1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Intel(R) 10nm server memory controller.
* Copyright (c) 2019, Intel Corporation.
*
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"
#define I10NM_REVISION "v0.0.6"
#define EDAC_MOD_STR "i10nm_edac"
/* Debug macros */
#define i10nm_printk(level, fmt, arg...) \
edac_printk(level, "i10nm", fmt, ##arg)
#define I10NM_GET_SCK_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd0, &(reg))
#define I10NM_GET_IMC_BAR(d, i, reg) \
pci_read_config_dword((d)->uracu, \
(res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg))
#define I10NM_GET_SAD(d, offset, i, reg)\
pci_read_config_dword((d)->sad_all, (offset) + (i) * \
(res_cfg->type == GNR ? 12 : 8), &(reg))
#define I10NM_GET_HBM_IMC_BAR(d, reg) \
pci_read_config_dword((d)->uracu, 0xd4, &(reg))
#define I10NM_GET_CAPID3_CFG(d, reg) \
pci_read_config_dword((d)->pcu_cr3, \
res_cfg->type == GNR ? 0x290 : 0x90, &(reg))
#define I10NM_GET_CAPID5_CFG(d, reg) \
pci_read_config_dword((d)->pcu_cr3, \
res_cfg->type == GNR ? 0x298 : 0x98, &(reg))
#define I10NM_GET_DIMMMTR(m, i, j) \
readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \
(res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \
(i) * (m)->chan_mmio_sz + (j) * 4)
#define I10NM_GET_MCDDRTCFG(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_MCMTR(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \
(res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_AMAP(m, i) \
readl((m)->mbase + ((m)->hbm_mc ? 0x814 : \
(res_cfg->type == GNR ? 0xc14 : 0x20814)) + \
(i) * (m)->chan_mmio_sz)
#define I10NM_GET_REG32(m, i, offset) \
readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_REG64(m, i, offset) \
readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_SET_REG32(m, i, offset, v) \
writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23)
#define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12)
#define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \
GET_BITFIELD(reg, 0, 10) + 1) << 12)
#define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \
((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000)
#define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000
#define I10NM_GNR_IMC_MMIO_SIZE 0x4000
#define I10NM_HBM_IMC_MMIO_SIZE 0x9000
#define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24)
#define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30)
#define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29)
#define I10NM_MAX_SAD 16
#define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5)
#define RETRY_RD_ERR_LOG_UC BIT(1)
#define RETRY_RD_ERR_LOG_NOOVER BIT(14)
#define RETRY_RD_ERR_LOG_EN BIT(15)
#define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1))
#define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0))
static struct list_head *i10nm_edac_list;
static struct res_config *res_cfg;
static int retry_rd_err_log;
static int decoding_via_mca;
static bool mem_cfg_2lm;
static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr_hbm0[] = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8};
static u32 offsets_scrub_spr_hbm1[] = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8};
static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10};
static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0};
static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0};
static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable,
u32 *offsets_scrub, u32 *offsets_demand,
u32 *offsets_demand2)
{
u32 s, d, d2;
s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]);
d = I10NM_GET_REG32(imc, chan, offsets_demand[0]);
if (offsets_demand2)
d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]);
if (enable) {
/* Save default configurations */
imc->chan[chan].retry_rd_err_log_s = s;
imc->chan[chan].retry_rd_err_log_d = d;
if (offsets_demand2)
imc->chan[chan].retry_rd_err_log_d2 = d2;
s &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
s |= RETRY_RD_ERR_LOG_EN;
d &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
d |= RETRY_RD_ERR_LOG_EN;
if (offsets_demand2) {
d2 &= ~RETRY_RD_ERR_LOG_UC;
d2 |= RETRY_RD_ERR_LOG_NOOVER;
d2 |= RETRY_RD_ERR_LOG_EN;
}
} else {
/* Restore default configurations */
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC)
s |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER)
s |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN))
s &= ~RETRY_RD_ERR_LOG_EN;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC)
d |= RETRY_RD_ERR_LOG_UC;
if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER)
d |= RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN))
d &= ~RETRY_RD_ERR_LOG_EN;
if (offsets_demand2) {
if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC)
d2 |= RETRY_RD_ERR_LOG_UC;
if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER))
d2 &= ~RETRY_RD_ERR_LOG_NOOVER;
if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN))
d2 &= ~RETRY_RD_ERR_LOG_EN;
}
}
I10NM_SET_REG32(imc, chan, offsets_scrub[0], s);
I10NM_SET_REG32(imc, chan, offsets_demand[0], d);
if (offsets_demand2)
I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2);
}
static void enable_retry_rd_err_log(bool enable)
{
int i, j, imc_num, chan_num;
struct skx_imc *imc;
struct skx_dev *d;
edac_dbg(2, "\n");
list_for_each_entry(d, i10nm_edac_list, list) {
imc_num = res_cfg->ddr_imc_num;
chan_num = res_cfg->ddr_chan_num;
for (i = 0; i < imc_num; i++) {
imc = &d->imc[i];
if (!imc->mbase)
continue;
for (j = 0; j < chan_num; j++)
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub,
res_cfg->offsets_demand,
res_cfg->offsets_demand2);
}
imc_num += res_cfg->hbm_imc_num;
chan_num = res_cfg->hbm_chan_num;
for (; i < imc_num; i++) {
imc = &d->imc[i];
if (!imc->mbase || !imc->hbm_mc)
continue;
for (j = 0; j < chan_num; j++) {
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub_hbm0,
res_cfg->offsets_demand_hbm0,
NULL);
__enable_retry_rd_err_log(imc, j, enable,
res_cfg->offsets_scrub_hbm1,
res_cfg->offsets_demand_hbm1,
NULL);
}
}
}
}
static void show_retry_rd_err_log(struct decoded_addr *res, char *msg,
int len, bool scrub_err)
{
struct skx_imc *imc = &res->dev->imc[res->imc];
u32 log0, log1, log2, log3, log4;
u32 corr0, corr1, corr2, corr3;
u32 lxg0, lxg1, lxg3, lxg4;
u32 *xffsets = NULL;
u64 log2a, log5;
u64 lxg2a, lxg5;
u32 *offsets;
int n, pch;
if (!imc->mbase)
return;
if (imc->hbm_mc) {
pch = res->cs & 1;
if (pch)
offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 :
res_cfg->offsets_demand_hbm1;
else
offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 :
res_cfg->offsets_demand_hbm0;
} else {
if (scrub_err) {
offsets = res_cfg->offsets_scrub;
} else {
offsets = res_cfg->offsets_demand;
xffsets = res_cfg->offsets_demand2;
}
}
log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]);
log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]);
log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]);
log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]);
log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]);
if (xffsets) {
lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]);
lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]);
lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]);
lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]);
lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]);
}
if (res_cfg->type == SPR) {
log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx",
log0, log1, log2a, log3, log4, log5);
if (len - n > 0) {
if (xffsets) {
lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]);
n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]",
lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5);
} else {
n += snprintf(msg + n, len - n, "]");
}
}
} else {
log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]);
n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]",
log0, log1, log2, log3, log4, log5);
}
if (imc->hbm_mc) {
if (pch) {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24);
} else {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824);
}
} else {
corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18);
corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c);
corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20);
corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24);
}
if (len - n > 0)
snprintf(msg + n, len - n,
" correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
corr0 & 0xffff, corr0 >> 16,
corr1 & 0xffff, corr1 >> 16,
corr2 & 0xffff, corr2 >> 16,
corr3 & 0xffff, corr3 >> 16);
/* Clear status bits */
if (retry_rd_err_log == 2) {
if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) {
log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
I10NM_SET_REG32(imc, res->channel, offsets[0], log0);
}
if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) {
lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0);
}
}
}
static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus,
unsigned int dev, unsigned int fun)
{
struct pci_dev *pdev;
pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun));
if (!pdev) {
edac_dbg(2, "No device %02x:%02x.%x\n",
bus, dev, fun);
return NULL;
}
if (unlikely(pci_enable_device(pdev) < 0)) {
edac_dbg(2, "Failed to enable device %02x:%02x.%x\n",
bus, dev, fun);
pci_dev_put(pdev);
return NULL;
}
return pdev;
}
/**
* i10nm_get_imc_num() - Get the number of present DDR memory controllers.
*
* @cfg : The pointer to the structure of EDAC resource configurations.
*
* For Granite Rapids CPUs, the number of present DDR memory controllers read
* at runtime overwrites the value statically configured in @cfg->ddr_imc_num.
* For other CPUs, the number of present DDR memory controllers is statically
* configured in @cfg->ddr_imc_num.
*
* RETURNS : 0 on success, < 0 on failure.
*/
static int i10nm_get_imc_num(struct res_config *cfg)
{
int n, imc_num, chan_num = 0;
struct skx_dev *d;
u32 reg;
list_for_each_entry(d, i10nm_edac_list, list) {
d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus],
res_cfg->pcu_cr3_bdf.dev,
res_cfg->pcu_cr3_bdf.fun);
if (!d->pcu_cr3)
continue;
if (I10NM_GET_CAPID5_CFG(d, reg))
continue;
n = I10NM_DDR_IMC_CH_CNT(reg);
if (!chan_num) {
chan_num = n;
edac_dbg(2, "Get DDR CH number: %d\n", chan_num);
} else if (chan_num != n) {
i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n);
}
}
switch (cfg->type) {
case GNR:
/*
* One channel per DDR memory controller for Granite Rapids CPUs.
*/
imc_num = chan_num;
if (!imc_num) {
i10nm_printk(KERN_ERR, "Invalid DDR MC number\n");
return -ENODEV;
}
if (imc_num > I10NM_NUM_DDR_IMC) {
i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num);
return -EINVAL;
}
if (cfg->ddr_imc_num != imc_num) {
/*
* Store the number of present DDR memory controllers.
*/
cfg->ddr_imc_num = imc_num;
edac_dbg(2, "Set DDR MC number: %d", imc_num);
}
return 0;
default:
/*
* For other CPUs, the number of present DDR memory controllers
* is statically pre-configured in cfg->ddr_imc_num.
*/
return 0;
}
}
static bool i10nm_check_2lm(struct res_config *cfg)
{
struct skx_dev *d;
u32 reg;
int i;
list_for_each_entry(d, i10nm_edac_list, list) {
d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus],
res_cfg->sad_all_bdf.dev,
res_cfg->sad_all_bdf.fun);
if (!d->sad_all)
continue;
for (i = 0; i < I10NM_MAX_SAD; i++) {
I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg);
if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) {
edac_dbg(2, "2-level memory configuration.\n");
return true;
}
}
}
return false;
}
/*
* Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code.
* Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS.
*/
static bool i10nm_mscod_is_ddrt(u32 mscod)
{
switch (res_cfg->type) {
case I10NM:
switch (mscod) {
case 0x0106: case 0x0107:
case 0x0800: case 0x0804:
case 0x0806 ... 0x0808:
case 0x080a ... 0x080e:
case 0x0810: case 0x0811:
case 0x0816: case 0x081e:
case 0x081f:
return true;
}
break;
case SPR:
switch (mscod) {
case 0x0800: case 0x0804:
case 0x0806 ... 0x0808:
case 0x080a ... 0x080e:
case 0x0810: case 0x0811:
case 0x0816: case 0x081e:
case 0x081f:
return true;
}
break;
default:
return false;
}
return false;
}
static bool i10nm_mc_decode_available(struct mce *mce)
{
#define ICX_IMCx_CHy 0x06666000
u8 bank;
if (!decoding_via_mca || mem_cfg_2lm)
return false;
if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
!= (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
return false;
bank = mce->bank;
switch (res_cfg->type) {
case I10NM:
/* Check whether the bank is one of {13,14,17,18,21,22,25,26} */
if (!(ICX_IMCx_CHy & (1 << bank)))
return false;
break;
case SPR:
if (bank < 13 || bank > 20)
return false;
break;
default:
return false;
}
/* DDRT errors can't be decoded from MCA bank registers */
if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT)
return false;
if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status)))
return false;
return true;
}
static bool i10nm_mc_decode(struct decoded_addr *res)
{
struct mce *m = res->mce;
struct skx_dev *d;
u8 bank;
if (!i10nm_mc_decode_available(m))
return false;
list_for_each_entry(d, i10nm_edac_list, list) {
if (d->imc[0].src_id == m->socketid) {
res->socket = m->socketid;
res->dev = d;
break;
}
}
switch (res_cfg->type) {
case I10NM:
bank = m->bank - 13;
res->imc = bank / 4;
res->channel = bank % 2;
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
res->row = GET_BITFIELD(m->misc, 19, 39);
res->bank_group = GET_BITFIELD(m->misc, 40, 41);
res->bank_address = GET_BITFIELD(m->misc, 42, 43);
res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2;
res->rank = GET_BITFIELD(m->misc, 56, 58);
res->dimm = res->rank >> 2;
res->rank = res->rank % 4;
break;
case SPR:
bank = m->bank - 13;
res->imc = bank / 2;
res->channel = bank % 2;
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
res->row = GET_BITFIELD(m->misc, 19, 36);
res->bank_group = GET_BITFIELD(m->misc, 37, 38);
res->bank_address = GET_BITFIELD(m->misc, 39, 40);
res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2;
res->rank = GET_BITFIELD(m->misc, 57, 57);
res->dimm = GET_BITFIELD(m->misc, 58, 58);
break;
default:
return false;
}
if (!res->dev) {
skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
m->socketid, res->imc);
return false;
}
return true;
}
/**
* get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller.
*
* @d : The pointer to the structure of CPU socket EDAC device.
* @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1).
* @physical_idx : To store the corresponding physical index of @logical_idx.
*
* RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure.
*/
static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx)
{
#define GNR_MAX_IMC_PCI_CNT 28
struct pci_dev *mdev;
int i, logical = 0;
/*
* Detect present memory controllers from { PCI device: 8-5, function 7-1 }
*/
for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) {
mdev = pci_get_dev_wrapper(d->seg,
d->bus[res_cfg->ddr_mdev_bdf.bus],
res_cfg->ddr_mdev_bdf.dev + i / 7,
res_cfg->ddr_mdev_bdf.fun + i % 7);
if (mdev) {
if (logical == logical_idx) {
*physical_idx = i;
return mdev;
}
pci_dev_put(mdev);
logical++;
}
}
return NULL;
}
/**
* get_ddr_munit() - Get the resource of the i-th DDR memory controller.
*
* @d : The pointer to the structure of CPU socket EDAC device.
* @i : The index of the CPU socket relative DDR memory controller.
* @offset : To store the MMIO offset of the i-th DDR memory controller.
* @size : To store the MMIO size of the i-th DDR memory controller.
*
* RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure.
*/
static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size)
{
struct pci_dev *mdev;
int physical_idx;
u32 reg;
switch (res_cfg->type) {
case GNR:
if (I10NM_GET_IMC_BAR(d, 0, reg)) {
i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n");
return NULL;
}
mdev = get_gnr_mdev(d, i, &physical_idx);
if (!mdev)
return NULL;
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg) +
I10NM_GNR_IMC_MMIO_OFFSET +
physical_idx * I10NM_GNR_IMC_MMIO_SIZE;
*size = I10NM_GNR_IMC_MMIO_SIZE;
break;
default:
if (I10NM_GET_IMC_BAR(d, i, reg)) {
i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i);
return NULL;
}
mdev = pci_get_dev_wrapper(d->seg,
d->bus[res_cfg->ddr_mdev_bdf.bus],
res_cfg->ddr_mdev_bdf.dev + i,
res_cfg->ddr_mdev_bdf.fun);
if (!mdev)
return NULL;
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg);
*size = I10NM_GET_IMC_MMIO_SIZE(reg);
}
return mdev;
}
/**
* i10nm_imc_absent() - Check whether the memory controller @imc is absent
*
* @imc : The pointer to the structure of memory controller EDAC device.
*
* RETURNS : true if the memory controller EDAC device is absent, false otherwise.
*/
static bool i10nm_imc_absent(struct skx_imc *imc)
{
u32 mcmtr;
int i;
switch (res_cfg->type) {
case SPR:
for (i = 0; i < res_cfg->ddr_chan_num; i++) {
mcmtr = I10NM_GET_MCMTR(imc, i);
edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr);
if (mcmtr != ~0)
return false;
}
/*
* Some workstations' absent memory controllers still
* appear as PCIe devices, misleading the EDAC driver.
* By observing that the MMIO registers of these absent
* memory controllers consistently hold the value of ~0.
*
* We identify a memory controller as absent by checking
* if its MMIO register "mcmtr" == ~0 in all its channels.
*/
return true;
default:
return false;
}
}
static int i10nm_get_ddr_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
unsigned long size;
struct skx_dev *d;
int i, lmc, j = 0;
u32 reg, off;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus],
res_cfg->util_all_bdf.dev,
res_cfg->util_all_bdf.fun);
if (!d->util_all)
return -ENODEV;
d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus],
res_cfg->uracu_bdf.dev,
res_cfg->uracu_bdf.fun);
if (!d->uracu)
return -ENODEV;
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n",
j++, base, reg);
for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) {
mdev = get_ddr_munit(d, i, &off, &size);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No IMC found\n");
return -ENODEV;
}
if (!mdev)
continue;
edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n",
i, base + off, size, reg);
mbase = ioremap(base + off, size);
if (!mbase) {
i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n",
base + off);
return -ENODEV;
}
d->imc[lmc].mbase = mbase;
if (i10nm_imc_absent(&d->imc[lmc])) {
pci_dev_put(mdev);
iounmap(mbase);
d->imc[lmc].mbase = NULL;
edac_dbg(2, "Skip absent mc%d\n", i);
continue;
} else {
d->imc[lmc].mdev = mdev;
lmc++;
}
}
}
return 0;
}
static bool i10nm_check_hbm_imc(struct skx_dev *d)
{
u32 reg;
if (I10NM_GET_CAPID3_CFG(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n");
return false;
}
return I10NM_IS_HBM_PRESENT(reg) != 0;
}
static int i10nm_get_hbm_munits(void)
{
struct pci_dev *mdev;
void __iomem *mbase;
u32 reg, off, mcmtr;
struct skx_dev *d;
int i, lmc;
u64 base;
list_for_each_entry(d, i10nm_edac_list, list) {
if (!d->pcu_cr3)
return -ENODEV;
if (!i10nm_check_hbm_imc(d)) {
i10nm_printk(KERN_DEBUG, "No hbm memory\n");
return -ENODEV;
}
if (I10NM_GET_SCK_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get socket bar\n");
return -ENODEV;
}
base = I10NM_GET_SCK_MMIO_BASE(reg);
if (I10NM_GET_HBM_IMC_BAR(d, reg)) {
i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n");
return -ENODEV;
}
base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg);
lmc = res_cfg->ddr_imc_num;
for (i = 0; i < res_cfg->hbm_imc_num; i++) {
mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus],
res_cfg->hbm_mdev_bdf.dev + i / 4,
res_cfg->hbm_mdev_bdf.fun + i % 4);
if (i == 0 && !mdev) {
i10nm_printk(KERN_ERR, "No hbm mc found\n");
return -ENODEV;
}
if (!mdev)
continue;
d->imc[lmc].mdev = mdev;
off = i * I10NM_HBM_IMC_MMIO_SIZE;
edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n",
lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE);
mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE);
if (!mbase) {
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n",
base + off);
return -ENOMEM;
}
d->imc[lmc].mbase = mbase;
d->imc[lmc].hbm_mc = true;
mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0);
if (!I10NM_IS_HBM_IMC(mcmtr)) {
iounmap(d->imc[lmc].mbase);
d->imc[lmc].mbase = NULL;
d->imc[lmc].hbm_mc = false;
pci_dev_put(d->imc[lmc].mdev);
d->imc[lmc].mdev = NULL;
i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n");
return -ENODEV;
}
lmc++;
}
}
return 0;
}
static struct res_config i10nm_cfg0 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xcc,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_bdf = {1, 29, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config i10nm_cfg1 = {
.type = I10NM,
.decs_did = 0x3452,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.sad_all_bdf = {1, 29, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x108,
.offsets_scrub = offsets_scrub_icx,
.offsets_demand = offsets_demand_icx,
};
static struct res_config spr_cfg = {
.type = SPR,
.decs_did = 0x3252,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 4,
.ddr_chan_num = 2,
.ddr_dimm_num = 2,
.hbm_imc_num = 16,
.hbm_chan_num = 2,
.hbm_dimm_num = 1,
.ddr_chan_mmio_sz = 0x8000,
.hbm_chan_mmio_sz = 0x4000,
.support_ddr5 = true,
.sad_all_bdf = {1, 10, 0},
.pcu_cr3_bdf = {1, 30, 3},
.util_all_bdf = {1, 29, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 12, 0},
.hbm_mdev_bdf = {0, 12, 1},
.sad_all_offset = 0x300,
.offsets_scrub = offsets_scrub_spr,
.offsets_scrub_hbm0 = offsets_scrub_spr_hbm0,
.offsets_scrub_hbm1 = offsets_scrub_spr_hbm1,
.offsets_demand = offsets_demand_spr,
.offsets_demand2 = offsets_demand2_spr,
.offsets_demand_hbm0 = offsets_demand_spr_hbm0,
.offsets_demand_hbm1 = offsets_demand_spr_hbm1,
};
static struct res_config gnr_cfg = {
.type = GNR,
.decs_did = 0x3252,
.busno_cfg_offset = 0xd0,
.ddr_imc_num = 12,
.ddr_chan_num = 1,
.ddr_dimm_num = 2,
.ddr_chan_mmio_sz = 0x4000,
.support_ddr5 = true,
.sad_all_bdf = {0, 13, 0},
.pcu_cr3_bdf = {0, 5, 0},
.util_all_bdf = {0, 13, 1},
.uracu_bdf = {0, 0, 1},
.ddr_mdev_bdf = {0, 5, 1},
.sad_all_offset = 0x300,
};
static const struct x86_cpu_id i10nm_cpuids[] = {
X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1),
X86_MATCH_VFM_STEPPINGS(INTEL_SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg),
X86_MATCH_VFM_STEPPINGS(INTEL_EMERALDRAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg),
X86_MATCH_VFM_STEPPINGS(INTEL_GRANITERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT, X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
{}
};
MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids);
static bool i10nm_check_ecc(struct skx_imc *imc, int chan)
{
u32 mcmtr;
mcmtr = I10NM_GET_MCMTR(imc, chan);
edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr);
return !!GET_BITFIELD(mcmtr, 2, 2);
}
static int i10nm_get_dimm_config(struct mem_ctl_info *mci,
struct res_config *cfg)
{
struct skx_pvt *pvt = mci->pvt_info;
struct skx_imc *imc = pvt->imc;
u32 mtr, amap, mcddrtcfg = 0;
struct dimm_info *dimm;
int i, j, ndimms;
for (i = 0; i < imc->num_channels; i++) {
if (!imc->mbase)
continue;
ndimms = 0;
amap = I10NM_GET_AMAP(imc, i);
if (res_cfg->type != GNR)
mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i);
for (j = 0; j < imc->num_dimms; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
mtr = I10NM_GET_DIMMMTR(imc, i, j);
edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n",
mtr, mcddrtcfg, imc->mc, i, j);
if (IS_DIMM_PRESENT(mtr))
ndimms += skx_get_dimm_info(mtr, 0, amap, dimm,
imc, i, j, cfg);
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
EDAC_MOD_STR);
}
if (ndimms && !i10nm_check_ecc(imc, i)) {
i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n",
imc->mc, i);
return -ENODEV;
}
}
return 0;
}
static struct notifier_block i10nm_mce_dec = {
.notifier_call = skx_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature.
* Exercise the address decode logic by writing an address to
* /sys/kernel/debug/edac/i10nm_test/addr.
*/
static struct dentry *i10nm_test;
static int debugfs_u64_set(void *data, u64 val)
{
struct mce m;
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
memset(&m, 0, sizeof(m));
/* ADDRV + MemRd + Unknown channel */
m.status = MCI_STATUS_ADDRV + 0x90;
/* One corrected error */
m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
m.addr = val;
skx_mce_check_error(NULL, 0, &m);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void setup_i10nm_debug(void)
{
i10nm_test = edac_debugfs_create_dir("i10nm_test");
if (!i10nm_test)
return;
if (!edac_debugfs_create_file("addr", 0200, i10nm_test,
NULL, &fops_u64_wo)) {
debugfs_remove(i10nm_test);
i10nm_test = NULL;
}
}
static void teardown_i10nm_debug(void)
{
debugfs_remove_recursive(i10nm_test);
}
#else
static inline void setup_i10nm_debug(void) {}
static inline void teardown_i10nm_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/
static int __init i10nm_init(void)
{
u8 mc = 0, src_id = 0, node_id = 0;
const struct x86_cpu_id *id;
struct res_config *cfg;
const char *owner;
struct skx_dev *d;
int rc, i, off[3] = {0xd0, 0xc8, 0xcc};
u64 tolm, tohm;
int imc_num;
edac_dbg(2, "\n");
if (ghes_get_devices())
return -EBUSY;
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
return -ENODEV;
id = x86_match_cpu(i10nm_cpuids);
if (!id)
return -ENODEV;
cfg = (struct res_config *)id->driver_data;
res_cfg = cfg;
rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);
if (rc)
return rc;
rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list);
if (rc < 0)
goto fail;
if (rc == 0) {
i10nm_printk(KERN_ERR, "No memory controllers found\n");
return -ENODEV;
}
rc = i10nm_get_imc_num(cfg);
if (rc < 0)
goto fail;
mem_cfg_2lm = i10nm_check_2lm(cfg);
skx_set_mem_cfg(mem_cfg_2lm);
rc = i10nm_get_ddr_munits();
if (i10nm_get_hbm_munits() && rc)
goto fail;
imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num;
list_for_each_entry(d, i10nm_edac_list, list) {
rc = skx_get_src_id(d, 0xf8, &src_id);
if (rc < 0)
goto fail;
rc = skx_get_node_id(d, &node_id);
if (rc < 0)
goto fail;
edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id);
for (i = 0; i < imc_num; i++) {
if (!d->imc[i].mdev)
continue;
d->imc[i].mc = mc++;
d->imc[i].lmc = i;
d->imc[i].src_id = src_id;
d->imc[i].node_id = node_id;
if (d->imc[i].hbm_mc) {
d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz;
d->imc[i].num_channels = cfg->hbm_chan_num;
d->imc[i].num_dimms = cfg->hbm_dimm_num;
} else {
d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz;
d->imc[i].num_channels = cfg->ddr_chan_num;
d->imc[i].num_dimms = cfg->ddr_dimm_num;
}
rc = skx_register_mci(&d->imc[i], d->imc[i].mdev,
"Intel_10nm Socket", EDAC_MOD_STR,
i10nm_get_dimm_config, cfg);
if (rc < 0)
goto fail;
}
}
rc = skx_adxl_get();
if (rc)
goto fail;
opstate_init();
mce_register_decode_chain(&i10nm_mce_dec);
setup_i10nm_debug();
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(true);
} else {
skx_set_decode(i10nm_mc_decode, NULL);
}
i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION);
return 0;
fail:
skx_remove();
return rc;
}
static void __exit i10nm_exit(void)
{
edac_dbg(2, "\n");
if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
skx_set_decode(NULL, NULL);
if (retry_rd_err_log == 2)
enable_retry_rd_err_log(false);
}
teardown_i10nm_debug();
mce_unregister_decode_chain(&i10nm_mce_dec);
skx_adxl_put();
skx_remove();
}
module_init(i10nm_init);
module_exit(i10nm_exit);
static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp)
{
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret || val > 1)
return -EINVAL;
if (val && mem_cfg_2lm) {
i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n");
return -EIO;
}
ret = param_set_int(buf, kp);
return ret;
}
static const struct kernel_param_ops decoding_via_mca_param_ops = {
.set = set_decoding_via_mca,
.get = param_get_int,
};
module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644);
MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable");
module_param(retry_rd_err_log, int, 0444);
MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");
|