summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/ice/ice_txrx_lib.c
blob: 23ac4824e97479f9a85f146b4c12a347a78f72bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */

#include <linux/filter.h>

#include "ice_txrx_lib.h"
#include "ice_eswitch.h"
#include "ice_lib.h"

/**
 * ice_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 */
void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
{
	u16 prev_ntu = rx_ring->next_to_use & ~0x7;

	rx_ring->next_to_use = val;

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

	/* QRX_TAIL will be updated with any tail value, but hardware ignores
	 * the lower 3 bits. This makes it so we only bump tail on meaningful
	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
	 * the budget depending on the current traffic load.
	 */
	val &= ~0x7;
	if (prev_ntu != val) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch. (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(val, rx_ring->tail);
	}
}

/**
 * ice_ptype_to_htype - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
 * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
 * Rx desc.
 */
static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
{
	struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;
	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
		return PKT_HASH_TYPE_L2;

	return PKT_HASH_TYPE_NONE;
}

/**
 * ice_rx_hash - set the hash value in the skb
 * @rx_ring: descriptor ring
 * @rx_desc: specific descriptor
 * @skb: pointer to current skb
 * @rx_ptype: the ptype value from the descriptor
 */
static void
ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
	    struct sk_buff *skb, u16 rx_ptype)
{
	struct ice_32b_rx_flex_desc_nic *nic_mdid;
	u32 hash;

	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
		return;

	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
		return;

	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
	hash = le32_to_cpu(nic_mdid->rss_hash);
	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
}

/**
 * ice_rx_csum - Indicate in skb if checksum is good
 * @ring: the ring we care about
 * @skb: skb currently being received and modified
 * @rx_desc: the receive descriptor
 * @ptype: the packet type decoded by hardware
 *
 * skb->protocol must be set before this function is called
 */
static void
ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
	    union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
{
	struct ice_rx_ptype_decoded decoded;
	u16 rx_status0, rx_status1;
	bool ipv4, ipv6;

	rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
	rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);

	decoded = ice_decode_rx_desc_ptype(ptype);

	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
	skb->ip_summed = CHECKSUM_NONE;
	skb_checksum_none_assert(skb);

	/* check if Rx checksum is enabled */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
		return;

	/* check if HW has decoded the packet and checksum */
	if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
		return;

	if (!(decoded.known && decoded.outer_ip))
		return;

	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);

	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
				   BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
		goto checksum_fail;

	if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
		goto checksum_fail;

	/* check for L4 errors and handle packets that were not able to be
	 * checksummed due to arrival speed
	 */
	if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
		goto checksum_fail;

	/* check for outer UDP checksum error in tunneled packets */
	if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
	    (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
		goto checksum_fail;

	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
	 */
	if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case ICE_RX_PTYPE_INNER_PROT_TCP:
	case ICE_RX_PTYPE_INNER_PROT_UDP:
	case ICE_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		break;
	default:
		break;
	}
	return;

checksum_fail:
	ring->vsi->back->hw_csum_rx_error++;
}

/**
 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: Rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 */
void
ice_process_skb_fields(struct ice_rx_ring *rx_ring,
		       union ice_32b_rx_flex_desc *rx_desc,
		       struct sk_buff *skb, u16 ptype)
{
	ice_rx_hash(rx_ring, rx_desc, skb, ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	ice_rx_csum(rx_ring, skb, rx_desc, ptype);

	if (rx_ring->ptp_rx)
		ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
}

/**
 * ice_receive_skb - Send a completed packet up the stack
 * @rx_ring: Rx ring in play
 * @skb: packet to send up
 * @vlan_tag: VLAN tag for packet
 *
 * This function sends the completed packet (via. skb) up the stack using
 * gro receive functions (with/without VLAN tag)
 */
void
ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
{
	netdev_features_t features = rx_ring->netdev->features;
	bool non_zero_vlan = !!(vlan_tag & VLAN_VID_MASK);

	if ((features & NETIF_F_HW_VLAN_CTAG_RX) && non_zero_vlan)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
	else if ((features & NETIF_F_HW_VLAN_STAG_RX) && non_zero_vlan)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);

	napi_gro_receive(&rx_ring->q_vector->napi, skb);
}

/**
 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
 * @xdp_ring: XDP Tx ring
 * @tx_buf: Tx buffer to clean
 */
static void
ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
{
	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
	dma_unmap_len_set(tx_buf, len, 0);

	switch (tx_buf->type) {
	case ICE_TX_BUF_XDP_TX:
		page_frag_free(tx_buf->raw_buf);
		break;
	}

	tx_buf->type = ICE_TX_BUF_EMPTY;
}

/**
 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
 * @xdp_ring: XDP ring to clean
 */
static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
{
	int total_bytes = 0, total_pkts = 0;
	u32 ntc = xdp_ring->next_to_clean;
	struct ice_tx_desc *tx_desc;
	u32 cnt = xdp_ring->count;
	u32 frags, xdp_tx = 0;
	u32 ready_frames = 0;
	u32 idx;
	u32 ret;

	idx = xdp_ring->tx_buf[ntc].rs_idx;
	tx_desc = ICE_TX_DESC(xdp_ring, idx);
	if (tx_desc->cmd_type_offset_bsz &
	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
		if (idx >= ntc)
			ready_frames = idx - ntc + 1;
		else
			ready_frames = idx + cnt - ntc + 1;
	}

	if (unlikely(!ready_frames))
		return 0;
	ret = ready_frames;

	while (ready_frames) {
		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
		struct ice_tx_buf *head = tx_buf;

		/* bytecount holds size of head + frags */
		total_bytes += tx_buf->bytecount;
		frags = tx_buf->nr_frags;
		total_pkts++;
		/* count head + frags */
		ready_frames -= frags + 1;
		xdp_tx++;

		ntc++;
		if (ntc == cnt)
			ntc = 0;

		for (int i = 0; i < frags; i++) {
			tx_buf = &xdp_ring->tx_buf[ntc];

			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
			ntc++;
			if (ntc == cnt)
				ntc = 0;
		}

		ice_clean_xdp_tx_buf(xdp_ring, head);
	}

	tx_desc->cmd_type_offset_bsz = 0;
	xdp_ring->next_to_clean = ntc;
	xdp_ring->xdp_tx_active -= xdp_tx;
	ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);

	return ret;
}

/**
 * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
 * @xdp: XDP buffer to be placed onto Tx descriptors
 * @xdp_ring: XDP ring for transmission
 */
int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring)
{
	struct skb_shared_info *sinfo = NULL;
	u32 size = xdp->data_end - xdp->data;
	struct device *dev = xdp_ring->dev;
	u32 ntu = xdp_ring->next_to_use;
	struct ice_tx_desc *tx_desc;
	struct ice_tx_buf *tx_head;
	struct ice_tx_buf *tx_buf;
	u32 cnt = xdp_ring->count;
	void *data = xdp->data;
	u32 nr_frags = 0;
	u32 free_space;
	u32 frag = 0;

	free_space = ICE_DESC_UNUSED(xdp_ring);
	if (free_space < ICE_RING_QUARTER(xdp_ring))
		free_space += ice_clean_xdp_irq(xdp_ring);

	if (unlikely(!free_space))
		goto busy;

	if (unlikely(xdp_buff_has_frags(xdp))) {
		sinfo = xdp_get_shared_info_from_buff(xdp);
		nr_frags = sinfo->nr_frags;
		if (free_space < nr_frags + 1)
			goto busy;
	}

	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
	tx_head = &xdp_ring->tx_buf[ntu];
	tx_buf = tx_head;

	for (;;) {
		dma_addr_t dma;

		dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, dma))
			goto dma_unmap;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buf, len, size);
		dma_unmap_addr_set(tx_buf, dma, dma);

		tx_desc->buf_addr = cpu_to_le64(dma);
		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
		tx_buf->type = ICE_TX_BUF_XDP_TX;
		tx_buf->raw_buf = data;

		ntu++;
		if (ntu == cnt)
			ntu = 0;

		if (frag == nr_frags)
			break;

		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
		tx_buf = &xdp_ring->tx_buf[ntu];

		data = skb_frag_address(&sinfo->frags[frag]);
		size = skb_frag_size(&sinfo->frags[frag]);
		frag++;
	}

	/* store info about bytecount and frag count in first desc */
	tx_head->bytecount = xdp_get_buff_len(xdp);
	tx_head->nr_frags = nr_frags;

	/* update last descriptor from a frame with EOP */
	tx_desc->cmd_type_offset_bsz |=
		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);

	xdp_ring->xdp_tx_active++;
	xdp_ring->next_to_use = ntu;

	return ICE_XDP_TX;

dma_unmap:
	for (;;) {
		tx_buf = &xdp_ring->tx_buf[ntu];
		dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
			       dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
		dma_unmap_len_set(tx_buf, len, 0);
		if (tx_buf == tx_head)
			break;

		if (!ntu)
			ntu += cnt;
		ntu--;
	}
	return ICE_XDP_CONSUMED;

busy:
	xdp_ring->ring_stats->tx_stats.tx_busy++;

	return ICE_XDP_CONSUMED;
}

/**
 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
 * @xdpf: XDP frame that will be converted to XDP buff
 * @xdp_ring: XDP ring for transmission
 */
int ice_xmit_xdp_ring(struct xdp_frame *xdpf, struct ice_tx_ring *xdp_ring)
{
	struct xdp_buff xdp;

	xdp_convert_frame_to_buff(xdpf, &xdp);
	return __ice_xmit_xdp_ring(&xdp, xdp_ring);
}

/**
 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
 * @xdp_ring: XDP ring
 * @xdp_res: Result of the receive batch
 *
 * This function bumps XDP Tx tail and/or flush redirect map, and
 * should be called when a batch of packets has been processed in the
 * napi loop.
 */
void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
			 u32 first_idx)
{
	struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];

	if (xdp_res & ICE_XDP_REDIR)
		xdp_do_flush_map();

	if (xdp_res & ICE_XDP_TX) {
		if (static_branch_unlikely(&ice_xdp_locking_key))
			spin_lock(&xdp_ring->tx_lock);
		/* store index of descriptor with RS bit set in the first
		 * ice_tx_buf of given NAPI batch
		 */
		tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
		ice_xdp_ring_update_tail(xdp_ring);
		if (static_branch_unlikely(&ice_xdp_locking_key))
			spin_unlock(&xdp_ring->tx_lock);
	}
}