the rxq itself in singleq */
if (!split) {
int num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++) {
struct idpf_rx_queue *q;
q = rx_qgrp->singleq.rxqs[j];
err = idpf_rx_bufs_init_singleq(q);
if (err)
return err;
}
continue;
}
/* Otherwise, allocate bufs for the buffer queues */
for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
enum libeth_fqe_type type;
struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
q->truesize = truesize;
type = truesize ? LIBETH_FQE_SHORT : LIBETH_FQE_MTU;
err = idpf_rx_bufs_init(q, type);
if (err)
return err;
truesize = q->truesize >> 1;
}
}
return 0;
}
/**
* idpf_rx_desc_alloc - Allocate queue Rx resources
* @vport: vport to allocate resources for
* @rxq: Rx queue for which the resources are setup
*
* Returns 0 on success, negative on failure
*/
static int idpf_rx_desc_alloc(const struct idpf_vport *vport,
struct idpf_rx_queue *rxq)
{
struct device *dev = &vport->adapter->pdev->dev;
rxq->size = rxq->desc_count * sizeof(union virtchnl2_rx_desc);
/* Allocate descriptors and also round up to nearest 4K */
rxq->size = ALIGN(rxq->size, 4096);
rxq->desc_ring = dmam_alloc_coherent(dev, rxq->size,
&rxq->dma, GFP_KERNEL);
if (!rxq->desc_ring) {
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
rxq->size);
return -ENOMEM;
}
rxq->next_to_alloc = 0;
rxq->next_to_clean = 0;
rxq->next_to_use = 0;
idpf_queue_set(GEN_CHK, rxq);
return 0;
}
/**
* idpf_bufq_desc_alloc - Allocate buffer queue descriptor ring
* @vport: vport to allocate resources for
* @bufq: buffer queue for which the resources are set up
*
* Return: 0 on success, -ENOMEM on failure.
*/
static int idpf_bufq_desc_alloc(const struct idpf_vport *vport,
struct idpf_buf_queue *bufq)
{
struct device *dev = &vport->adapter->pdev->dev;
bufq->size = array_size(bufq->desc_count, sizeof(*bufq->split_buf));
bufq->split_buf = dma_alloc_coherent(dev, bufq->size, &bufq->dma,
GFP_KERNEL);
if (!bufq->split_buf)
return -ENOMEM;
bufq->next_to_alloc = 0;
bufq->next_to_clean = 0;
bufq->next_to_use = 0;
idpf_queue_set(GEN_CHK, bufq);
return 0;
}
/**
* idpf_rx_desc_alloc_all - allocate all RX queues resources
* @vport: virtual port structure
*
* Returns 0 on success, negative on failure
*/
static int idpf_rx_desc_alloc_all(struct idpf_vport *vport)
{
struct idpf_rxq_group *rx_qgrp;
int i, j, err;
u16 num_rxq;
for (i = 0; i < vport->num_rxq_grp; i++) {
rx_qgrp = &vport->rxq_grps[i];
if (idpf_is_queue_model_split(vport->rxq_model))
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++) {
struct idpf_rx_queue *q;
if (idpf_is_queue_model_split(vport->rxq_model))
q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
else
q = rx_qgrp->singleq.rxqs[j];
err = idpf_rx_desc_alloc(vport, q);
if (err) {
pci_err(vport->adapter->pdev,
"Memory allocation for Rx Queue %u failed\n",
i);
goto err_out;
}
}
if (!idpf_is_queue_model_split(vport->rxq_model))
continue;
for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
err = idpf_bufq_desc_alloc(vport, q);
if (err) {
pci_err(vport->adapter->pdev,
"Memory allocation for Rx Buffer Queue %u failed\n",
i);
goto err_out;
}
}
}
return 0;
err_out:
idpf_rx_desc_rel_all(vport);
return err;
}
/**
* idpf_txq_group_rel - Release all resources for txq groups
* @vport: vport to release txq groups on
*/
static void idpf_txq_group_rel(struct idpf_vport *vport)
{
bool split, flow_sch_en;
int i, j;
if (!vport->txq_grps)
return;
split = idpf_is_queue_model_split(vport->txq_model);
flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
VIRTCHNL2_CAP_SPLITQ_QSCHED);
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
for (j = 0; j < txq_grp->num_txq; j++) {
kfree(txq_grp->txqs[j]);
txq_grp->txqs[j] = NULL;
}
if (!split)
continue;
kfree(txq_grp->complq);
txq_grp->complq = NULL;
if (flow_sch_en)
kfree(txq_grp->stashes);
}
kfree(vport->txq_grps);
vport->txq_grps = NULL;
}
/**
* idpf_rxq_sw_queue_rel - Release software queue resources
* @rx_qgrp: rx queue group with software queues
*/
static void idpf_rxq_sw_queue_rel(struct idpf_rxq_group *rx_qgrp)
{
int i, j;
for (i = 0; i < rx_qgrp->vport->num_bufqs_per_qgrp; i++) {
struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[i];
for (j = 0; j < bufq_set->num_refillqs; j++) {
kfree(bufq_set->refillqs[j].ring);
bufq_set->refillqs[j].ring = NULL;
}
kfree(bufq_set->refillqs);
bufq_set->refillqs = NULL;
}
}
/**
* idpf_rxq_group_rel - Release all resources for rxq groups
* @vport: vport to release rxq groups on
*/
static void idpf_rxq_group_rel(struct idpf_vport *vport)
{
int i;
if (!vport->rxq_grps)
return;
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u16 num_rxq;
int j;
if (idpf_is_queue_model_split(vport->rxq_model)) {
num_rxq = rx_qgrp->splitq.num_rxq_sets;
for (j = 0; j < num_rxq; j++) {
kfree(rx_qgrp->splitq.rxq_sets[j]);
rx_qgrp->splitq.rxq_sets[j] = NULL;
}
idpf_rxq_sw_queue_rel(rx_qgrp);
kfree(rx_qgrp->splitq.bufq_sets);
rx_qgrp->splitq.bufq_sets = NULL;
} else {
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++) {
kfree(rx_qgrp->singleq.rxqs[j]);
rx_qgrp->singleq.rxqs[j] = NULL;
}
}
}
kfree(vport->rxq_grps);
vport->rxq_grps = NULL;
}
/**
* idpf_vport_queue_grp_rel_all - Release all queue groups
* @vport: vport to release queue groups for
*/
static void idpf_vport_queue_grp_rel_all(struct idpf_vport *vport)
{
idpf_txq_group_rel(vport);
idpf_rxq_group_rel(vport);
}
/**
* idpf_vport_queues_rel - Free memory for all queues
* @vport: virtual port
*
* Free the memory allocated for queues associated to a vport
*/
void idpf_vport_queues_rel(struct idpf_vport *vport)
{
idpf_tx_desc_rel_all(vport);
idpf_rx_desc_rel_all(vport);
idpf_vport_queue_grp_rel_all(vport);
kfree(vport->txqs);
vport->txqs = NULL;
}
/**
* idpf_vport_init_fast_path_txqs - Initialize fast path txq array
* @vport: vport to init txqs on
*
* We get a queue index from skb->queue_mapping and we need a fast way to
* dereference the queue from queue groups. This allows us to quickly pull a
* txq based on a queue index.
*
* Returns 0 on success, negative on failure
*/
static int idpf_vport_init_fast_path_txqs(struct idpf_vport *vport)
{
int i, j, k = 0;
vport->txqs = kcalloc(vport->num_txq, sizeof(*vport->txqs),
GFP_KERNEL);
if (!vport->txqs)
return -ENOMEM;
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_grp = &vport->txq_grps[i];
for (j = 0; j < tx_grp->num_txq; j++, k++) {
vport->txqs[k] = tx_grp->txqs[j];
vport->txqs[k]->idx = k;
}
}
return 0;
}
/**
* idpf_vport_init_num_qs - Initialize number of queues
* @vport: vport to initialize queues
* @vport_msg: data to be filled into vport
*/
void idpf_vport_init_num_qs(struct idpf_vport *vport,
struct virtchnl2_create_vport *vport_msg)
{
struct idpf_vport_user_config_data *config_data;
u16 idx = vport->idx;
config_data = &vport->adapter->vport_config[idx]->user_config;
vport->num_txq = le16_to_cpu(vport_msg->num_tx_q);
vport->num_rxq = le16_to_cpu(vport_msg->num_rx_q);
/* number of txqs and rxqs in config data will be zeros only in the
* driver load path and we dont update them there after
*/
if (!config_data->num_req_tx_qs && !config_data->num_req_rx_qs) {
config_data->num_req_tx_qs = le16_to_cpu(vport_msg->num_tx_q);
config_data->num_req_rx_qs = le16_to_cpu(vport_msg->num_rx_q);
}
if (idpf_is_queue_model_split(vport->txq_model))
vport->num_complq = le16_to_cpu(vport_msg->num_tx_complq);
if (idpf_is_queue_model_split(vport->rxq_model))
vport->num_bufq = le16_to_cpu(vport_msg->num_rx_bufq);
/* Adjust number of buffer queues per Rx queue group. */
if (!idpf_is_queue_model_split(vport->rxq_model)) {
vport->num_bufqs_per_qgrp = 0;
return;
}
vport->num_bufqs_per_qgrp = IDPF_MAX_BUFQS_PER_RXQ_GRP;
}
/**
* idpf_vport_calc_num_q_desc - Calculate number of queue groups
* @vport: vport to calculate q groups for
*/
void idpf_vport_calc_num_q_desc(struct idpf_vport *vport)
{
struct idpf_vport_user_config_data *config_data;
int num_bufqs = vport->num_bufqs_per_qgrp;
u32 num_req_txq_desc, num_req_rxq_desc;
u16 idx = vport->idx;
int i;
config_data = &vport->adapter->vport_config[idx]->user_config;
num_req_txq_desc = config_data->num_req_txq_desc;
num_req_rxq_desc = config_data->num_req_rxq_desc;
vport->complq_desc_count = 0;
if (num_req_txq_desc) {
vport->txq_desc_count = num_req_txq_desc;
if (idpf_is_queue_model_split(vport->txq_model)) {
vport->complq_desc_count = num_req_txq_desc;
if (vport->complq_desc_count < IDPF_MIN_TXQ_COMPLQ_DESC)
vport->complq_desc_count =
IDPF_MIN_TXQ_COMPLQ_DESC;
}
} else {
vport->txq_desc_count = IDPF_DFLT_TX_Q_DESC_COUNT;
if (idpf_is_queue_model_split(vport->txq_model))
vport->complq_desc_count =
IDPF_DFLT_TX_COMPLQ_DESC_COUNT;
}
if (num_req_rxq_desc)
vport->rxq_desc_count = num_req_rxq_desc;
else
vport->rxq_desc_count = IDPF_DFLT_RX_Q_DESC_COUNT;
for (i = 0; i < num_bufqs; i++) {
if (!vport->bufq_desc_count[i])
vport->bufq_desc_count[i] =
IDPF_RX_BUFQ_DESC_COUNT(vport->rxq_desc_count,
num_bufqs);
}
}
/**
* idpf_vport_calc_total_qs - Calculate total number of queues
* @adapter: private data struct
* @vport_idx: vport idx to retrieve vport pointer
* @vport_msg: message to fill with data
* @max_q: vport max queue info
*
* Return 0 on success, error value on failure.
*/
int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_idx,
struct virtchnl2_create_vport *vport_msg,
struct idpf_vport_max_q *max_q)
{
int dflt_splitq_txq_grps = 0, dflt_singleq_txqs = 0;
int dflt_splitq_rxq_grps = 0, dflt_singleq_rxqs = 0;
u16 num_req_tx_qs = 0, num_req_rx_qs = 0;
struct idpf_vport_config *vport_config;
u16 num_txq_grps, num_rxq_grps;
u32 num_qs;
vport_config = adapter->vport_config[vport_idx];
if (vport_config) {
num_req_tx_qs = vport_config->user_config.num_req_tx_qs;
num_req_rx_qs = vport_config->user_config.num_req_rx_qs;
} else {
int num_cpus;
/* Restrict num of queues to cpus online as a default
* configuration to give best performance. User can always
* override to a max number of queues via ethtool.
*/
num_cpus = num_online_cpus();
dflt_splitq_txq_grps = min_t(int, max_q->max_txq, num_cpus);
dflt_singleq_txqs = min_t(int, max_q->max_txq, num_cpus);
dflt_splitq_rxq_grps = min_t(int, max_q->max_rxq, num_cpus);
dflt_singleq_rxqs = min_t(int, max_q->max_rxq, num_cpus);
}
if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->txq_model))) {
num_txq_grps = num_req_tx_qs ? num_req_tx_qs : dflt_splitq_txq_grps;
vport_msg->num_tx_complq = cpu_to_le16(num_txq_grps *
IDPF_COMPLQ_PER_GROUP);
vport_msg->num_tx_q = cpu_to_le16(num_txq_grps *
IDPF_DFLT_SPLITQ_TXQ_PER_GROUP);
} else {
num_txq_grps = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
num_qs = num_txq_grps * (num_req_tx_qs ? num_req_tx_qs :
dflt_singleq_txqs);
vport_msg->num_tx_q = cpu_to_le16(num_qs);
vport_msg->num_tx_complq = 0;
}
if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->rxq_model))) {
num_rxq_grps = num_req_rx_qs ? num_req_rx_qs : dflt_splitq_rxq_grps;
vport_msg->num_rx_bufq = cpu_to_le16(num_rxq_grps *
IDPF_MAX_BUFQS_PER_RXQ_GRP);
vport_msg->num_rx_q = cpu_to_le16(num_rxq_grps *
IDPF_DFLT_SPLITQ_RXQ_PER_GROUP);
} else {
num_rxq_grps = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
num_qs = num_rxq_grps * (num_req_rx_qs ? num_req_rx_qs :
dflt_singleq_rxqs);
vport_msg->num_rx_q = cpu_to_le16(num_qs);
vport_msg->num_rx_bufq = 0;
}
return 0;
}
/**
* idpf_vport_calc_num_q_groups - Calculate number of queue groups
* @vport: vport to calculate q groups for
*/
void idpf_vport_calc_num_q_groups(struct idpf_vport *vport)
{
if (idpf_is_queue_model_split(vport->txq_model))
vport->num_txq_grp = vport->num_txq;
else
vport->num_txq_grp = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
if (idpf_is_queue_model_split(vport->rxq_model))
vport->num_rxq_grp = vport->num_rxq;
else
vport->num_rxq_grp = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
}
/**
* idpf_vport_calc_numq_per_grp - Calculate number of queues per group
* @vport: vport to calculate queues for
* @num_txq: return parameter for number of TX queues
* @num_rxq: return parameter for number of RX queues
*/
static void idpf_vport_calc_numq_per_grp(struct idpf_vport *vport,
u16 *num_txq, u16 *num_rxq)
{
if (idpf_is_queue_model_split(vport->txq_model))
*num_txq = IDPF_DFLT_SPLITQ_TXQ_PER_GROUP;
else
*num_txq = vport->num_txq;
if (idpf_is_queue_model_split(vport->rxq_model))
*num_rxq = IDPF_DFLT_SPLITQ_RXQ_PER_GROUP;
else
*num_rxq = vport->num_rxq;
}
/**
* idpf_rxq_set_descids - set the descids supported by this queue
* @vport: virtual port data structure
* @q: rx queue for which descids are set
*
*/
static void idpf_rxq_set_descids(const struct idpf_vport *vport,
struct idpf_rx_queue *q)
{
if (idpf_is_queue_model_split(vport->rxq_model)) {
q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M;
} else {
if (vport->base_rxd)
q->rxdids = VIRTCHNL2_RXDID_1_32B_BASE_M;
else
q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M;
}
}
/**
* idpf_txq_group_alloc - Allocate all txq group resources
* @vport: vport to allocate txq groups for
* @num_txq: number of txqs to allocate for each group
*
* Returns 0 on success, negative on failure
*/
static int idpf_txq_group_alloc(struct idpf_vport *vport, u16 num_txq)
{
bool split, flow_sch_en;
int i;
vport->txq_grps = kcalloc(vport->num_txq_grp,
sizeof(*vport->txq_grps), GFP_KERNEL);
if (!vport->txq_grps)
return -ENOMEM;
split = idpf_is_queue_model_split(vport->txq_model);
flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
VIRTCHNL2_CAP_SPLITQ_QSCHED);
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
struct idpf_adapter *adapter = vport->adapter;
struct idpf_txq_stash *stashes;
int j;
tx_qgrp->vport = vport;
tx_qgrp->num_txq = num_txq;
for (j = 0; j < tx_qgrp->num_txq; j++) {
tx_qgrp->txqs[j] = kzalloc(sizeof(*tx_qgrp->txqs[j]),
GFP_KERNEL);
if (!tx_qgrp->txqs[j])
goto err_alloc;
}
if (split && flow_sch_en) {
stashes = kcalloc(num_txq, sizeof(*stashes),
GFP_KERNEL);
if (!stashes)
goto err_alloc;
tx_qgrp->stashes = stashes;
}
for (j = 0; j < tx_qgrp->num_txq; j++) {
struct idpf_tx_queue *q = tx_qgrp->txqs[j];
q->dev = &adapter->pdev->dev;
q->desc_count = vport->txq_desc_count;
q->tx_max_bufs = idpf_get_max_tx_bufs(adapter);
q->tx_min_pkt_len = idpf_get_min_tx_pkt_len(adapter);
q->netdev = vport->netdev;
q->txq_grp = tx_qgrp;
if (!split) {
q->clean_budget = vport->compln_clean_budget;
idpf_queue_assign(CRC_EN, q,
vport->crc_enable);
}
if (!flow_sch_en)
continue;
if (split) {
q->stash = &stashes[j];
hash_init(q->stash->sched_buf_hash);
}
idpf_queue_set(FLOW_SCH_EN, q);
}
if (!split)
continue;
tx_qgrp->complq = kcalloc(IDPF_COMPLQ_PER_GROUP,
sizeof(*tx_qgrp->complq),
GFP_KERNEL);
if (!tx_qgrp->complq)
goto err_alloc;
tx_qgrp->complq->desc_count = vport->complq_desc_count;
tx_qgrp->complq->txq_grp = tx_qgrp;
tx_qgrp->complq->netdev = vport->netdev;
tx_qgrp->complq->clean_budget = vport->compln_clean_budget;
if (flow_sch_en)
idpf_queue_set(FLOW_SCH_EN, tx_qgrp->complq);
}
return 0;
err_alloc:
idpf_txq_group_rel(vport);
return -ENOMEM;
}
/**
* idpf_rxq_group_alloc - Allocate all rxq group resources
* @vport: vport to allocate rxq groups for
* @num_rxq: number of rxqs to allocate for each group
*
* Returns 0 on success, negative on failure
*/
static int idpf_rxq_group_alloc(struct idpf_vport *vport, u16 num_rxq)
{
int i, k, err = 0;
bool hs;
vport->rxq_grps = kcalloc(vport->num_rxq_grp,
sizeof(struct idpf_rxq_group), GFP_KERNEL);
if (!vport->rxq_grps)
return -ENOMEM;
hs = idpf_vport_get_hsplit(vport) == ETHTOOL_TCP_DATA_SPLIT_ENABLED;
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
int j;
rx_qgrp->vport = vport;
if (!idpf_is_queue_model_split(vport->rxq_model)) {
rx_qgrp->singleq.num_rxq = num_rxq;
for (j = 0; j < num_rxq; j++) {
rx_qgrp->singleq.rxqs[j] =
kzalloc(sizeof(*rx_qgrp->singleq.rxqs[j]),
GFP_KERNEL);
if (!rx_qgrp->singleq.rxqs[j]) {
err = -ENOMEM;
goto err_alloc;
}
}
goto skip_splitq_rx_init;
}
rx_qgrp->splitq.num_rxq_sets = num_rxq;
for (j = 0; j < num_rxq; j++) {
rx_qgrp->splitq.rxq_sets[j] =
kzalloc(sizeof(struct idpf_rxq_set),
GFP_KERNEL);
if (!rx_qgrp->splitq.rxq_sets[j]) {
err = -ENOMEM;
goto err_alloc;
}
}
rx_qgrp->splitq.bufq_sets = kcalloc(vport->num_bufqs_per_qgrp,
sizeof(struct idpf_bufq_set),
GFP_KERNEL);
if (!rx_qgrp->splitq.bufq_sets) {
err = -ENOMEM;
goto err_alloc;
}
for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
struct idpf_bufq_set *bufq_set =
&rx_qgrp->splitq.bufq_sets[j];
int swq_size = sizeof(struct idpf_sw_queue);
struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
q->desc_count = vport->bufq_desc_count[j];
q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
idpf_queue_assign(HSPLIT_EN, q, hs);
bufq_set->num_refillqs = num_rxq;
bufq_set->refillqs = kcalloc(num_rxq, swq_size,
GFP_KERNEL);
if (!bufq_set->refillqs) {
err = -ENOMEM;
goto err_alloc;
}
for (k = 0; k < bufq_set->num_refillqs; k++) {
struct idpf_sw_queue *refillq =
&bufq_set->refillqs[k];
refillq->desc_count =
vport->bufq_desc_count[j];
idpf_queue_set(GEN_CHK, refillq);
idpf_queue_set(RFL_GEN_CHK, refillq);
refillq->ring = kcalloc(refillq->desc_count,
sizeof(*refillq->ring),
GFP_KERNEL);
if (!refillq->ring) {
err = -ENOMEM;
goto err_alloc;
}
}
}
skip_splitq_rx_init:
for (j = 0; j < num_rxq; j++) {
struct idpf_rx_queue *q;
if (!idpf_is_queue_model_split(vport->rxq_model)) {
q = rx_qgrp->singleq.rxqs[j];
goto setup_rxq;
}
q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
rx_qgrp->splitq.rxq_sets[j]->refillq[0] =
&rx_qgrp->splitq.bufq_sets[0].refillqs[j];
if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP)
rx_qgrp->splitq.rxq_sets[j]->refillq[1] =
&rx_qgrp->splitq.bufq_sets[1].refillqs[j];
idpf_queue_assign(HSPLIT_EN, q, hs);
setup_rxq:
q->desc_count = vport->rxq_desc_count;
q->rx_ptype_lkup = vport->rx_ptype_lkup;
q->netdev = vport->netdev;
q->bufq_sets = rx_qgrp->splitq.bufq_sets;
q->idx = (i * num_rxq) + j;
q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
q->rx_max_pkt_size = vport->netdev->mtu +
LIBETH_RX_LL_LEN;
idpf_rxq_set_descids(vport, q);
}
}
err_alloc:
if (err)
idpf_rxq_group_rel(vport);
return err;
}
/**
* idpf_vport_queue_grp_alloc_all - Allocate all queue groups/resources
* @vport: vport with qgrps to allocate
*
* Returns 0 on success, negative on failure
*/
static int idpf_vport_queue_grp_alloc_all(struct idpf_vport *vport)
{
u16 num_txq, num_rxq;
int err;
idpf_vport_calc_numq_per_grp(vport, &num_txq, &num_rxq);
err = idpf_txq_group_alloc(vport, num_txq);
if (err)
goto err_out;
err = idpf_rxq_group_alloc(vport, num_rxq);
if (err)
goto err_out;
return 0;
err_out:
idpf_vport_queue_grp_rel_all(vport);
return err;
}
/**
* idpf_vport_queues_alloc - Allocate memory for all queues
* @vport: virtual port
*
* Allocate memory for queues associated with a vport. Returns 0 on success,
* negative on failure.
*/
int idpf_vport_queues_alloc(struct idpf_vport *vport)
{
int err;
err = idpf_vport_queue_grp_alloc_all(vport);
if (err)
goto err_out;
err = idpf_tx_desc_alloc_all(vport);
if (err)
goto err_out;
err = idpf_rx_desc_alloc_all(vport);
if (err)
goto err_out;
err = idpf_vport_init_fast_path_txqs(vport);
if (err)
goto err_out;
return 0;
err_out:
idpf_vport_queues_rel(vport);
return err;
}
/**
* idpf_tx_handle_sw_marker - Handle queue marker packet
* @tx_q: tx queue to handle software marker
*/
static void idpf_tx_handle_sw_marker(struct idpf_tx_queue *tx_q)
{
struct idpf_netdev_priv *priv = netdev_priv(tx_q->netdev);
struct idpf_vport *vport = priv->vport;
int i;
idpf_queue_clear(SW_MARKER, tx_q);
/* Hardware must write marker packets to all queues associated with
* completion queues. So check if all queues received marker packets
*/
for (i = 0; i < vport->num_txq; i++)
/* If we're still waiting on any other TXQ marker completions,
* just return now since we cannot wake up the marker_wq yet.
*/
if (idpf_queue_has(SW_MARKER, vport->txqs[i]))
return;
/* Drain complete */
set_bit(IDPF_VPORT_SW_MARKER, vport->flags);
wake_up(&vport->sw_marker_wq);
}
/**
* idpf_tx_splitq_clean_hdr - Clean TX buffer resources for header portion of
* packet
* @tx_q: tx queue to clean buffer from
* @tx_buf: buffer to be cleaned
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @napi_budget: Used to determine if we are in netpoll
*/
static void idpf_tx_splitq_clean_hdr(struct idpf_tx_queue *tx_q,
struct idpf_tx_buf *tx_buf,
struct idpf_cleaned_stats *cleaned,
int napi_budget)
{
napi_consume_skb(tx_buf->skb, napi_budget);
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_single(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/* clear tx_buf data */
tx_buf->skb = NULL;
cleaned->bytes += tx_buf->bytecount;
cleaned->packets += tx_buf->gso_segs;
}
/**
* idpf_tx_clean_stashed_bufs - clean bufs that were stored for
* out of order completions
* @txq: queue to clean
* @compl_tag: completion tag of packet to clean (from completion descriptor)
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*/
static void idpf_tx_clean_stashed_bufs(struct idpf_tx_queue *txq,
u16 compl_tag,
struct idpf_cleaned_stats *cleaned,
int budget)
{
struct idpf_tx_stash *stash;
struct hlist_node *tmp_buf;
/* Buffer completion */
hash_for_each_possible_safe(txq->stash->sched_buf_hash, stash, tmp_buf,
hlist, compl_tag) {
if (unlikely(stash->buf.compl_tag != (int)compl_tag))
continue;
if (stash->buf.skb) {
idpf_tx_splitq_clean_hdr(txq, &stash->buf, cleaned,
budget);
} else if (dma_unmap_len(&stash->buf, len)) {
dma_unmap_page(txq->dev,
dma_unmap_addr(&stash->buf, dma),
dma_unmap_len(&stash->buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(&stash->buf, len, 0);
}
/* Push shadow buf back onto stack */
idpf_buf_lifo_push(&txq->stash->buf_stack, stash);
hash_del(&stash->hlist);
}
}
/**
* idpf_stash_flow_sch_buffers - store buffer parameters info to be freed at a
* later time (only relevant for flow scheduling mode)
* @txq: Tx queue to clean
* @tx_buf: buffer to store
*/
static int idpf_stash_flow_sch_buffers(struct idpf_tx_queue *txq,
struct idpf_tx_buf *tx_buf)
{
struct idpf_tx_stash *stash;
if (unlikely(!dma_unmap_addr(tx_buf, dma) &&
!dma_unmap_len(tx_buf, len)))
return 0;
stash = idpf_buf_lifo_pop(&txq->stash->buf_stack);
if (unlikely(!stash)) {
net_err_ratelimited("%s: No out-of-order TX buffers left!\n",
netdev_name(txq->netdev));
return -ENOMEM;
}
/* Store buffer params in shadow buffer */
stash->buf.skb = tx_buf->skb;
stash->buf.bytecount = tx_buf->bytecount;
stash->buf.gso_segs = tx_buf->gso_segs;
dma_unmap_addr_set(&stash->buf, dma, dma_unmap_addr(tx_buf, dma));
dma_unmap_len_set(&stash->buf, len, dma_unmap_len(tx_buf, len));
stash->buf.compl_tag = tx_buf->compl_tag;
/* Add buffer to buf_hash table to be freed later */
hash_add(txq->stash->sched_buf_hash, &stash->hlist,
stash->buf.compl_tag);
memset(tx_buf, 0, sizeof(struct idpf_tx_buf));
/* Reinitialize buf_id portion of tag */
tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
return 0;
}
#define idpf_tx_splitq_clean_bump_ntc(txq, ntc, desc, buf) \
do { \
(ntc)++; \
if (unlikely(!(ntc))) { \
ntc -= (txq)->desc_count; \
buf = (txq)->tx_buf; \
desc = &(txq)->flex_tx[0]; \
} else { \
(buf)++; \
(desc)++; \
} \
} while (0)
/**
* idpf_tx_splitq_clean - Reclaim resources from buffer queue
* @tx_q: Tx queue to clean
* @end: queue index until which it should be cleaned
* @napi_budget: Used to determine if we are in netpoll
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @descs_only: true if queue is using flow-based scheduling and should
* not clean buffers at this time
*
* Cleans the queue descriptor ring. If the queue is using queue-based
* scheduling, the buffers will be cleaned as well. If the queue is using
* flow-based scheduling, only the descriptors are cleaned at this time.
* Separate packet completion events will be reported on the completion queue,
* and the buffers will be cleaned separately. The stats are not updated from
* this function when using flow-based scheduling.
*/
static void idpf_tx_splitq_clean(struct idpf_tx_queue *tx_q, u16 end,
int napi_budget,
struct idpf_cleaned_stats *cleaned,
bool descs_only)
{
union idpf_tx_flex_desc *next_pending_desc = NULL;
union idpf_tx_flex_desc *tx_desc;
s16 ntc = tx_q->next_to_clean;
struct idpf_tx_buf *tx_buf;
tx_desc = &tx_q->flex_tx[ntc];
next_pending_desc = &tx_q->flex_tx[end];
tx_buf = &tx_q->tx_buf[ntc];
ntc -= tx_q->desc_count;
while (tx_desc != next_pending_desc) {
union idpf_tx_flex_desc *eop_desc;
/* If this entry in the ring was used as a context descriptor,
* it's corresponding entry in the buffer ring will have an
* invalid completion tag since no buffer was used. We can
* skip this descriptor since there is no buffer to clean.
*/
if (unlikely(tx_buf->compl_tag == IDPF_SPLITQ_TX_INVAL_COMPL_TAG))
goto fetch_next_txq_desc;
eop_desc = (union idpf_tx_flex_desc *)tx_buf->next_to_watch;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
if (descs_only) {
if (idpf_stash_flow_sch_buffers(tx_q, tx_buf))
goto tx_splitq_clean_out;
while (tx_desc != eop_desc) {
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
tx_desc, tx_buf);
if (dma_unmap_len(tx_buf, len)) {
if (idpf_stash_flow_sch_buffers(tx_q,
tx_buf))
goto tx_splitq_clean_out;
}
}
} else {
idpf_tx_splitq_clean_hdr(tx_q, tx_buf, cleaned,
napi_budget);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
tx_desc, tx_buf);
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
}
fetch_next_txq_desc:
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf);
}
tx_splitq_clean_out:
ntc += tx_q->desc_count;
tx_q->next_to_clean = ntc;
}
#define idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, buf) \
do { \
(buf)++; \
(ntc)++; \
if (unlikely((ntc) == (txq)->desc_count)) { \
buf = (txq)->tx_buf; \
ntc = 0; \
} \
} while (0)
/**
* idpf_tx_clean_buf_ring - clean flow scheduling TX queue buffers
* @txq: queue to clean
* @compl_tag: completion tag of packet to clean (from completion descriptor)
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*
* Cleans all buffers associated with the input completion tag either from the
* TX buffer ring or from the hash table if the buffers were previously
* stashed. Returns the byte/segment count for the cleaned packet associated
* this completion tag.
*/
static bool idpf_tx_clean_buf_ring(struct idpf_tx_queue *txq, u16 compl_tag,
struct idpf_cleaned_stats *cleaned,
int budget)
{
u16 idx = compl_tag & txq->compl_tag_bufid_m;
struct idpf_tx_buf *tx_buf = NULL;
u16 ntc = txq->next_to_clean;
u16 num_descs_cleaned = 0;
u16 orig_idx = idx;
tx_buf = &txq->tx_buf[idx];
while (tx_buf->compl_tag == (int)compl_tag) {
if (tx_buf->skb) {
idpf_tx_splitq_clean_hdr(txq, tx_buf, cleaned, budget);
} else if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(txq->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
memset(tx_buf, 0, sizeof(struct idpf_tx_buf));
tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
num_descs_cleaned++;
idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
}
/* If we didn't clean anything on the ring for this completion, there's
* nothing more to do.
*/
if (unlikely(!num_descs_cleaned))
return false;
/* Otherwise, if we did clean a packet on the ring directly, it's safe
* to assume that the descriptors starting from the original
* next_to_clean up until the previously cleaned packet can be reused.
* Therefore, we will go back in the ring and stash any buffers still
* in the ring into the hash table to be cleaned later.
*/
tx_buf = &txq->tx_buf[ntc];
while (tx_buf != &txq->tx_buf[orig_idx]) {
idpf_stash_flow_sch_buffers(txq, tx_buf);
idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, tx_buf);
}
/* Finally, update next_to_clean to reflect the work that was just done
* on the ring, if any. If the packet was only cleaned from the hash
* table, the ring will not be impacted, therefore we should not touch
* next_to_clean. The updated idx is used here
*/
txq->next_to_clean = idx;
return true;
}
/**
* idpf_tx_handle_rs_completion - clean a single packet and all of its buffers
* whether on the buffer ring or in the hash table
* @txq: Tx ring to clean
* @desc: pointer to completion queue descriptor to extract completion
* information from
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*
* Returns bytes/packets cleaned
*/
static void idpf_tx_handle_rs_completion(struct idpf_tx_queue *txq,
struct idpf_splitq_tx_compl_desc *desc,
struct idpf_cleaned_stats *cleaned,
int budget)
{
u16 compl_tag;
if (!idpf_queue_has(FLOW_SCH_EN, txq)) {
u16 head = le16_to_cpu(desc->q_head_compl_tag.q_head);
return idpf_tx_splitq_clean(txq, head, budget, cleaned, false);
}
compl_tag = le16_to_cpu(desc->q_head_compl_tag.compl_tag);
/* If we didn't clean anything on the ring, this packet must be
* in the hash table. Go clean it there.
*/
if (!idpf_tx_clean_buf_ring(txq, compl_tag, cleaned, budget))
idpf_tx_clean_stashed_bufs(txq, compl_tag, cleaned, budget);
}
/**
* idpf_tx_clean_complq - Reclaim resources on completion queue
* @complq: Tx ring to clean
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static bool idpf_tx_clean_complq(struct idpf_compl_queue *complq, int budget,
int *cleaned)
{
struct idpf_splitq_tx_compl_desc *tx_desc;
s16 ntc = complq->next_to_clean;
struct idpf_netdev_priv *np;
unsigned int complq_budget;
bool complq_ok = true;
int i;
complq_budget = complq->clean_budget;
tx_desc = &complq->comp[ntc];
ntc -= complq->desc_count;
do {
struct idpf_cleaned_stats cleaned_stats = { };
struct idpf_tx_queue *tx_q;
int rel_tx_qid;
u16 hw_head;
u8 ctype; /* completion type */
u16 gen;
/* if the descriptor isn't done, no work yet to do */
gen = le16_get_bits(tx_desc->qid_comptype_gen,
IDPF_TXD_COMPLQ_GEN_M);
if (idpf_queue_has(GEN_CHK, complq) != gen)
break;
/* Find necessary info of TX queue to clean buffers */
rel_tx_qid = le16_get_bits(tx_desc->qid_comptype_gen,
IDPF_TXD_COMPLQ_QID_M);
if (rel_tx_qid >= complq->txq_grp->num_txq ||
!complq->txq_grp->txqs[rel_tx_qid]) {
netdev_err(complq->netdev, "TxQ not found\n");
goto fetch_next_desc;
}
tx_q = complq->txq_grp->txqs[rel_tx_qid];
/* Determine completion type */
ctype = le16_get_bits(tx_desc->qid_comptype_gen,
IDPF_TXD_COMPLQ_COMPL_TYPE_M);
switch (ctype) {
case IDPF_TXD_COMPLT_RE:
hw_head = le16_to_cpu(tx_desc->q_head_compl_tag.q_head);
idpf_tx_splitq_clean(tx_q, hw_head, budget,
&cleaned_stats, true);
break;
case IDPF_TXD_COMPLT_RS:
idpf_tx_handle_rs_completion(tx_q, tx_desc,
&cleaned_stats, budget);
break;
case IDPF_TXD_COMPLT_SW_MARKER:
idpf_tx_handle_sw_marker(tx_q);
break;
default:
netdev_err(tx_q->netdev,
"Unknown TX completion type: %d\n", ctype);
goto fetch_next_desc;
}
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_add(&tx_q->q_stats.packets, cleaned_stats.packets);
u64_stats_add(&tx_q->q_stats.bytes, cleaned_stats.bytes);
tx_q->cleaned_pkts += cleaned_stats.packets;
tx_q->cleaned_bytes += cleaned_stats.bytes;
complq->num_completions++;
u64_stats_update_end(&tx_q->stats_sync);
fetch_next_desc:
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= complq->desc_count;
tx_desc = &complq->comp[0];
idpf_queue_change(GEN_CHK, complq);
}
prefetch(tx_desc);
/* update budget accounting */
complq_budget--;
} while (likely(complq_budget));
/* Store the state of the complq to be used later in deciding if a
* TXQ can be started again
*/
if (unlikely(IDPF_TX_COMPLQ_PENDING(complq->txq_grp) >
IDPF_TX_COMPLQ_OVERFLOW_THRESH(complq)))
complq_ok = false;
np = netdev_priv(complq->netdev);
for (i = 0; i < complq->txq_grp->num_txq; ++i) {
struct idpf_tx_queue *tx_q = complq->txq_grp->txqs[i];
struct netdev_queue *nq;
bool dont_wake;
/* We didn't clean anything on this queue, move along */
if (!tx_q->cleaned_bytes)
continue;
*cleaned += tx_q->cleaned_pkts;
/* Update BQL */
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
dont_wake = !complq_ok || IDPF_TX_BUF_RSV_LOW(tx_q) ||
np->state != __IDPF_VPORT_UP ||
!netif_carrier_ok(tx_q->netdev);
/* Check if the TXQ needs to and can be restarted */
__netif_txq_completed_wake(nq, tx_q->cleaned_pkts, tx_q->cleaned_bytes,
IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
dont_wake);
/* Reset cleaned stats for the next time this queue is
* cleaned
*/
tx_q->cleaned_bytes = 0;
tx_q->cleaned_pkts = 0;
}
ntc += complq->desc_count;
complq->next_to_clean = ntc;
return !!complq_budget;
}
/**
* idpf_tx_splitq_build_ctb - populate command tag and size for queue
* based scheduling descriptors
* @desc: descriptor to populate
* @params: pointer to tx params struct
* @td_cmd: command to be filled in desc
* @size: size of buffer
*/
void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size)
{
desc->q.qw1.cmd_dtype =
le16_encode_bits(params->dtype, IDPF_FLEX_TXD_QW1_DTYPE_M);
desc->q.qw1.cmd_dtype |=
le16_encode_bits(td_cmd, IDPF_FLEX_TXD_QW1_CMD_M);
desc->q.qw1.buf_size = cpu_to_le16(size);
desc->q.qw1.l2tags.l2tag1 = cpu_to_le16(params->td_tag);
}
/**
* idpf_tx_splitq_build_flow_desc - populate command tag and size for flow
* scheduling descriptors
* @desc: descriptor to populate
* @params: pointer to tx params struct
* @td_cmd: command to be filled in desc
* @size: size of buffer
*/
void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size)
{
desc->flow.qw1.cmd_dtype = (u16)params->dtype | td_cmd;
desc->flow.qw1.rxr_bufsize = cpu_to_le16((u16)size);
desc->flow.qw1.compl_tag = cpu_to_le16(params->compl_tag);
}
/**
* idpf_tx_maybe_stop_common - 1st level check for common Tx stop conditions
* @tx_q: the queue to be checked
* @size: number of descriptors we want to assure is available
*
* Returns 0 if stop is not needed
*/
int idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, unsigned int size)
{
struct netdev_queue *nq;
if (likely(IDPF_DESC_UNUSED(tx_q) >= size))
return 0;
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_inc(&tx_q->q_stats.q_busy);
u64_stats_update_end(&tx_q->stats_sync);
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
return netif_txq_maybe_stop(nq, IDPF_DESC_UNUSED(tx_q), size, size);
}
/**
* idpf_tx_maybe_stop_splitq - 1st level check for Tx splitq stop conditions
* @tx_q: the queue to be checked
* @descs_needed: number of descriptors required for this packet
*
* Returns 0 if stop is not needed
*/
static int idpf_tx_maybe_stop_splitq(struct idpf_tx_queue *tx_q,
unsigned int descs_needed)
{
if (idpf_tx_maybe_stop_common(tx_q, descs_needed))
goto splitq_stop;
/* If there are too many outstanding completions expected on the
* completion queue, stop the TX queue to give the device some time to
* catch up
*/
if (unlikely(IDPF_TX_COMPLQ_PENDING(tx_q->txq_grp) >
IDPF_TX_COMPLQ_OVERFLOW_THRESH(tx_q->txq_grp->complq)))
goto splitq_stop;
/* Also check for available book keeping buffers; if we are low, stop
* the queue to wait for more completions
*/
if (unlikely(IDPF_TX_BUF_RSV_LOW(tx_q)))
goto splitq_stop;
return 0;
splitq_stop:
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_inc(&tx_q->q_stats.q_busy);
u64_stats_update_end(&tx_q->stats_sync);
netif_stop_subqueue(tx_q->netdev, tx_q->idx);
return -EBUSY;
}
/**
* idpf_tx_buf_hw_update - Store the new tail value
* @tx_q: queue to bump
* @val: new tail index
* @xmit_more: more skb's pending
*
* The naming here is special in that 'hw' signals that this function is about
* to do a register write to update our queue status. We know this can only
* mean tail here as HW should be owning head for TX.
*/
void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
bool xmit_more)
{
struct netdev_queue *nq;
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
tx_q->next_to_use = val;
idpf_tx_maybe_stop_common(tx_q, IDPF_TX_DESC_NEEDED);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
/* notify HW of packet */
if (netif_xmit_stopped(nq) || !xmit_more)
writel(val, tx_q->tail);
}
/**
* idpf_tx_desc_count_required - calculate number of Tx descriptors needed
* @txq: queue to send buffer on
* @skb: send buffer
*
* Returns number of data descriptors needed for this skb.
*/
unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
struct sk_buff *skb)
{
const struct skb_shared_info *shinfo;
unsigned int count = 0, i;
count += !!skb_headlen(skb);
if (!skb_is_nonlinear(skb))
return count;
shinfo = skb_shinfo(skb);
for (i = 0; i < shinfo->nr_frags; i++) {
unsigned int size;
size = skb_frag_size(&shinfo->frags[i]);
/* We only need to use the idpf_size_to_txd_count check if the
* fragment is going to span multiple descriptors,
* i.e. size >= 16K.
*/
if (size >= SZ_16K)
count += idpf_size_to_txd_count(size);
else
count++;
}
if (idpf_chk_linearize(skb, txq->tx_max_bufs, count)) {
if (__skb_linearize(skb))
return 0;
count = idpf_size_to_txd_count(skb->len);
u64_stats_update_begin(&txq->stats_sync);
u64_stats_inc(&txq->q_stats.linearize);
u64_stats_update_end(&txq->stats_sync);
}
return count;
}
/**
* idpf_tx_dma_map_error - handle TX DMA map errors
* @txq: queue to send buffer on
* @skb: send buffer
* @first: original first buffer info buffer for packet
* @idx: starting point on ring to unwind
*/
void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
struct idpf_tx_buf *first, u16 idx)
{
u64_stats_update_begin(&txq->stats_sync);
u64_stats_inc(&txq->q_stats.dma_map_errs);
u64_stats_update_end(&txq->stats_sync);
/* clear dma mappings for failed tx_buf map */
for (;;) {
struct idpf_tx_buf *tx_buf;
tx_buf = &txq->tx_buf[idx];
idpf_tx_buf_rel(txq, tx_buf);
if (tx_buf == first)
break;
if (idx == 0)
idx = txq->desc_count;
idx--;
}
if (skb_is_gso(skb)) {
union idpf_tx_flex_desc *tx_desc;
/* If we failed a DMA mapping for a TSO packet, we will have
* used one additional descriptor for a context
* descriptor. Reset that here.
*/
tx_desc = &txq->flex_tx[idx];
memset(tx_desc, 0, sizeof(struct idpf_flex_tx_ctx_desc));
if (idx == 0)
idx = txq->desc_count;
idx--;
}
/* Update tail in case netdev_xmit_more was previously true */
idpf_tx_buf_hw_update(txq, idx, false);
}
/**
* idpf_tx_splitq_bump_ntu - adjust NTU and generation
* @txq: the tx ring to wrap
* @ntu: ring index to bump
*/
static unsigned int idpf_tx_splitq_bump_ntu(struct idpf_tx_queue *txq, u16 ntu)
{
ntu++;
if (ntu == txq->desc_count) {
ntu = 0;
txq->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(txq);
}
return ntu;
}
/**
* idpf_tx_splitq_map - Build the Tx flex descriptor
* @tx_q: queue to send buffer on
* @params: pointer to splitq params struct
* @first: first buffer info buffer to use
*
* This function loops over the skb data pointed to by *first
* and gets a physical address for each memory location and programs
* it and the length into the transmit flex descriptor.
*/
static void idpf_tx_splitq_map(struct idpf_tx_queue *tx_q,
struct idpf_tx_splitq_params *params,
struct idpf_tx_buf *first)
{
union idpf_tx_flex_desc *tx_desc;
unsigned int data_len, size;
struct idpf_tx_buf *tx_buf;
u16 i = tx_q->next_to_use;
struct netdev_queue *nq;
struct sk_buff *skb;
skb_frag_t *frag;
u16 td_cmd = 0;
dma_addr_t dma;
skb = first->skb;
td_cmd = params->offload.td_cmd;
data_len = skb->data_len;
size = skb_headlen(skb);
tx_desc = &tx_q->flex_tx[i];
dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
tx_buf = first;
params->compl_tag =
(tx_q->compl_tag_cur_gen << tx_q->compl_tag_gen_s) | i;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
if (dma_mapping_error(tx_q->dev, dma))
return idpf_tx_dma_map_error(tx_q, skb, first, i);
tx_buf->compl_tag = params->compl_tag;
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, size);
dma_unmap_addr_set(tx_buf, dma, dma);
/* buf_addr is in same location for both desc types */
tx_desc->q.buf_addr = cpu_to_le64(dma);
/* The stack can send us fragments that are too large for a
* single descriptor i.e. frag size > 16K-1. We will need to
* split the fragment across multiple descriptors in this case.
* To adhere to HW alignment restrictions, the fragment needs
* to be split such that the first chunk ends on a 4K boundary
* and all subsequent chunks start on a 4K boundary. We still
* want to send as much data as possible though, so our
* intermediate descriptor chunk size will be 12K.
*
* For example, consider a 32K fragment mapped to DMA addr 2600.
* ------------------------------------------------------------
* | frag_size = 32K |
* ------------------------------------------------------------
* |2600 |16384 |28672
*
* 3 descriptors will be used for this fragment. The HW expects
* the descriptors to contain the following:
* ------------------------------------------------------------
* | size = 13784 | size = 12K | size = 6696 |
* | dma = 2600 | dma = 16384 | dma = 28672 |
* ------------------------------------------------------------
*
* We need to first adjust the max_data for the first chunk so
* that it ends on a 4K boundary. By negating the value of the
* DMA address and taking only the low order bits, we're
* effectively calculating
* 4K - (DMA addr lower order bits) =
* bytes to next boundary.
*
* Add that to our base aligned max_data (12K) and we have
* our first chunk size. In the example above,
* 13784 = 12K + (4096-2600)
*
* After guaranteeing the first chunk ends on a 4K boundary, we
* will give the intermediate descriptors 12K chunks and
* whatever is left to the final descriptor. This ensures that
* all descriptors used for the remaining chunks of the
* fragment start on a 4K boundary and we use as few
* descriptors as possible.
*/
max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
idpf_tx_splitq_build_desc(tx_desc, params, td_cmd,
max_data);
tx_desc++;
i++;
if (i == tx_q->desc_count) {
tx_desc = &tx_q->flex_tx[0];
i = 0;
tx_q->compl_tag_cur_gen =
IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
}
/* Since this packet has a buffer that is going to span
* multiple descriptors, it's going to leave holes in
* to the TX buffer ring. To ensure these holes do not
* cause issues in the cleaning routines, we will clear
* them of any stale data and assign them the same
* completion tag as the current packet. Then when the
* packet is being cleaned, the cleaning routines will
* simply pass over these holes and finish cleaning the
* rest of the packet.
*/
memset(&tx_q->tx_buf[i], 0, sizeof(struct idpf_tx_buf));
tx_q->tx_buf[i].compl_tag = params->compl_tag;
/* Adjust the DMA offset and the remaining size of the
* fragment. On the first iteration of this loop,
* max_data will be >= 12K and <= 16K-1. On any
* subsequent iteration of this loop, max_data will
* always be 12K.
*/
dma += max_data;
size -= max_data;
/* Reset max_data since remaining chunks will be 12K
* at most
*/
max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
/* buf_addr is in same location for both desc types */
tx_desc->q.buf_addr = cpu_to_le64(dma);
}
if (!data_len)
break;
idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
tx_desc++;
i++;
if (i == tx_q->desc_count) {
tx_desc = &tx_q->flex_tx[0];
i = 0;
tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buf = &tx_q->tx_buf[i];
}
/* record SW timestamp if HW timestamp is not available */
skb_tx_timestamp(skb);
/* write last descriptor with RS and EOP bits */
td_cmd |= params->eop_cmd;
idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
i = idpf_tx_splitq_bump_ntu(tx_q, i);
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
tx_q->txq_grp->num_completions_pending++;
/* record bytecount for BQL */
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
netdev_tx_sent_queue(nq, first->bytecount);
idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
}
/**
* idpf_tso - computes mss and TSO length to prepare for TSO
* @skb: pointer to skb
* @off: pointer to struct that holds offload parameters
*
* Returns error (negative) if TSO was requested but cannot be applied to the
* given skb, 0 if TSO does not apply to the given skb, or 1 otherwise.
*/
int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off)
{
const struct skb_shared_info *shinfo;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u32 paylen, l4_start;
int err;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
shinfo = skb_shinfo(skb);
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else if (ip.v6->version == 6) {
ip.v6->payload_len = 0;
}
l4_start = skb_transport_offset(skb);
/* remove payload length from checksum */
paylen = skb->len - l4_start;
switch (shinfo->gso_type & ~SKB_GSO_DODGY) {
case SKB_GSO_TCPV4:
case SKB_GSO_TCPV6:
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(paylen));
off->tso_hdr_len = __tcp_hdrlen(l4.tcp) + l4_start;
break;
case SKB_GSO_UDP_L4:
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
/* compute length of segmentation header */
off->tso_hdr_len = sizeof(struct udphdr) + l4_start;
l4.udp->len = htons(shinfo->gso_size + sizeof(struct udphdr));
break;
default:
return -EINVAL;
}
off->tso_len = skb->len - off->tso_hdr_len;
off->mss = shinfo->gso_size;
off->tso_segs = shinfo->gso_segs;
off->tx_flags |= IDPF_TX_FLAGS_TSO;
return 1;
}
/**
* __idpf_chk_linearize - Check skb is not using too many buffers
* @skb: send buffer
* @max_bufs: maximum number of buffers
*
* For TSO we need to count the TSO header and segment payload separately. As
* such we need to check cases where we have max_bufs-1 fragments or more as we
* can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1
* for the segment payload in the first descriptor, and another max_buf-1 for
* the fragments.
*/
static bool __idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs)
{
const struct skb_shared_info *shinfo = skb_shinfo(skb);
const skb_frag_t *frag, *stale;
int nr_frags, sum;
/* no need to check if number of frags is less than max_bufs - 1 */
nr_frags = shinfo->nr_frags;
if (nr_frags < (max_bufs - 1))
return false;
/* We need to walk through the list and validate that each group
* of max_bufs-2 fragments totals at least gso_size.
*/
nr_frags -= max_bufs - 2;
frag = &shinfo->frags[0];
/* Initialize size to the negative value of gso_size minus 1. We use
* this as the worst case scenario in which the frag ahead of us only
* provides one byte which is why we are limited to max_bufs-2
* descriptors for a single transmit as the header and previous
* fragment are already consuming 2 descriptors.
*/
sum = 1 - shinfo->gso_size;
/* Add size of frags 0 through 4 to create our initial sum */
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
/* Walk through fragments adding latest fragment, testing it, and
* then removing stale fragments from the sum.
*/
for (stale = &shinfo->frags[0];; stale++) {
int stale_size = skb_frag_size(stale);
sum += skb_frag_size(frag++);
/* The stale fragment may present us with a smaller
* descriptor than the actual fragment size. To account
* for that we need to remove all the data on the front and
* figure out what the remainder would be in the last
* descriptor associated with the fragment.
*/
if (stale_size > IDPF_TX_MAX_DESC_DATA) {
int align_pad = -(skb_frag_off(stale)) &
(IDPF_TX_MAX_READ_REQ_SIZE - 1);
sum -= align_pad;
stale_size -= align_pad;
do {
sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
} while (stale_size > IDPF_TX_MAX_DESC_DATA);
}
/* if sum is negative we failed to make sufficient progress */
if (sum < 0)
return true;
if (!nr_frags--)
break;
sum -= stale_size;
}
return false;
}
/**
* idpf_chk_linearize - Check if skb exceeds max descriptors per packet
* @skb: send buffer
* @max_bufs: maximum scatter gather buffers for single packet
* @count: number of buffers this packet needs
*
* Make sure we don't exceed maximum scatter gather buffers for a single
* packet. We have to do some special checking around the boundary (max_bufs-1)
* if TSO is on since we need count the TSO header and payload separately.
* E.g.: a packet with 7 fragments can require 9 DMA transactions; 1 for TSO
* header, 1 for segment payload, and then 7 for the fragments.
*/
static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
unsigned int count)
{
if (likely(count < max_bufs))
return false;
if (skb_is_gso(skb))
return __idpf_chk_linearize(skb, max_bufs);
return count > max_bufs;
}
/**
* idpf_tx_splitq_get_ctx_desc - grab next desc and update buffer ring
* @txq: queue to put context descriptor on
*
* Since the TX buffer rings mimics the descriptor ring, update the tx buffer
* ring entry to reflect that this index is a context descriptor
*/
static struct idpf_flex_tx_ctx_desc *
idpf_tx_splitq_get_ctx_desc(struct idpf_tx_queue *txq)
{
struct idpf_flex_tx_ctx_desc *desc;
int i = txq->next_to_use;
memset(&txq->tx_buf[i], 0, sizeof(struct idpf_tx_buf));
txq->tx_buf[i].compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
/* grab the next descriptor */
desc = &txq->flex_ctx[i];
txq->next_to_use = idpf_tx_splitq_bump_ntu(txq, i);
return desc;
}
/**
* idpf_tx_drop_skb - free the SKB and bump tail if necessary
* @tx_q: queue to send buffer on
* @skb: pointer to skb
*/
netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb)
{
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_inc(&tx_q->q_stats.skb_drops);
u64_stats_update_end(&tx_q->stats_sync);
idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/**
* idpf_tx_splitq_frame - Sends buffer on Tx ring using flex descriptors
* @skb: send buffer
* @tx_q: queue to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
static netdev_tx_t idpf_tx_splitq_frame(struct sk_buff *skb,
struct idpf_tx_queue *tx_q)
{
struct idpf_tx_splitq_params tx_params = { };
struct idpf_tx_buf *first;
unsigned int count;
int tso;
count = idpf_tx_desc_count_required(tx_q, skb);
if (unlikely(!count))
return idpf_tx_drop_skb(tx_q, skb);
tso = idpf_tso(skb, &tx_params.offload);
if (unlikely(tso < 0))
return idpf_tx_drop_skb(tx_q, skb);
/* Check for splitq specific TX resources */
count += (IDPF_TX_DESCS_PER_CACHE_LINE + tso);
if (idpf_tx_maybe_stop_splitq(tx_q, count)) {
idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
return NETDEV_TX_BUSY;
}
if (tso) {
/* If tso is needed, set up context desc */
struct idpf_flex_tx_ctx_desc *ctx_desc =
idpf_tx_splitq_get_ctx_desc(tx_q);
ctx_desc->tso.qw1.cmd_dtype =
cpu_to_le16(IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX |
IDPF_TX_FLEX_CTX_DESC_CMD_TSO);
ctx_desc->tso.qw0.flex_tlen =
cpu_to_le32(tx_params.offload.tso_len &
IDPF_TXD_FLEX_CTX_TLEN_M);
ctx_desc->tso.qw0.mss_rt =
cpu_to_le16(tx_params.offload.mss &
IDPF_TXD_FLEX_CTX_MSS_RT_M);
ctx_desc->tso.qw0.hdr_len = tx_params.offload.tso_hdr_len;
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_inc(&tx_q->q_stats.lso_pkts);
u64_stats_update_end(&tx_q->stats_sync);
}
/* record the location of the first descriptor for this packet */
first = &tx_q->tx_buf[tx_q->next_to_use];
first->skb = skb;
if (tso) {
first->gso_segs = tx_params.offload.tso_segs;
first->bytecount = skb->len +
((first->gso_segs - 1) * tx_params.offload.tso_hdr_len);
} else {
first->gso_segs = 1;
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
}
if (idpf_queue_has(FLOW_SCH_EN, tx_q)) {
tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE;
tx_params.eop_cmd = IDPF_TXD_FLEX_FLOW_CMD_EOP;
/* Set the RE bit to catch any packets that may have not been
* stashed during RS completion cleaning. MIN_GAP is set to
* MIN_RING size to ensure it will be set at least once each
* time around the ring.
*/
if (!(tx_q->next_to_use % IDPF_TX_SPLITQ_RE_MIN_GAP)) {
tx_params.eop_cmd |= IDPF_TXD_FLEX_FLOW_CMD_RE;
tx_q->txq_grp->num_completions_pending++;
}
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_params.offload.td_cmd |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN;
} else {
tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2;
tx_params.eop_cmd = IDPF_TXD_LAST_DESC_CMD;
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_params.offload.td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN;
}
idpf_tx_splitq_map(tx_q, &tx_params, first);
return NETDEV_TX_OK;
}
/**
* idpf_tx_start - Selects the right Tx queue to send buffer
* @skb: send buffer
* @netdev: network interface device structure
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev)
{
struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
struct idpf_tx_queue *tx_q;
if (unlikely(skb_get_queue_mapping(skb) >= vport->num_txq)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
tx_q = vport->txqs[skb_get_queue_mapping(skb)];
/* hardware can't handle really short frames, hardware padding works
* beyond this point
*/
if (skb_put_padto(skb, tx_q->tx_min_pkt_len)) {
idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
return NETDEV_TX_OK;
}
if (idpf_is_queue_model_split(vport->txq_model))
return idpf_tx_splitq_frame(skb, tx_q);
else
return idpf_tx_singleq_frame(skb, tx_q);
}
/**
* idpf_rx_hash - set the hash value in the skb
* @rxq: Rx descriptor ring packet is being transacted on
* @skb: pointer to current skb being populated
* @rx_desc: Receive descriptor
* @decoded: Decoded Rx packet type related fields
*/
static void
idpf_rx_hash(const struct idpf_rx_queue *rxq, struct sk_buff *skb,
const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
struct libeth_rx_pt decoded)
{
u32 hash;
if (!libeth_rx_pt_has_hash(rxq->netdev, decoded))
return;
hash = le16_to_cpu(rx_desc->hash1) |
(rx_desc->ff2_mirrid_hash2.hash2 << 16) |
(rx_desc->hash3 << 24);
libeth_rx_pt_set_hash(skb, hash, decoded);
}
/**
* idpf_rx_csum - Indicate in skb if checksum is good
* @rxq: Rx descriptor ring packet is being transacted on
* @skb: pointer to current skb being populated
* @csum_bits: checksum fields extracted from the descriptor
* @decoded: Decoded Rx packet type related fields
*
* skb->protocol must be set before this function is called
*/
static void idpf_rx_csum(struct idpf_rx_queue *rxq, struct sk_buff *skb,
struct idpf_rx_csum_decoded csum_bits,
struct libeth_rx_pt decoded)
{
bool ipv4, ipv6;
/* check if Rx checksum is enabled */
if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
return;
/* check if HW has decoded the packet and checksum */
if (unlikely(!csum_bits.l3l4p))
return;
ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
goto checksum_fail;
if (unlikely(ipv6 && csum_bits.ipv6exadd))
return;
/* check for L4 errors and handle packets that were not able to be
* checksummed
*/
if (unlikely(csum_bits.l4e))
goto checksum_fail;
if (csum_bits.raw_csum_inv ||
decoded.inner_prot == LIBETH_RX_PT_INNER_SCTP) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
}
skb->csum = csum_unfold((__force __sum16)~swab16(csum_bits.raw_csum));
skb->ip_summed = CHECKSUM_COMPLETE;
return;
checksum_fail:
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.hw_csum_err);
u64_stats_update_end(&rxq->stats_sync);
}
/**
* idpf_rx_splitq_extract_csum_bits - Extract checksum bits from descriptor
* @rx_desc: receive descriptor
*
* Return: parsed checksum status.
**/
static struct idpf_rx_csum_decoded
idpf_rx_splitq_extract_csum_bits(const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
{
struct idpf_rx_csum_decoded csum = { };
u8 qword0, qword1;
qword0 = rx_desc->status_err0_qw0;
qword1 = rx_desc->status_err0_qw1;
csum.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_M,
qword1);
csum.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_M,
qword1);
csum.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_M,
qword1);
csum.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_L3L4P_M,
qword1);
csum.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_IPV6EXADD_M,
qword0);
csum.raw_csum_inv =
le16_get_bits(rx_desc->ptype_err_fflags0,
VIRTCHNL2_RX_FLEX_DESC_ADV_RAW_CSUM_INV_M);
csum.raw_csum = le16_to_cpu(rx_desc->misc.raw_cs);
return csum;
}
/**
* idpf_rx_rsc - Set the RSC fields in the skb
* @rxq : Rx descriptor ring packet is being transacted on
* @skb : pointer to current skb being populated
* @rx_desc: Receive descriptor
* @decoded: Decoded Rx packet type related fields
*
* Return 0 on success and error code on failure
*
* Populate the skb fields with the total number of RSC segments, RSC payload
* length and packet type.
*/
static int idpf_rx_rsc(struct idpf_rx_queue *rxq, struct sk_buff *skb,
const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
struct libeth_rx_pt decoded)
{
u16 rsc_segments, rsc_seg_len;
bool ipv4, ipv6;
int len;
if (unlikely(libeth_rx_pt_get_ip_ver(decoded) ==
LIBETH_RX_PT_OUTER_L2))
return -EINVAL;
rsc_seg_len = le16_to_cpu(rx_desc->misc.rscseglen);
if (unlikely(!rsc_seg_len))
return -EINVAL;
ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
if (unlikely(!(ipv4 ^ ipv6)))
return -EINVAL;
rsc_segments = DIV_ROUND_UP(skb->data_len, rsc_seg_len);
if (unlikely(rsc_segments == 1))
return 0;
NAPI_GRO_CB(skb)->count = rsc_segments;
skb_shinfo(skb)->gso_size = rsc_seg_len;
skb_reset_network_header(skb);
len = skb->len - skb_transport_offset(skb);
if (ipv4) {
struct iphdr *ipv4h = ip_hdr(skb);
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
/* Reset and set transport header offset in skb */
skb_set_transport_header(skb, sizeof(struct iphdr));
/* Compute the TCP pseudo header checksum*/
tcp_hdr(skb)->check =
~tcp_v4_check(len, ipv4h->saddr, ipv4h->daddr, 0);
} else {
struct ipv6hdr *ipv6h = ipv6_hdr(skb);
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
tcp_hdr(skb)->check =
~tcp_v6_check(len, &ipv6h->saddr, &ipv6h->daddr, 0);
}
tcp_gro_complete(skb);
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.rsc_pkts);
u64_stats_update_end(&rxq->stats_sync);
return 0;
}
/**
* idpf_rx_process_skb_fields - Populate skb header fields from Rx descriptor
* @rxq: Rx descriptor ring packet is being transacted on
* @skb: pointer to current skb being populated
* @rx_desc: Receive descriptor
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, protocol, and
* other fields within the skb.
*/
static int
idpf_rx_process_skb_fields(struct idpf_rx_queue *rxq, struct sk_buff *skb,
const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
{
struct idpf_rx_csum_decoded csum_bits;
struct libeth_rx_pt decoded;
u16 rx_ptype;
rx_ptype = le16_get_bits(rx_desc->ptype_err_fflags0,
VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_M);
decoded = rxq->rx_ptype_lkup[rx_ptype];
/* process RSS/hash */
idpf_rx_hash(rxq, skb, rx_desc, decoded);
skb->protocol = eth_type_trans(skb, rxq->netdev);
if (le16_get_bits(rx_desc->hdrlen_flags,
VIRTCHNL2_RX_FLEX_DESC_ADV_RSC_M))
return idpf_rx_rsc(rxq, skb, rx_desc, decoded);
csum_bits = idpf_rx_splitq_extract_csum_bits(rx_desc);
idpf_rx_csum(rxq, skb, csum_bits, decoded);
skb_record_rx_queue(skb, rxq->idx);
return 0;
}
/**
* idpf_rx_add_frag - Add contents of Rx buffer to sk_buff as a frag
* @rx_buf: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: packet length from rx_desc
*
* This function will add the data contained in rx_buf->page to the skb.
* It will just attach the page as a frag to the skb.
* The function will then update the page offset.
*/
void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
unsigned int size)
{
u32 hr = rx_buf->page->pp->p.offset;
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
rx_buf->offset + hr, size, rx_buf->truesize);
}
/**
* idpf_rx_hsplit_wa - handle header buffer overflows and split errors
* @hdr: Rx buffer for the headers
* @buf: Rx buffer for the payload
* @data_len: number of bytes received to the payload buffer
*
* When a header buffer overflow occurs or the HW was unable do parse the
* packet type to perform header split, the whole frame gets placed to the
* payload buffer. We can't build a valid skb around a payload buffer when
* the header split is active since it doesn't reserve any head- or tailroom.
* In that case, copy either the whole frame when it's short or just the
* Ethernet header to the header buffer to be able to build an skb and adjust
* the data offset in the payload buffer, IOW emulate the header split.
*
* Return: number of bytes copied to the header buffer.
*/
static u32 idpf_rx_hsplit_wa(const struct libeth_fqe *hdr,
struct libeth_fqe *buf, u32 data_len)
{
u32 copy = data_len <= L1_CACHE_BYTES ? data_len : ETH_HLEN;
const void *src;
void *dst;
if (!libeth_rx_sync_for_cpu(buf, copy))
return 0;
dst = page_address(hdr->page) + hdr->offset + hdr->page->pp->p.offset;
src = page_address(buf->page) + buf->offset + buf->page->pp->p.offset;
memcpy(dst, src, LARGEST_ALIGN(copy));
buf->offset += copy;
return copy;
}
/**
* idpf_rx_build_skb - Allocate skb and populate it from header buffer
* @buf: Rx buffer to pull data from
* @size: the length of the packet
*
* This function allocates an skb. It then populates it with the page data from
* the current receive descriptor, taking care to set up the skb correctly.
*/
struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size)
{
u32 hr = buf->page->pp->p.offset;
struct sk_buff *skb;
void *va;
va = page_address(buf->page) + buf->offset;
prefetch(va + hr);
skb = napi_build_skb(va, buf->truesize);
if (unlikely(!skb))
return NULL;
skb_mark_for_recycle(skb);
skb_reserve(skb, hr);
__skb_put(skb, size);
return skb;
}
/**
* idpf_rx_splitq_test_staterr - tests bits in Rx descriptor
* status and error fields
* @stat_err_field: field from descriptor to test bits in
* @stat_err_bits: value to mask
*
*/
static bool idpf_rx_splitq_test_staterr(const u8 stat_err_field,
const u8 stat_err_bits)
{
return !!(stat_err_field & stat_err_bits);
}
/**
* idpf_rx_splitq_is_eop - process handling of EOP buffers
* @rx_desc: Rx descriptor for current buffer
*
* If the buffer is an EOP buffer, this function exits returning true,
* otherwise return false indicating that this is in fact a non-EOP buffer.
*/
static bool idpf_rx_splitq_is_eop(struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
{
/* if we are the last buffer then there is nothing else to do */
return likely(idpf_rx_splitq_test_staterr(rx_desc->status_err0_qw1,
IDPF_RXD_EOF_SPLITQ));
}
/**
* idpf_rx_splitq_clean - Clean completed descriptors from Rx queue
* @rxq: Rx descriptor queue to retrieve receive buffer queue
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed
*/
static int idpf_rx_splitq_clean(struct idpf_rx_queue *rxq, int budget)
{
int total_rx_bytes = 0, total_rx_pkts = 0;
struct idpf_buf_queue *rx_bufq = NULL;
struct sk_buff *skb = rxq->skb;
u16 ntc = rxq->next_to_clean;
/* Process Rx packets bounded by budget */
while (likely(total_rx_pkts < budget)) {
struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc;
struct libeth_fqe *hdr, *rx_buf = NULL;
struct idpf_sw_queue *refillq = NULL;
struct idpf_rxq_set *rxq_set = NULL;
unsigned int pkt_len = 0;
unsigned int hdr_len = 0;
u16 gen_id, buf_id = 0;
int bufq_id;
u8 rxdid;
/* get the Rx desc from Rx queue based on 'next_to_clean' */
rx_desc = &rxq->rx[ntc].flex_adv_nic_3_wb;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc
*/
dma_rmb();
/* if the descriptor isn't done, no work yet to do */
gen_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M);
if (idpf_queue_has(GEN_CHK, rxq) != gen_id)
break;
rxdid = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_RXDID_M,
rx_desc->rxdid_ucast);
if (rxdid != VIRTCHNL2_RXDID_2_FLEX_SPLITQ) {
IDPF_RX_BUMP_NTC(rxq, ntc);
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.bad_descs);
u64_stats_update_end(&rxq->stats_sync);
continue;
}
pkt_len = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_M);
bufq_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_M);
rxq_set = container_of(rxq, struct idpf_rxq_set, rxq);
refillq = rxq_set->refillq[bufq_id];
/* retrieve buffer from the rxq */
rx_bufq = &rxq->bufq_sets[bufq_id].bufq;
buf_id = le16_to_cpu(rx_desc->buf_id);
rx_buf = &rx_bufq->buf[buf_id];
if (!rx_bufq->hdr_pp)
goto payload;
#define __HBO_BIT VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_HBO_M
#define __HDR_LEN_MASK VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_HDR_M
if (likely(!(rx_desc->status_err0_qw1 & __HBO_BIT)))
/* If a header buffer overflow, occurs, i.e. header is
* too large to fit in the header split buffer, HW will
* put the entire packet, including headers, in the
* data/payload buffer.
*/
hdr_len = le16_get_bits(rx_desc->hdrlen_flags,
__HDR_LEN_MASK);
#undef __HDR_LEN_MASK
#undef __HBO_BIT
hdr = &rx_bufq->hdr_buf[buf_id];
if (unlikely(!hdr_len && !skb)) {
hdr_len = idpf_rx_hsplit_wa(hdr, rx_buf, pkt_len);
pkt_len -= hdr_len;
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.hsplit_buf_ovf);
u64_stats_update_end(&rxq->stats_sync);
}
if (libeth_rx_sync_for_cpu(hdr, hdr_len)) {
skb = idpf_rx_build_skb(hdr, hdr_len);
if (!skb)
break;
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.hsplit_pkts);
u64_stats_update_end(&rxq->stats_sync);
}
hdr->page = NULL;
payload:
if (!libeth_rx_sync_for_cpu(rx_buf, pkt_len))
goto skip_data;
if (skb)
idpf_rx_add_frag(rx_buf, skb, pkt_len);
else
skb = idpf_rx_build_skb(rx_buf, pkt_len);
/* exit if we failed to retrieve a buffer */
if (!skb)
break;
skip_data:
rx_buf->page = NULL;
idpf_rx_post_buf_refill(refillq, buf_id);
IDPF_RX_BUMP_NTC(rxq, ntc);
/* skip if it is non EOP desc */
if (!idpf_rx_splitq_is_eop(rx_desc) || unlikely(!skb))
continue;
/* pad skb if needed (to make valid ethernet frame) */
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* protocol */
if (unlikely(idpf_rx_process_skb_fields(rxq, skb, rx_desc))) {
dev_kfree_skb_any(skb);
skb = NULL;
continue;
}
/* send completed skb up the stack */
napi_gro_receive(rxq->napi, skb);
skb = NULL;
/* update budget accounting */
total_rx_pkts++;
}
rxq->next_to_clean = ntc;
rxq->skb = skb;
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_add(&rxq->q_stats.packets, total_rx_pkts);
u64_stats_add(&rxq->q_stats.bytes, total_rx_bytes);
u64_stats_update_end(&rxq->stats_sync);
/* guarantee a trip back through this routine if there was a failure */
return total_rx_pkts;
}
/**
* idpf_rx_update_bufq_desc - Update buffer queue descriptor
* @bufq: Pointer to the buffer queue
* @buf_id: buffer ID
* @buf_desc: Buffer queue descriptor
*
* Return 0 on success and negative on failure.
*/
static int idpf_rx_update_bufq_desc(struct idpf_buf_queue *bufq, u32 buf_id,
struct virtchnl2_splitq_rx_buf_desc *buf_desc)
{
struct libeth_fq_fp fq = {
.pp = bufq->pp,
.fqes = bufq->buf,
.truesize = bufq->truesize,
.count = bufq->desc_count,
};
dma_addr_t addr;
addr = libeth_rx_alloc(&fq, buf_id);
if (addr == DMA_MAPPING_ERROR)
return -ENOMEM;
buf_desc->pkt_addr = cpu_to_le64(addr);
buf_desc->qword0.buf_id = cpu_to_le16(buf_id);
if (!idpf_queue_has(HSPLIT_EN, bufq))
return 0;
fq.pp = bufq->hdr_pp;
fq.fqes = bufq->hdr_buf;
fq.truesize = bufq->hdr_truesize;
addr = libeth_rx_alloc(&fq, buf_id);
if (addr == DMA_MAPPING_ERROR)
return -ENOMEM;
buf_desc->hdr_addr = cpu_to_le64(addr);
return 0;
}
/**
* idpf_rx_clean_refillq - Clean refill queue buffers
* @bufq: buffer queue to post buffers back to
* @refillq: refill queue to clean
*
* This function takes care of the buffer refill management
*/
static void idpf_rx_clean_refillq(struct idpf_buf_queue *bufq,
struct idpf_sw_queue *refillq)
{
struct virtchnl2_splitq_rx_buf_desc *buf_desc;
u16 bufq_nta = bufq->next_to_alloc;
u16 ntc = refillq->next_to_clean;
int cleaned = 0;
buf_desc = &bufq->split_buf[bufq_nta];
/* make sure we stop at ring wrap in the unlikely case ring is full */
while (likely(cleaned < refillq->desc_count)) {
u32 buf_id, refill_desc = refillq->ring[ntc];
bool failure;
if (idpf_queue_has(RFL_GEN_CHK, refillq) !=
!!(refill_desc & IDPF_RX_BI_GEN_M))
break;
buf_id = FIELD_GET(IDPF_RX_BI_BUFID_M, refill_desc);
failure = idpf_rx_update_bufq_desc(bufq, buf_id, buf_desc);
if (failure)
break;
if (unlikely(++ntc == refillq->desc_count)) {
idpf_queue_change(RFL_GEN_CHK, refillq);
ntc = 0;
}
if (unlikely(++bufq_nta == bufq->desc_count)) {
buf_desc = &bufq->split_buf[0];
bufq_nta = 0;
} else {
buf_desc++;
}
cleaned++;
}
if (!cleaned)
return;
/* We want to limit how many transactions on the bus we trigger with
* tail writes so we only do it in strides. It's also important we
* align the write to a multiple of 8 as required by HW.
*/
if (((bufq->next_to_use <= bufq_nta ? 0 : bufq->desc_count) +
bufq_nta - bufq->next_to_use) >= IDPF_RX_BUF_POST_STRIDE)
idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq_nta,
IDPF_RX_BUF_POST_STRIDE));
/* update next to alloc since we have filled the ring */
refillq->next_to_clean = ntc;
bufq->next_to_alloc = bufq_nta;
}
/**
* idpf_rx_clean_refillq_all - Clean all refill queues
* @bufq: buffer queue with refill queues
* @nid: ID of the closest NUMA node with memory
*
* Iterates through all refill queues assigned to the buffer queue assigned to
* this vector. Returns true if clean is complete within budget, false
* otherwise.
*/
static void idpf_rx_clean_refillq_all(struct idpf_buf_queue *bufq, int nid)
{
struct idpf_bufq_set *bufq_set;
int i;
page_pool_nid_changed(bufq->pp, nid);
if (bufq->hdr_pp)
page_pool_nid_changed(bufq->hdr_pp, nid);
bufq_set = container_of(bufq, struct idpf_bufq_set, bufq);
for (i = 0; i < bufq_set->num_refillqs; i++)
idpf_rx_clean_refillq(bufq, &bufq_set->refillqs[i]);
}
/**
* idpf_vport_intr_clean_queues - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
*
*/
static irqreturn_t idpf_vport_intr_clean_queues(int __always_unused irq,
void *data)
{
struct idpf_q_vector *q_vector = (struct idpf_q_vector *)data;
q_vector->total_events++;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* idpf_vport_intr_napi_del_all - Unregister napi for all q_vectors in vport
* @vport: virtual port structure
*
*/
static void idpf_vport_intr_napi_del_all(struct idpf_vport *vport)
{
u16 v_idx;
for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
netif_napi_del(&vport->q_vectors[v_idx].napi);
}
/**
* idpf_vport_intr_napi_dis_all - Disable NAPI for all q_vectors in the vport
* @vport: main vport structure
*/
static void idpf_vport_intr_napi_dis_all(struct idpf_vport *vport)
{
int v_idx;
for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
napi_disable(&vport->q_vectors[v_idx].napi);
}
/**
* idpf_vport_intr_rel - Free memory allocated for interrupt vectors
* @vport: virtual port
*
* Free the memory allocated for interrupt vectors associated to a vport
*/
void idpf_vport_intr_rel(struct idpf_vport *vport)
{
int i, j, v_idx;
for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
kfree(q_vector->complq);
q_vector->complq = NULL;
kfree(q_vector->bufq);
q_vector->bufq = NULL;
kfree(q_vector->tx);
q_vector->tx = NULL;
kfree(q_vector->rx);
q_vector->rx = NULL;
free_cpumask_var(q_vector->affinity_mask);
}
/* Clean up the mapping of queues to vectors */
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
if (idpf_is_queue_model_split(vport->rxq_model))
for (j = 0; j < rx_qgrp->splitq.num_rxq_sets; j++)
rx_qgrp->splitq.rxq_sets[j]->rxq.q_vector = NULL;
else
for (j = 0; j < rx_qgrp->singleq.num_rxq; j++)
rx_qgrp->singleq.rxqs[j]->q_vector = NULL;
}
if (idpf_is_queue_model_split(vport->txq_model))
for (i = 0; i < vport->num_txq_grp; i++)
vport->txq_grps[i].complq->q_vector = NULL;
else
for (i = 0; i < vport->num_txq_grp; i++)
for (j = 0; j < vport->txq_grps[i].num_txq; j++)
vport->txq_grps[i].txqs[j]->q_vector = NULL;
kfree(vport->q_vectors);
vport->q_vectors = NULL;
}
/**
* idpf_vport_intr_rel_irq - Free the IRQ association with the OS
* @vport: main vport structure
*/
static void idpf_vport_intr_rel_irq(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
int vector;
for (vector = 0; vector < vport->num_q_vectors; vector++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
int irq_num, vidx;
/* free only the irqs that were actually requested */
if (!q_vector)
continue;
vidx = vport->q_vector_idxs[vector];
irq_num = adapter->msix_entries[vidx].vector;
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(irq_num, NULL);
kfree(free_irq(irq_num, q_vector));
}
}
/**
* idpf_vport_intr_dis_irq_all - Disable all interrupt
* @vport: main vport structure
*/
static void idpf_vport_intr_dis_irq_all(struct idpf_vport *vport)
{
struct idpf_q_vector *q_vector = vport->q_vectors;
int q_idx;
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++)
writel(0, q_vector[q_idx].intr_reg.dyn_ctl);
}
/**
* idpf_vport_intr_buildreg_itr - Enable default interrupt generation settings
* @q_vector: pointer to q_vector
* @type: itr index
* @itr: itr value
*/
static u32 idpf_vport_intr_buildreg_itr(struct idpf_q_vector *q_vector,
const int type, u16 itr)
{
u32 itr_val;
itr &= IDPF_ITR_MASK;
/* Don't clear PBA because that can cause lost interrupts that
* came in while we were cleaning/polling
*/
itr_val = q_vector->intr_reg.dyn_ctl_intena_m |
(type << q_vector->intr_reg.dyn_ctl_itridx_s) |
(itr << (q_vector->intr_reg.dyn_ctl_intrvl_s - 1));
return itr_val;
}
/**
* idpf_update_dim_sample - Update dim sample with packets and bytes
* @q_vector: the vector associated with the interrupt
* @dim_sample: dim sample to update
* @dim: dim instance structure
* @packets: total packets
* @bytes: total bytes
*
* Update the dim sample with the packets and bytes which are passed to this
* function. Set the dim state appropriately if the dim settings gets stale.
*/
static void idpf_update_dim_sample(struct idpf_q_vector *q_vector,
struct dim_sample *dim_sample,
struct dim *dim, u64 packets, u64 bytes)
{
dim_update_sample(q_vector->total_events, packets, bytes, dim_sample);
dim_sample->comp_ctr = 0;
/* if dim settings get stale, like when not updated for 1 second or
* longer, force it to start again. This addresses the frequent case
* of an idle queue being switched to by the scheduler.
*/
if (ktime_ms_delta(dim_sample->time, dim->start_sample.time) >= HZ)
dim->state = DIM_START_MEASURE;
}
/**
* idpf_net_dim - Update net DIM algorithm
* @q_vector: the vector associated with the interrupt
*
* Create a DIM sample and notify net_dim() so that it can possibly decide
* a new ITR value based on incoming packets, bytes, and interrupts.
*
* This function is a no-op if the queue is not configured to dynamic ITR.
*/
static void idpf_net_dim(struct idpf_q_vector *q_vector)
{
struct dim_sample dim_sample = { };
u64 packets, bytes;
u32 i;
if (!IDPF_ITR_IS_DYNAMIC(q_vector->tx_intr_mode))
goto check_rx_itr;
for (i = 0, packets = 0, bytes = 0; i < q_vector->num_txq; i++) {
struct idpf_tx_queue *txq = q_vector->tx[i];
unsigned int start;
do {
start = u64_stats_fetch_begin(&txq->stats_sync);
packets += u64_stats_read(&txq->q_stats.packets);
bytes += u64_stats_read(&txq->q_stats.bytes);
} while (u64_stats_fetch_retry(&txq->stats_sync, start));
}
idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->tx_dim,
packets, bytes);
net_dim(&q_vector->tx_dim, dim_sample);
check_rx_itr:
if (!IDPF_ITR_IS_DYNAMIC(q_vector->rx_intr_mode))
return;
for (i = 0, packets = 0, bytes = 0; i < q_vector->num_rxq; i++) {
struct idpf_rx_queue *rxq = q_vector->rx[i];
unsigned int start;
do {
start = u64_stats_fetch_begin(&rxq->stats_sync);
packets += u64_stats_read(&rxq->q_stats.packets);
bytes += u64_stats_read(&rxq->q_stats.bytes);
} while (u64_stats_fetch_retry(&rxq->stats_sync, start));
}
idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->rx_dim,
packets, bytes);
net_dim(&q_vector->rx_dim, dim_sample);
}
/**
* idpf_vport_intr_update_itr_ena_irq - Update itr and re-enable MSIX interrupt
* @q_vector: q_vector for which itr is being updated and interrupt enabled
*
* Update the net_dim() algorithm and re-enable the interrupt associated with
* this vector.
*/
void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector)
{
u32 intval;
/* net_dim() updates ITR out-of-band using a work item */
idpf_net_dim(q_vector);
intval = idpf_vport_intr_buildreg_itr(q_vector,
IDPF_NO_ITR_UPDATE_IDX, 0);
writel(intval, q_vector->intr_reg.dyn_ctl);
}
/**
* idpf_vport_intr_req_irq - get MSI-X vectors from the OS for the vport
* @vport: main vport structure
* @basename: name for the vector
*/
static int idpf_vport_intr_req_irq(struct idpf_vport *vport, char *basename)
{
struct idpf_adapter *adapter = vport->adapter;
int vector, err, irq_num, vidx;
const char *vec_name;
for (vector = 0; vector < vport->num_q_vectors; vector++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
char *name;
vidx = vport->q_vector_idxs[vector];
irq_num = adapter->msix_entries[vidx].vector;
if (q_vector->num_rxq && q_vector->num_txq)
vec_name = "TxRx";
else if (q_vector->num_rxq)
vec_name = "Rx";
else if (q_vector->num_txq)
vec_name = "Tx";
else
continue;
name = kasprintf(GFP_KERNEL, "%s-%s-%d", basename, vec_name,
vidx);
err = request_irq(irq_num, idpf_vport_intr_clean_queues, 0,
name, q_vector);
if (err) {
netdev_err(vport->netdev,
"Request_irq failed, error: %d\n", err);
goto free_q_irqs;
}
/* assign the mask for this irq */
irq_set_affinity_hint(irq_num, q_vector->affinity_mask);
}
return 0;
free_q_irqs:
while (--vector >= 0) {
vidx = vport->q_vector_idxs[vector];
irq_num = adapter->msix_entries[vidx].vector;
kfree(free_irq(irq_num, &vport->q_vectors[vector]));
}
return err;
}
/**
* idpf_vport_intr_write_itr - Write ITR value to the ITR register
* @q_vector: q_vector structure
* @itr: Interrupt throttling rate
* @tx: Tx or Rx ITR
*/
void idpf_vport_intr_write_itr(struct idpf_q_vector *q_vector, u16 itr, bool tx)
{
struct idpf_intr_reg *intr_reg;
if (tx && !q_vector->tx)
return;
else if (!tx && !q_vector->rx)
return;
intr_reg = &q_vector->intr_reg;
writel(ITR_REG_ALIGN(itr) >> IDPF_ITR_GRAN_S,
tx ? intr_reg->tx_itr : intr_reg->rx_itr);
}
/**
* idpf_vport_intr_ena_irq_all - Enable IRQ for the given vport
* @vport: main vport structure
*/
static void idpf_vport_intr_ena_irq_all(struct idpf_vport *vport)
{
bool dynamic;
int q_idx;
u16 itr;
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
struct idpf_q_vector *qv = &vport->q_vectors[q_idx];
/* Set the initial ITR values */
if (qv->num_txq) {
dynamic = IDPF_ITR_IS_DYNAMIC(qv->tx_intr_mode);
itr = vport->tx_itr_profile[qv->tx_dim.profile_ix];
idpf_vport_intr_write_itr(qv, dynamic ?
itr : qv->tx_itr_value,
true);
}
if (qv->num_rxq) {
dynamic = IDPF_ITR_IS_DYNAMIC(qv->rx_intr_mode);
itr = vport->rx_itr_profile[qv->rx_dim.profile_ix];
idpf_vport_intr_write_itr(qv, dynamic ?
itr : qv->rx_itr_value,
false);
}
if (qv->num_txq || qv->num_rxq)
idpf_vport_intr_update_itr_ena_irq(qv);
}
}
/**
* idpf_vport_intr_deinit - Release all vector associations for the vport
* @vport: main vport structure
*/
void idpf_vport_intr_deinit(struct idpf_vport *vport)
{
idpf_vport_intr_dis_irq_all(vport);
idpf_vport_intr_napi_dis_all(vport);
idpf_vport_intr_napi_del_all(vport);
idpf_vport_intr_rel_irq(vport);
}
/**
* idpf_tx_dim_work - Call back from the stack
* @work: work queue structure
*/
static void idpf_tx_dim_work(struct work_struct *work)
{
struct idpf_q_vector *q_vector;
struct idpf_vport *vport;
struct dim *dim;
u16 itr;
dim = container_of(work, struct dim, work);
q_vector = container_of(dim, struct idpf_q_vector, tx_dim);
vport = q_vector->vport;
if (dim->profile_ix >= ARRAY_SIZE(vport->tx_itr_profile))
dim->profile_ix = ARRAY_SIZE(vport->tx_itr_profile) - 1;
/* look up the values in our local table */
itr = vport->tx_itr_profile[dim->profile_ix];
idpf_vport_intr_write_itr(q_vector, itr, true);
dim->state = DIM_START_MEASURE;
}
/**
* idpf_rx_dim_work - Call back from the stack
* @work: work queue structure
*/
static void idpf_rx_dim_work(struct work_struct *work)
{
struct idpf_q_vector *q_vector;
struct idpf_vport *vport;
struct dim *dim;
u16 itr;
dim = container_of(work, struct dim, work);
q_vector = container_of(dim, struct idpf_q_vector, rx_dim);
vport = q_vector->vport;
if (dim->profile_ix >= ARRAY_SIZE(vport->rx_itr_profile))
dim->profile_ix = ARRAY_SIZE(vport->rx_itr_profile) - 1;
/* look up the values in our local table */
itr = vport->rx_itr_profile[dim->profile_ix];
idpf_vport_intr_write_itr(q_vector, itr, false);
dim->state = DIM_START_MEASURE;
}
/**
* idpf_init_dim - Set up dynamic interrupt moderation
* @qv: q_vector structure
*/
static void idpf_init_dim(struct idpf_q_vector *qv)
{
INIT_WORK(&qv->tx_dim.work, idpf_tx_dim_work);
qv->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
qv->tx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
INIT_WORK(&qv->rx_dim.work, idpf_rx_dim_work);
qv->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
qv->rx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
}
/**
* idpf_vport_intr_napi_ena_all - Enable NAPI for all q_vectors in the vport
* @vport: main vport structure
*/
static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport)
{
int q_idx;
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[q_idx];
idpf_init_dim(q_vector);
napi_enable(&q_vector->napi);
}
}
/**
* idpf_tx_splitq_clean_all- Clean completion queues
* @q_vec: queue vector
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns false if clean is not complete else returns true
*/
static bool idpf_tx_splitq_clean_all(struct idpf_q_vector *q_vec,
int budget, int *cleaned)
{
u16 num_complq = q_vec->num_complq;
bool clean_complete = true;
int i, budget_per_q;
if (unlikely(!num_complq))
return true;
budget_per_q = DIV_ROUND_UP(budget, num_complq);
for (i = 0; i < num_complq; i++)
clean_complete &= idpf_tx_clean_complq(q_vec->complq[i],
budget_per_q, cleaned);
return clean_complete;
}
/**
* idpf_rx_splitq_clean_all- Clean completion queues
* @q_vec: queue vector
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns false if clean is not complete else returns true
*/
static bool idpf_rx_splitq_clean_all(struct idpf_q_vector *q_vec, int budget,
int *cleaned)
{
u16 num_rxq = q_vec->num_rxq;
bool clean_complete = true;
int pkts_cleaned = 0;
int i, budget_per_q;
int nid;
/* We attempt to distribute budget to each Rx queue fairly, but don't
* allow the budget to go below 1 because that would exit polling early.
*/
budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
for (i = 0; i < num_rxq; i++) {
struct idpf_rx_queue *rxq = q_vec->rx[i];
int pkts_cleaned_per_q;
pkts_cleaned_per_q = idpf_rx_splitq_clean(rxq, budget_per_q);
/* if we clean as many as budgeted, we must not be done */
if (pkts_cleaned_per_q >= budget_per_q)
clean_complete = false;
pkts_cleaned += pkts_cleaned_per_q;
}
*cleaned = pkts_cleaned;
nid = numa_mem_id();
for (i = 0; i < q_vec->num_bufq; i++)
idpf_rx_clean_refillq_all(q_vec->bufq[i], nid);
return clean_complete;
}
/**
* idpf_vport_splitq_napi_poll - NAPI handler
* @napi: struct from which you get q_vector
* @budget: budget provided by stack
*/
static int idpf_vport_splitq_napi_poll(struct napi_struct *napi, int budget)
{
struct idpf_q_vector *q_vector =
container_of(napi, struct idpf_q_vector, napi);
bool clean_complete;
int work_done = 0;
/* Handle case where we are called by netpoll with a budget of 0 */
if (unlikely(!budget)) {
idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
return 0;
}
clean_complete = idpf_rx_splitq_clean_all(q_vector, budget, &work_done);
clean_complete &= idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
/* If work not completed, return budget and polling will return */
if (!clean_complete)
return budget;
work_done = min_t(int, work_done, budget - 1);
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
idpf_vport_intr_update_itr_ena_irq(q_vector);
/* Switch to poll mode in the tear-down path after sending disable
* queues virtchnl message, as the interrupts will be disabled after
* that
*/
if (unlikely(q_vector->num_txq && idpf_queue_has(POLL_MODE,
q_vector->tx[0])))
return budget;
else
return work_done;
}
/**
* idpf_vport_intr_map_vector_to_qs - Map vectors to queues
* @vport: virtual port
*
* Mapping for vectors to queues
*/
static void idpf_vport_intr_map_vector_to_qs(struct idpf_vport *vport)
{
bool split = idpf_is_queue_model_split(vport->rxq_model);
u16 num_txq_grp = vport->num_txq_grp;
struct idpf_rxq_group *rx_qgrp;
struct idpf_txq_group *tx_qgrp;
u32 i, qv_idx, q_index;
for (i = 0, qv_idx = 0; i < vport->num_rxq_grp; i++) {
u16 num_rxq;
if (qv_idx >= vport->num_q_vectors)
qv_idx = 0;
rx_qgrp = &vport->rxq_grps[i];
if (split)
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (u32 j = 0; j < num_rxq; j++) {
struct idpf_rx_queue *q;
if (split)
q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
else
q = rx_qgrp->singleq.rxqs[j];
q->q_vector = &vport->q_vectors[qv_idx];
q_index = q->q_vector->num_rxq;
q->q_vector->rx[q_index] = q;
q->q_vector->num_rxq++;
if (split)
q->napi = &q->q_vector->napi;
}
if (split) {
for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
struct idpf_buf_queue *bufq;
bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
bufq->q_vector = &vport->q_vectors[qv_idx];
q_index = bufq->q_vector->num_bufq;
bufq->q_vector->bufq[q_index] = bufq;
bufq->q_vector->num_bufq++;
}
}
qv_idx++;
}
split = idpf_is_queue_model_split(vport->txq_model);
for (i = 0, qv_idx = 0; i < num_txq_grp; i++) {
u16 num_txq;
if (qv_idx >= vport->num_q_vectors)
qv_idx = 0;
tx_qgrp = &vport->txq_grps[i];
num_txq = tx_qgrp->num_txq;
for (u32 j = 0; j < num_txq; j++) {
struct idpf_tx_queue *q;
q = tx_qgrp->txqs[j];
q->q_vector = &vport->q_vectors[qv_idx];
q->q_vector->tx[q->q_vector->num_txq++] = q;
}
if (split) {
struct idpf_compl_queue *q = tx_qgrp->complq;
q->q_vector = &vport->q_vectors[qv_idx];
q->q_vector->complq[q->q_vector->num_complq++] = q;
}
qv_idx++;
}
}
/**
* idpf_vport_intr_init_vec_idx - Initialize the vector indexes
* @vport: virtual port
*
* Initialize vector indexes with values returened over mailbox
*/
static int idpf_vport_intr_init_vec_idx(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
struct virtchnl2_alloc_vectors *ac;
u16 *vecids, total_vecs;
int i;
ac = adapter->req_vec_chunks;
if (!ac) {
for (i = 0; i < vport->num_q_vectors; i++)
vport->q_vectors[i].v_idx = vport->q_vector_idxs[i];
return 0;
}
total_vecs = idpf_get_reserved_vecs(adapter);
vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
if (!vecids)
return -ENOMEM;
idpf_get_vec_ids(adapter, vecids, total_vecs, &ac->vchunks);
for (i = 0; i < vport->num_q_vectors; i++)
vport->q_vectors[i].v_idx = vecids[vport->q_vector_idxs[i]];
kfree(vecids);
return 0;
}
/**
* idpf_vport_intr_napi_add_all- Register napi handler for all qvectors
* @vport: virtual port structure
*/
static void idpf_vport_intr_napi_add_all(struct idpf_vport *vport)
{
int (*napi_poll)(struct napi_struct *napi, int budget);
u16 v_idx;
if (idpf_is_queue_model_split(vport->txq_model))
napi_poll = idpf_vport_splitq_napi_poll;
else
napi_poll = idpf_vport_singleq_napi_poll;
for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
netif_napi_add(vport->netdev, &q_vector->napi, napi_poll);
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, q_vector->affinity_mask);
}
}
/**
* idpf_vport_intr_alloc - Allocate memory for interrupt vectors
* @vport: virtual port
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
int idpf_vport_intr_alloc(struct idpf_vport *vport)
{
u16 txqs_per_vector, rxqs_per_vector, bufqs_per_vector;
struct idpf_q_vector *q_vector;
u32 complqs_per_vector, v_idx;
vport->q_vectors = kcalloc(vport->num_q_vectors,
sizeof(struct idpf_q_vector), GFP_KERNEL);
if (!vport->q_vectors)
return -ENOMEM;
txqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
vport->num_q_vectors);
rxqs_per_vector = DIV_ROUND_UP(vport->num_rxq_grp,
vport->num_q_vectors);
bufqs_per_vector = vport->num_bufqs_per_qgrp *
DIV_ROUND_UP(vport->num_rxq_grp,
vport->num_q_vectors);
complqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
vport->num_q_vectors);
for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
q_vector = &vport->q_vectors[v_idx];
q_vector->vport = vport;
q_vector->tx_itr_value = IDPF_ITR_TX_DEF;
q_vector->tx_intr_mode = IDPF_ITR_DYNAMIC;
q_vector->tx_itr_idx = VIRTCHNL2_ITR_IDX_1;
q_vector->rx_itr_value = IDPF_ITR_RX_DEF;
q_vector->rx_intr_mode = IDPF_ITR_DYNAMIC;
q_vector->rx_itr_idx = VIRTCHNL2_ITR_IDX_0;
if (!zalloc_cpumask_var(&q_vector->affinity_mask, GFP_KERNEL))
goto error;
q_vector->tx = kcalloc(txqs_per_vector, sizeof(*q_vector->tx),
GFP_KERNEL);
if (!q_vector->tx)
goto error;
q_vector->rx = kcalloc(rxqs_per_vector, sizeof(*q_vector->rx),
GFP_KERNEL);
if (!q_vector->rx)
goto error;
if (!idpf_is_queue_model_split(vport->rxq_model))
continue;
q_vector->bufq = kcalloc(bufqs_per_vector,
sizeof(*q_vector->bufq),
GFP_KERNEL);
if (!q_vector->bufq)
goto error;
q_vector->complq = kcalloc(complqs_per_vector,
sizeof(*q_vector->complq),
GFP_KERNEL);
if (!q_vector->complq)
goto error;
}
return 0;
error:
idpf_vport_intr_rel(vport);
return -ENOMEM;
}
/**
* idpf_vport_intr_init - Setup all vectors for the given vport
* @vport: virtual port
*
* Returns 0 on success or negative on failure
*/
int idpf_vport_intr_init(struct idpf_vport *vport)
{
char *int_name;
int err;
err = idpf_vport_intr_init_vec_idx(vport);
if (err)
return err;
idpf_vport_intr_map_vector_to_qs(vport);
idpf_vport_intr_napi_add_all(vport);
err = vport->adapter->dev_ops.reg_ops.intr_reg_init(vport);
if (err)
goto unroll_vectors_alloc;
int_name = kasprintf(GFP_KERNEL, "%s-%s",
dev_driver_string(&vport->adapter->pdev->dev),
vport->netdev->name);
err = idpf_vport_intr_req_irq(vport, int_name);
if (err)
goto unroll_vectors_alloc;
return 0;
unroll_vectors_alloc:
idpf_vport_intr_napi_del_all(vport);
return err;
}
void idpf_vport_intr_ena(struct idpf_vport *vport)
{
idpf_vport_intr_napi_ena_all(vport);
idpf_vport_intr_ena_irq_all(vport);
}
/**
* idpf_config_rss - Send virtchnl messages to configure RSS
* @vport: virtual port
*
* Return 0 on success, negative on failure
*/
int idpf_config_rss(struct idpf_vport *vport)
{
int err;
err = idpf_send_get_set_rss_key_msg(vport, false);
if (err)
return err;
return idpf_send_get_set_rss_lut_msg(vport, false);
}
/**
* idpf_fill_dflt_rss_lut - Fill the indirection table with the default values
* @vport: virtual port structure
*/
static void idpf_fill_dflt_rss_lut(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
u16 num_active_rxq = vport->num_rxq;
struct idpf_rss_data *rss_data;
int i;
rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
for (i = 0; i < rss_data->rss_lut_size; i++) {
rss_data->rss_lut[i] = i % num_active_rxq;
rss_data->cached_lut[i] = rss_data->rss_lut[i];
}
}
/**
* idpf_init_rss - Allocate and initialize RSS resources
* @vport: virtual port
*
* Return 0 on success, negative on failure
*/
int idpf_init_rss(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
struct idpf_rss_data *rss_data;
u32 lut_size;
rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
lut_size = rss_data->rss_lut_size * sizeof(u32);
rss_data->rss_lut = kzalloc(lut_size, GFP_KERNEL);
if (!rss_data->rss_lut)
return -ENOMEM;
rss_data->cached_lut = kzalloc(lut_size, GFP_KERNEL);
if (!rss_data->cached_lut) {
kfree(rss_data->rss_lut);
rss_data->rss_lut = NULL;
return -ENOMEM;
}
/* Fill the default RSS lut values */
idpf_fill_dflt_rss_lut(vport);
return idpf_config_rss(vport);
}
/**
* idpf_deinit_rss - Release RSS resources
* @vport: virtual port
*/
void idpf_deinit_rss(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
struct idpf_rss_data *rss_data;
rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
kfree(rss_data->cached_lut);
rss_data->cached_lut = NULL;
kfree(rss_data->rss_lut);
rss_data->rss_lut = NULL;
}
|