1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc_pc.h"
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_actions_slpc_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_idle.h"
#include "xe_gt_sysfs.h"
#include "xe_gt_types.h"
#include "xe_guc_ct.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#define MCHBAR_MIRROR_BASE_SNB 0x140000
#define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
#define RP0_MASK REG_GENMASK(7, 0)
#define RP1_MASK REG_GENMASK(15, 8)
#define RPN_MASK REG_GENMASK(23, 16)
#define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
#define RPE_MASK REG_GENMASK(15, 8)
#define GT_PERF_STATUS XE_REG(0x1381b4)
#define CAGF_MASK REG_GENMASK(19, 11)
#define GT_FREQUENCY_MULTIPLIER 50
#define GT_FREQUENCY_SCALER 3
/**
* DOC: GuC Power Conservation (PC)
*
* GuC Power Conservation (PC) supports multiple features for the most
* efficient and performing use of the GT when GuC submission is enabled,
* including frequency management, Render-C states management, and various
* algorithms for power balancing.
*
* Single Loop Power Conservation (SLPC) is the name given to the suite of
* connected power conservation features in the GuC firmware. The firmware
* exposes a programming interface to the host for the control of SLPC.
*
* Frequency management:
* =====================
*
* Xe driver enables SLPC with all of its defaults features and frequency
* selection, which varies per platform.
*
* Render-C States:
* ================
*
* Render-C states is also a GuC PC feature that is now enabled in Xe for
* all platforms.
*
*/
static struct xe_guc *
pc_to_guc(struct xe_guc_pc *pc)
{
return container_of(pc, struct xe_guc, pc);
}
static struct xe_device *
pc_to_xe(struct xe_guc_pc *pc)
{
struct xe_guc *guc = pc_to_guc(pc);
struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc);
return gt_to_xe(gt);
}
static struct xe_gt *
pc_to_gt(struct xe_guc_pc *pc)
{
return container_of(pc, struct xe_gt, uc.guc.pc);
}
static struct iosys_map *
pc_to_maps(struct xe_guc_pc *pc)
{
return &pc->bo->vmap;
}
#define slpc_shared_data_read(pc_, field_) \
xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_)
#define slpc_shared_data_write(pc_, field_, val_) \
xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
struct slpc_shared_data, field_, val_)
#define SLPC_EVENT(id, count) \
(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
static int wait_for_pc_state(struct xe_guc_pc *pc,
enum slpc_global_state state)
{
int timeout_us = 5000; /* rought 5ms, but no need for precision */
int slept, wait = 10;
xe_device_assert_mem_access(pc_to_xe(pc));
for (slept = 0; slept < timeout_us;) {
if (slpc_shared_data_read(pc, header.global_state) == state)
return 0;
usleep_range(wait, wait << 1);
slept += wait;
wait <<= 1;
if (slept + wait > timeout_us)
wait = timeout_us - slept;
}
return -ETIMEDOUT;
}
static int pc_action_reset(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
int ret;
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_RESET, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
drm_err(&pc_to_xe(pc)->drm, "GuC PC reset: %pe", ERR_PTR(ret));
return ret;
}
static int pc_action_query_task_state(struct xe_guc_pc *pc)
{
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
int ret;
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
xe_bo_ggtt_addr(pc->bo),
0,
};
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
return -EAGAIN;
/* Blocking here to ensure the results are ready before reading them */
ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
if (ret)
drm_err(&pc_to_xe(pc)->drm,
"GuC PC query task state failed: %pe", ERR_PTR(ret));
return ret;
}
static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
{
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
int ret;
u32 action[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
id,
value,
};
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
return -EAGAIN;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
drm_err(&pc_to_xe(pc)->drm, "GuC PC set param failed: %pe",
ERR_PTR(ret));
return ret;
}
static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
{
struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
u32 action[] = {
XE_GUC_ACTION_SETUP_PC_GUCRC,
mode,
};
int ret;
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
if (ret)
drm_err(&pc_to_xe(pc)->drm, "GuC RC enable failed: %pe",
ERR_PTR(ret));
return ret;
}
static u32 decode_freq(u32 raw)
{
return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
GT_FREQUENCY_SCALER);
}
static u32 encode_freq(u32 freq)
{
return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
GT_FREQUENCY_MULTIPLIER);
}
static u32 pc_get_min_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
/* Allow/Disallow punit to process software freq requests */
xe_mmio_write32(gt, RP_CONTROL, state);
}
static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 rpnswreq;
pc_set_manual_rp_ctrl(pc, true);
/* Req freq is in units of 16.66 Mhz */
rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
xe_mmio_write32(gt, RPNSWREQ, rpnswreq);
/* Sleep for a small time to allow pcode to respond */
usleep_range(100, 300);
pc_set_manual_rp_ctrl(pc, false);
}
static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
/*
* GuC policy is to elevate minimum frequency to the efficient levels
* Our goal is to have the admin choices respected.
*/
pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
freq < pc->rpe_freq);
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
freq);
}
static int pc_get_max_freq(struct xe_guc_pc *pc)
{
u32 freq;
freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
slpc_shared_data_read(pc, task_state_data.freq));
return decode_freq(freq);
}
static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
/*
* Let's only check for the rpn-rp0 range. If max < min,
* min becomes a fixed request.
* Also, overclocking is not supported.
*/
if (freq < pc->rpn_freq || freq > pc->rp0_freq)
return -EINVAL;
return pc_action_set_param(pc,
SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
freq);
}
static void mtl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY);
else
reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY);
pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
}
static void tgl_update_rpe_value(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
/*
* For PVC we still need to use fused RP1 as the approximation for RPe
* For other platforms than PVC we get the resolved RPe directly from
* PCODE at a different register
*/
if (xe->info.platform == XE_PVC)
reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
else
reg = xe_mmio_read32(gt, FREQ_INFO_REC);
pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
static void pc_update_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270)
mtl_update_rpe_value(pc);
else
tgl_update_rpe_value(pc);
/*
* RPe is decided at runtime by PCODE. In the rare case where that's
* smaller than the fused min, we will trust the PCODE and use that
* as our minimum one.
*/
pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
}
/**
* xe_guc_pc_get_act_freq - Get Actual running frequency
* @pc: The GuC PC
*
* Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
*/
u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 freq;
/* When in RC6, actual frequency reported will be 0. */
if (GRAPHICS_VERx100(xe) >= 1270) {
freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
} else {
freq = xe_mmio_read32(gt, GT_PERF_STATUS);
freq = REG_FIELD_GET(CAGF_MASK, freq);
}
freq = decode_freq(freq);
return freq;
}
/**
* xe_guc_pc_get_cur_freq - Get Current requested frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
{
struct xe_gt *gt = pc_to_gt(pc);
int ret;
/*
* GuC SLPC plays with cur freq request when GuCRC is enabled
* Block RC6 for a more reliable read.
*/
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
*freq = xe_mmio_read32(gt, RPNSWREQ);
*freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq);
*freq = decode_freq(*freq);
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return 0;
}
/**
* xe_guc_pc_get_rp0_freq - Get the RP0 freq
* @pc: The GuC PC
*
* Returns: RP0 freq.
*/
u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
{
return pc->rp0_freq;
}
/**
* xe_guc_pc_get_rpe_freq - Get the RPe freq
* @pc: The GuC PC
*
* Returns: RPe freq.
*/
u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
{
pc_update_rp_values(pc);
return pc->rpe_freq;
}
/**
* xe_guc_pc_get_rpn_freq - Get the RPn freq
* @pc: The GuC PC
*
* Returns: RPn freq.
*/
u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
{
return pc->rpn_freq;
}
/**
* xe_guc_pc_get_min_freq - Get the min operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
{
struct xe_gt *gt = pc_to_gt(pc);
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
/*
* GuC SLPC plays with min freq request when GuCRC is enabled
* Block RC6 for a more reliable read.
*/
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
goto out;
ret = pc_action_query_task_state(pc);
if (ret)
goto fw;
*freq = pc_get_min_freq(pc);
fw:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_set_min_freq - Set the minimal operational frequency
* @pc: The GuC PC
* @freq: The selected minimal frequency
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_set_min_freq(pc, freq);
if (ret)
goto out;
pc->user_requested_min = freq;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_get_max_freq - Get Maximum operational frequency
* @pc: The GuC PC
* @freq: A pointer to a u32 where the freq value will be returned
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset).
*/
int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_action_query_task_state(pc);
if (ret)
goto out;
*freq = pc_get_max_freq(pc);
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_set_max_freq - Set the maximum operational frequency
* @pc: The GuC PC
* @freq: The selected maximum frequency value
*
* Returns: 0 on success,
* -EAGAIN if GuC PC not ready (likely in middle of a reset),
* -EINVAL if value out of bounds.
*/
int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
{
int ret;
mutex_lock(&pc->freq_lock);
if (!pc->freq_ready) {
/* Might be in the middle of a gt reset */
ret = -EAGAIN;
goto out;
}
ret = pc_set_max_freq(pc, freq);
if (ret)
goto out;
pc->user_requested_max = freq;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_c_status - get the current GT C state
* @pc: XE_GuC_PC instance
*/
enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg, gt_c_state;
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
} else {
reg = xe_mmio_read32(gt, GT_CORE_STATUS);
gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
}
switch (gt_c_state) {
case GT_C6:
return GT_IDLE_C6;
case GT_C0:
return GT_IDLE_C0;
default:
return GT_IDLE_UNKNOWN;
}
}
/**
* xe_guc_pc_rc6_residency - rc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
reg = xe_mmio_read32(gt, GT_GFX_RC6);
return reg;
}
/**
* xe_guc_pc_mc6_residency - mc6 residency counter
* @pc: Xe_GuC_PC instance
*/
u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u64 reg;
reg = xe_mmio_read32(gt, MTL_MEDIA_MC6);
return reg;
}
static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe_gt_is_media_type(gt))
reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP);
else
reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP);
pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
}
static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
u32 reg;
xe_device_assert_mem_access(pc_to_xe(pc));
if (xe->info.platform == XE_PVC)
reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
else
reg = xe_mmio_read32(gt, RP_STATE_CAP);
pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
}
static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1270)
mtl_init_fused_rp_values(pc);
else
tgl_init_fused_rp_values(pc);
}
/**
* xe_guc_pc_init_early - Initialize RPx values and request a higher GT
* frequency to allow faster GuC load times
* @pc: Xe_GuC_PC instance
*/
void xe_guc_pc_init_early(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
pc_init_fused_rp_values(pc);
pc_set_cur_freq(pc, pc->rp0_freq);
}
static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
{
int ret;
lockdep_assert_held(&pc->freq_lock);
ret = pc_action_query_task_state(pc);
if (ret)
goto out;
/*
* GuC defaults to some RPmax that is not actually achievable without
* overclocking. Let's adjust it to the Hardware RP0, which is the
* regular maximum
*/
if (pc_get_max_freq(pc) > pc->rp0_freq) {
ret = pc_set_max_freq(pc, pc->rp0_freq);
if (ret)
goto out;
}
/*
* Same thing happens for Server platforms where min is listed as
* RPMax
*/
if (pc_get_min_freq(pc) > pc->rp0_freq)
ret = pc_set_min_freq(pc, pc->rp0_freq);
out:
return ret;
}
static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
{
int ret = 0;
lockdep_assert_held(&pc->freq_lock);
if (pc->user_requested_min != 0) {
ret = pc_set_min_freq(pc, pc->user_requested_min);
if (ret)
return ret;
}
if (pc->user_requested_max != 0) {
ret = pc_set_max_freq(pc, pc->user_requested_max);
if (ret)
return ret;
}
return ret;
}
/**
* xe_guc_pc_gucrc_disable - Disable GuC RC
* @pc: Xe_GuC_PC instance
*
* Disables GuC RC by taking control of RC6 back from GuC.
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
int ret = 0;
if (xe->info.skip_guc_pc)
return 0;
ret = pc_action_setup_gucrc(pc, XE_GUCRC_HOST_CONTROL);
if (ret)
return ret;
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
xe_gt_idle_disable_c6(gt);
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return 0;
}
static void pc_init_pcode_freq(struct xe_guc_pc *pc)
{
u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
XE_WARN_ON(xe_pcode_init_min_freq_table(pc_to_gt(pc), min, max));
}
static int pc_init_freqs(struct xe_guc_pc *pc)
{
int ret;
mutex_lock(&pc->freq_lock);
ret = pc_adjust_freq_bounds(pc);
if (ret)
goto out;
ret = pc_adjust_requested_freq(pc);
if (ret)
goto out;
pc_update_rp_values(pc);
pc_init_pcode_freq(pc);
/*
* The frequencies are really ready for use only after the user
* requested ones got restored.
*/
pc->freq_ready = true;
out:
mutex_unlock(&pc->freq_lock);
return ret;
}
/**
* xe_guc_pc_start - Start GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_start(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
struct xe_gt *gt = pc_to_gt(pc);
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int ret;
xe_gt_assert(gt, xe_device_uc_enabled(xe));
ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (ret)
return ret;
if (xe->info.skip_guc_pc) {
if (xe->info.platform != XE_PVC)
xe_gt_idle_enable_c6(gt);
/* Request max possible since dynamic freq mgmt is not enabled */
pc_set_cur_freq(pc, UINT_MAX);
ret = 0;
goto out;
}
memset(pc->bo->vmap.vaddr, 0, size);
slpc_shared_data_write(pc, header.size, size);
ret = pc_action_reset(pc);
if (ret)
goto out;
if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) {
drm_err(&pc_to_xe(pc)->drm, "GuC PC Start failed\n");
ret = -EIO;
goto out;
}
ret = pc_init_freqs(pc);
if (ret)
goto out;
if (xe->info.platform == XE_PVC) {
xe_guc_pc_gucrc_disable(pc);
ret = 0;
goto out;
}
ret = pc_action_setup_gucrc(pc, XE_GUCRC_FIRMWARE_CONTROL);
out:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
return ret;
}
/**
* xe_guc_pc_stop - Stop GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_stop(struct xe_guc_pc *pc)
{
struct xe_device *xe = pc_to_xe(pc);
if (xe->info.skip_guc_pc) {
xe_gt_idle_disable_c6(pc_to_gt(pc));
return 0;
}
mutex_lock(&pc->freq_lock);
pc->freq_ready = false;
mutex_unlock(&pc->freq_lock);
return 0;
}
/**
* xe_guc_pc_fini - Finalize GuC's Power Conservation component
* @drm: DRM device
* @arg: opaque pointer that should point to Xe_GuC_PC instance
*/
static void xe_guc_pc_fini(struct drm_device *drm, void *arg)
{
struct xe_guc_pc *pc = arg;
struct xe_device *xe = pc_to_xe(pc);
if (xe->info.skip_guc_pc) {
xe_gt_idle_disable_c6(pc_to_gt(pc));
return;
}
XE_WARN_ON(xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL));
XE_WARN_ON(xe_guc_pc_gucrc_disable(pc));
XE_WARN_ON(xe_guc_pc_stop(pc));
xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
}
/**
* xe_guc_pc_init - Initialize GuC's Power Conservation component
* @pc: Xe_GuC_PC instance
*/
int xe_guc_pc_init(struct xe_guc_pc *pc)
{
struct xe_gt *gt = pc_to_gt(pc);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = gt_to_xe(gt);
struct xe_bo *bo;
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int err;
if (xe->info.skip_guc_pc)
return 0;
err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
if (err)
return err;
bo = xe_managed_bo_create_pin_map(xe, tile, size,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE);
if (IS_ERR(bo))
return PTR_ERR(bo);
pc->bo = bo;
return drmm_add_action_or_reset(&xe->drm, xe_guc_pc_fini, pc);
}
|