summaryrefslogtreecommitdiff
path: root/drivers/dma/xilinx/xdma.c
blob: 718842fdaf98ed08a0adde013b13284600c39420 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * DMA driver for Xilinx DMA/Bridge Subsystem
 *
 * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
 * Copyright (C) 2022, Advanced Micro Devices, Inc.
 */

/*
 * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
 * between Host memory and the DMA subsystem. It does this by operating on
 * 'descriptors' that contain information about the source, destination and
 * amount of data to transfer. These direct memory transfers can be both in
 * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
 * configured to have a single AXI4 Master interface shared by all channels
 * or one AXI4-Stream interface for each channel enabled. Memory transfers are
 * specified on a per-channel basis in descriptor linked lists, which the DMA
 * fetches from host memory and processes. Events such as descriptor completion
 * and errors are signaled using interrupts. The core also provides up to 16
 * user interrupt wires that generate interrupts to the host.
 */

#include <linux/mod_devicetable.h>
#include <linux/bitfield.h>
#include <linux/dmapool.h>
#include <linux/regmap.h>
#include <linux/dmaengine.h>
#include <linux/dma/amd_xdma.h>
#include <linux/platform_device.h>
#include <linux/platform_data/amd_xdma.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include "../virt-dma.h"
#include "xdma-regs.h"

/* mmio regmap config for all XDMA registers */
static const struct regmap_config xdma_regmap_config = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
	.max_register = XDMA_REG_SPACE_LEN,
};

/**
 * struct xdma_desc_block - Descriptor block
 * @virt_addr: Virtual address of block start
 * @dma_addr: DMA address of block start
 */
struct xdma_desc_block {
	void		*virt_addr;
	dma_addr_t	dma_addr;
};

/**
 * struct xdma_chan - Driver specific DMA channel structure
 * @vchan: Virtual channel
 * @xdev_hdl: Pointer to DMA device structure
 * @base: Offset of channel registers
 * @desc_pool: Descriptor pool
 * @busy: Busy flag of the channel
 * @dir: Transferring direction of the channel
 * @cfg: Transferring config of the channel
 * @irq: IRQ assigned to the channel
 */
struct xdma_chan {
	struct virt_dma_chan		vchan;
	void				*xdev_hdl;
	u32				base;
	struct dma_pool			*desc_pool;
	bool				busy;
	enum dma_transfer_direction	dir;
	struct dma_slave_config		cfg;
	u32				irq;
	struct completion		last_interrupt;
	bool				stop_requested;
};

/**
 * struct xdma_desc - DMA desc structure
 * @vdesc: Virtual DMA descriptor
 * @chan: DMA channel pointer
 * @dir: Transferring direction of the request
 * @desc_blocks: Hardware descriptor blocks
 * @dblk_num: Number of hardware descriptor blocks
 * @desc_num: Number of hardware descriptors
 * @completed_desc_num: Completed hardware descriptors
 * @cyclic: Cyclic transfer vs. scatter-gather
 * @interleaved_dma: Interleaved DMA transfer
 * @periods: Number of periods in the cyclic transfer
 * @period_size: Size of a period in bytes in cyclic transfers
 * @frames_left: Number of frames left in interleaved DMA transfer
 * @error: tx error flag
 */
struct xdma_desc {
	struct virt_dma_desc		vdesc;
	struct xdma_chan		*chan;
	enum dma_transfer_direction	dir;
	struct xdma_desc_block		*desc_blocks;
	u32				dblk_num;
	u32				desc_num;
	u32				completed_desc_num;
	bool				cyclic;
	bool				interleaved_dma;
	u32				periods;
	u32				period_size;
	u32				frames_left;
	bool				error;
};

#define XDMA_DEV_STATUS_REG_DMA		BIT(0)
#define XDMA_DEV_STATUS_INIT_MSIX	BIT(1)

/**
 * struct xdma_device - DMA device structure
 * @pdev: Platform device pointer
 * @dma_dev: DMA device structure
 * @rmap: MMIO regmap for DMA registers
 * @h2c_chans: Host to Card channels
 * @c2h_chans: Card to Host channels
 * @h2c_chan_num: Number of H2C channels
 * @c2h_chan_num: Number of C2H channels
 * @irq_start: Start IRQ assigned to device
 * @irq_num: Number of IRQ assigned to device
 * @status: Initialization status
 */
struct xdma_device {
	struct platform_device	*pdev;
	struct dma_device	dma_dev;
	struct regmap		*rmap;
	struct xdma_chan	*h2c_chans;
	struct xdma_chan	*c2h_chans;
	u32			h2c_chan_num;
	u32			c2h_chan_num;
	u32			irq_start;
	u32			irq_num;
	u32			status;
};

#define xdma_err(xdev, fmt, args...)					\
	dev_err(&(xdev)->pdev->dev, fmt, ##args)
#define XDMA_CHAN_NUM(_xd) ({						\
	typeof(_xd) (xd) = (_xd);					\
	((xd)->h2c_chan_num + (xd)->c2h_chan_num); })

/* Get the last desc in a desc block */
static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
{
	return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
}

/**
 * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
 * @sw_desc: Tx descriptor pointer
 */
static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
{
	struct xdma_desc_block *block;
	u32 last_blk_desc, desc_control;
	struct xdma_hw_desc *desc;
	int i;

	desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
	for (i = 1; i < sw_desc->dblk_num; i++) {
		block = &sw_desc->desc_blocks[i - 1];
		desc = xdma_blk_last_desc(block);

		if (!(i & XDMA_DESC_BLOCK_MASK)) {
			desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
			continue;
		}
		desc->control = cpu_to_le32(desc_control);
		desc->next_desc = cpu_to_le64(block[1].dma_addr);
	}

	/* update the last block */
	last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
	if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
		block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
		desc = xdma_blk_last_desc(block);
		desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
		desc->control = cpu_to_le32(desc_control);
	}

	block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
	desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
	desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
}

/**
 * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
 * @sw_desc: Tx descriptor pointer
 */
static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
{
	struct xdma_desc_block *block;
	struct xdma_hw_desc *desc;
	int i;

	block = sw_desc->desc_blocks;
	for (i = 0; i < sw_desc->desc_num - 1; i++) {
		desc = block->virt_addr + i * XDMA_DESC_SIZE;
		desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
	}
	desc = block->virt_addr + i * XDMA_DESC_SIZE;
	desc->next_desc = cpu_to_le64(block->dma_addr);
}

static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct xdma_chan, vchan.chan);
}

static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
{
	return container_of(vdesc, struct xdma_desc, vdesc);
}

/**
 * xdma_channel_init - Initialize DMA channel registers
 * @chan: DMA channel pointer
 */
static int xdma_channel_init(struct xdma_chan *chan)
{
	struct xdma_device *xdev = chan->xdev_hdl;
	int ret;

	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
			   CHAN_CTRL_NON_INCR_ADDR);
	if (ret)
		return ret;

	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
			   CHAN_IM_ALL);
	if (ret)
		return ret;

	return 0;
}

/**
 * xdma_free_desc - Free descriptor
 * @vdesc: Virtual DMA descriptor
 */
static void xdma_free_desc(struct virt_dma_desc *vdesc)
{
	struct xdma_desc *sw_desc;
	int i;

	sw_desc = to_xdma_desc(vdesc);
	for (i = 0; i < sw_desc->dblk_num; i++) {
		if (!sw_desc->desc_blocks[i].virt_addr)
			break;
		dma_pool_free(sw_desc->chan->desc_pool,
			      sw_desc->desc_blocks[i].virt_addr,
			      sw_desc->desc_blocks[i].dma_addr);
	}
	kfree(sw_desc->desc_blocks);
	kfree(sw_desc);
}

/**
 * xdma_alloc_desc - Allocate descriptor
 * @chan: DMA channel pointer
 * @desc_num: Number of hardware descriptors
 * @cyclic: Whether this is a cyclic transfer
 */
static struct xdma_desc *
xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
{
	struct xdma_desc *sw_desc;
	struct xdma_hw_desc *desc;
	dma_addr_t dma_addr;
	u32 dblk_num;
	u32 control;
	void *addr;
	int i, j;

	sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
	if (!sw_desc)
		return NULL;

	sw_desc->chan = chan;
	sw_desc->desc_num = desc_num;
	sw_desc->cyclic = cyclic;
	sw_desc->error = false;
	dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
	sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
				       GFP_NOWAIT);
	if (!sw_desc->desc_blocks)
		goto failed;

	if (cyclic)
		control = XDMA_DESC_CONTROL_CYCLIC;
	else
		control = XDMA_DESC_CONTROL(1, 0);

	sw_desc->dblk_num = dblk_num;
	for (i = 0; i < sw_desc->dblk_num; i++) {
		addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
		if (!addr)
			goto failed;

		sw_desc->desc_blocks[i].virt_addr = addr;
		sw_desc->desc_blocks[i].dma_addr = dma_addr;
		for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
			desc[j].control = cpu_to_le32(control);
	}

	if (cyclic)
		xdma_link_cyclic_desc_blocks(sw_desc);
	else
		xdma_link_sg_desc_blocks(sw_desc);

	return sw_desc;

failed:
	xdma_free_desc(&sw_desc->vdesc);
	return NULL;
}

/**
 * xdma_xfer_start - Start DMA transfer
 * @xchan: DMA channel pointer
 */
static int xdma_xfer_start(struct xdma_chan *xchan)
{
	struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
	struct xdma_device *xdev = xchan->xdev_hdl;
	struct xdma_desc_block *block;
	u32 val, completed_blocks;
	struct xdma_desc *desc;
	int ret;

	/*
	 * check if there is not any submitted descriptor or channel is busy.
	 * vchan lock should be held where this function is called.
	 */
	if (!vd || xchan->busy)
		return -EINVAL;

	/* clear run stop bit to get ready for transfer */
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
			   CHAN_CTRL_RUN_STOP);
	if (ret)
		return ret;

	desc = to_xdma_desc(vd);
	if (desc->dir != xchan->dir) {
		xdma_err(xdev, "incorrect request direction");
		return -EINVAL;
	}

	/* set DMA engine to the first descriptor block */
	completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
	block = &desc->desc_blocks[completed_blocks];
	val = lower_32_bits(block->dma_addr);
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
	if (ret)
		return ret;

	val = upper_32_bits(block->dma_addr);
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
	if (ret)
		return ret;

	if (completed_blocks + 1 == desc->dblk_num)
		val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
	else
		val = XDMA_DESC_ADJACENT - 1;
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
	if (ret)
		return ret;

	/* kick off DMA transfer */
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
			   CHAN_CTRL_START);
	if (ret)
		return ret;

	xchan->busy = true;
	xchan->stop_requested = false;
	reinit_completion(&xchan->last_interrupt);

	return 0;
}

/**
 * xdma_xfer_stop - Stop DMA transfer
 * @xchan: DMA channel pointer
 */
static int xdma_xfer_stop(struct xdma_chan *xchan)
{
	int ret;
	struct xdma_device *xdev = xchan->xdev_hdl;

	/* clear run stop bit to prevent any further auto-triggering */
	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
			   CHAN_CTRL_RUN_STOP);
	if (ret)
		return ret;
	return ret;
}

/**
 * xdma_alloc_channels - Detect and allocate DMA channels
 * @xdev: DMA device pointer
 * @dir: Channel direction
 */
static int xdma_alloc_channels(struct xdma_device *xdev,
			       enum dma_transfer_direction dir)
{
	struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
	struct xdma_chan **chans, *xchan;
	u32 base, identifier, target;
	u32 *chan_num;
	int i, j, ret;

	if (dir == DMA_MEM_TO_DEV) {
		base = XDMA_CHAN_H2C_OFFSET;
		target = XDMA_CHAN_H2C_TARGET;
		chans = &xdev->h2c_chans;
		chan_num = &xdev->h2c_chan_num;
	} else if (dir == DMA_DEV_TO_MEM) {
		base = XDMA_CHAN_C2H_OFFSET;
		target = XDMA_CHAN_C2H_TARGET;
		chans = &xdev->c2h_chans;
		chan_num = &xdev->c2h_chan_num;
	} else {
		xdma_err(xdev, "invalid direction specified");
		return -EINVAL;
	}

	/* detect number of available DMA channels */
	for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
				  &identifier);
		if (ret)
			return ret;

		/* check if it is available DMA channel */
		if (XDMA_CHAN_CHECK_TARGET(identifier, target))
			(*chan_num)++;
	}

	if (!*chan_num) {
		xdma_err(xdev, "does not probe any channel");
		return -EINVAL;
	}

	*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
			      GFP_KERNEL);
	if (!*chans)
		return -ENOMEM;

	for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
				  &identifier);
		if (ret)
			return ret;

		if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
			continue;

		if (j == *chan_num) {
			xdma_err(xdev, "invalid channel number");
			return -EIO;
		}

		/* init channel structure and hardware */
		xchan = &(*chans)[j];
		xchan->xdev_hdl = xdev;
		xchan->base = base + i * XDMA_CHAN_STRIDE;
		xchan->dir = dir;
		xchan->stop_requested = false;
		init_completion(&xchan->last_interrupt);

		ret = xdma_channel_init(xchan);
		if (ret)
			return ret;
		xchan->vchan.desc_free = xdma_free_desc;
		vchan_init(&xchan->vchan, &xdev->dma_dev);

		j++;
	}

	dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
		 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");

	return 0;
}

/**
 * xdma_issue_pending - Issue pending transactions
 * @chan: DMA channel pointer
 */
static void xdma_issue_pending(struct dma_chan *chan)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
	if (vchan_issue_pending(&xdma_chan->vchan))
		xdma_xfer_start(xdma_chan);
	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
}

/**
 * xdma_terminate_all - Terminate all transactions
 * @chan: DMA channel pointer
 */
static int xdma_terminate_all(struct dma_chan *chan)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct virt_dma_desc *vd;
	unsigned long flags;
	LIST_HEAD(head);

	xdma_xfer_stop(xdma_chan);

	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);

	xdma_chan->busy = false;
	xdma_chan->stop_requested = true;
	vd = vchan_next_desc(&xdma_chan->vchan);
	if (vd) {
		list_del(&vd->node);
		dma_cookie_complete(&vd->tx);
		vchan_terminate_vdesc(vd);
	}
	vchan_get_all_descriptors(&xdma_chan->vchan, &head);
	list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);

	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);

	return 0;
}

/**
 * xdma_synchronize - Synchronize terminated transactions
 * @chan: DMA channel pointer
 */
static void xdma_synchronize(struct dma_chan *chan)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct xdma_device *xdev = xdma_chan->xdev_hdl;
	int st = 0;

	/* If the engine continues running, wait for the last interrupt */
	regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st);
	if (st & XDMA_CHAN_STATUS_BUSY)
		wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000));

	vchan_synchronize(&xdma_chan->vchan);
}

/**
 * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk.
 *		       More than one descriptor will be used if the size is bigger
 *		       than XDMA_DESC_BLEN_MAX.
 * @sw_desc: Descriptor container
 * @src_addr: First value for the ->src_addr field
 * @dst_addr: First value for the ->dst_addr field
 * @size: Size of the contiguous memory block
 * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc
 */
static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
				  u64 dst_addr, u32 size, u32 filled_descs_num)
{
	u32 left = size, len, desc_num = filled_descs_num;
	struct xdma_desc_block *dblk;
	struct xdma_hw_desc *desc;

	dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
	desc = dblk->virt_addr;
	desc += desc_num & XDMA_DESC_ADJACENT_MASK;
	do {
		len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
		/* set hardware descriptor */
		desc->bytes = cpu_to_le32(len);
		desc->src_addr = cpu_to_le64(src_addr);
		desc->dst_addr = cpu_to_le64(dst_addr);
		if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
			desc = (++dblk)->virt_addr;
		else
			desc++;

		src_addr += len;
		dst_addr += len;
		left -= len;
	} while (left);

	return desc_num - filled_descs_num;
}

/**
 * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
 * @chan: DMA channel pointer
 * @sgl: Transfer scatter gather list
 * @sg_len: Length of scatter gather list
 * @dir: Transfer direction
 * @flags: transfer ack flags
 * @context: APP words of the descriptor
 */
static struct dma_async_tx_descriptor *
xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
		    unsigned int sg_len, enum dma_transfer_direction dir,
		    unsigned long flags, void *context)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct dma_async_tx_descriptor *tx_desc;
	struct xdma_desc *sw_desc;
	u32 desc_num = 0, i;
	u64 addr, dev_addr, *src, *dst;
	struct scatterlist *sg;

	for_each_sg(sgl, sg, sg_len, i)
		desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);

	sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
	if (!sw_desc)
		return NULL;
	sw_desc->dir = dir;
	sw_desc->cyclic = false;
	sw_desc->interleaved_dma = false;

	if (dir == DMA_MEM_TO_DEV) {
		dev_addr = xdma_chan->cfg.dst_addr;
		src = &addr;
		dst = &dev_addr;
	} else {
		dev_addr = xdma_chan->cfg.src_addr;
		src = &dev_addr;
		dst = &addr;
	}

	desc_num = 0;
	for_each_sg(sgl, sg, sg_len, i) {
		addr = sg_dma_address(sg);
		desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
		dev_addr += sg_dma_len(sg);
	}

	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
	if (!tx_desc)
		goto failed;

	return tx_desc;

failed:
	xdma_free_desc(&sw_desc->vdesc);

	return NULL;
}

/**
 * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
 * @chan: DMA channel pointer
 * @address: Device DMA address to access
 * @size: Total length to transfer
 * @period_size: Period size to use for each transfer
 * @dir: Transfer direction
 * @flags: Transfer ack flags
 */
static struct dma_async_tx_descriptor *
xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
		     size_t size, size_t period_size,
		     enum dma_transfer_direction dir,
		     unsigned long flags)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct xdma_device *xdev = xdma_chan->xdev_hdl;
	unsigned int periods = size / period_size;
	struct dma_async_tx_descriptor *tx_desc;
	struct xdma_desc *sw_desc;
	u64 addr, dev_addr, *src, *dst;
	u32 desc_num;
	unsigned int i;

	/*
	 * Simplify the whole logic by preventing an abnormally high number of
	 * periods and periods size.
	 */
	if (period_size > XDMA_DESC_BLEN_MAX) {
		xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
		return NULL;
	}

	if (periods > XDMA_DESC_ADJACENT) {
		xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
		return NULL;
	}

	sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
	if (!sw_desc)
		return NULL;

	sw_desc->periods = periods;
	sw_desc->period_size = period_size;
	sw_desc->dir = dir;
	sw_desc->interleaved_dma = false;

	addr = address;
	if (dir == DMA_MEM_TO_DEV) {
		dev_addr = xdma_chan->cfg.dst_addr;
		src = &addr;
		dst = &dev_addr;
	} else {
		dev_addr = xdma_chan->cfg.src_addr;
		src = &dev_addr;
		dst = &addr;
	}

	desc_num = 0;
	for (i = 0; i < periods; i++) {
		desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
		addr += period_size;
	}

	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
	if (!tx_desc)
		goto failed;

	return tx_desc;

failed:
	xdma_free_desc(&sw_desc->vdesc);

	return NULL;
}

/**
 * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
 * @chan: DMA channel
 * @xt: DMA transfer template
 * @flags: tx flags
 */
static struct dma_async_tx_descriptor *
xdma_prep_interleaved_dma(struct dma_chan *chan,
			  struct dma_interleaved_template *xt,
			  unsigned long flags)
{
	int i;
	u32 desc_num = 0, period_size = 0;
	struct dma_async_tx_descriptor *tx_desc;
	struct xdma_chan *xchan = to_xdma_chan(chan);
	struct xdma_desc *sw_desc;
	u64 src_addr, dst_addr;

	for (i = 0; i < xt->frame_size; ++i)
		desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);

	sw_desc = xdma_alloc_desc(xchan, desc_num, false);
	if (!sw_desc)
		return NULL;
	sw_desc->dir = xt->dir;
	sw_desc->interleaved_dma = true;
	sw_desc->cyclic = flags & DMA_PREP_REPEAT;
	sw_desc->frames_left = xt->numf;
	sw_desc->periods = xt->numf;

	desc_num = 0;
	src_addr = xt->src_start;
	dst_addr = xt->dst_start;
	for (i = 0; i < xt->frame_size; ++i) {
		desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
		src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
							      xt->sgl[i].size : 0);
		dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
							      xt->sgl[i].size : 0);
		period_size += xt->sgl[i].size;
	}
	sw_desc->period_size = period_size;

	tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
	if (tx_desc)
		return tx_desc;

	xdma_free_desc(&sw_desc->vdesc);
	return NULL;
}

/**
 * xdma_device_config - Configure the DMA channel
 * @chan: DMA channel
 * @cfg: channel configuration
 */
static int xdma_device_config(struct dma_chan *chan,
			      struct dma_slave_config *cfg)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);

	memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));

	return 0;
}

/**
 * xdma_free_chan_resources - Free channel resources
 * @chan: DMA channel
 */
static void xdma_free_chan_resources(struct dma_chan *chan)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);

	vchan_free_chan_resources(&xdma_chan->vchan);
	dma_pool_destroy(xdma_chan->desc_pool);
	xdma_chan->desc_pool = NULL;
}

/**
 * xdma_alloc_chan_resources - Allocate channel resources
 * @chan: DMA channel
 */
static int xdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct xdma_device *xdev = xdma_chan->xdev_hdl;
	struct device *dev = xdev->dma_dev.dev;

	while (dev && !dev_is_pci(dev))
		dev = dev->parent;
	if (!dev) {
		xdma_err(xdev, "unable to find pci device");
		return -EINVAL;
	}

	xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
					       XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
	if (!xdma_chan->desc_pool) {
		xdma_err(xdev, "unable to allocate descriptor pool");
		return -ENOMEM;
	}

	return 0;
}

static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
				      struct dma_tx_state *state)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct xdma_desc *desc = NULL;
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
	unsigned int period_idx;
	u32 residue = 0;

	ret = dma_cookie_status(chan, cookie, state);
	if (ret == DMA_COMPLETE)
		return ret;

	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);

	vd = vchan_find_desc(&xdma_chan->vchan, cookie);
	if (!vd)
		goto out;

	desc = to_xdma_desc(vd);
	if (desc->error) {
		ret = DMA_ERROR;
	} else if (desc->cyclic) {
		period_idx = desc->completed_desc_num % desc->periods;
		residue = (desc->periods - period_idx) * desc->period_size;
		dma_set_residue(state, residue);
	}
out:
	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);

	return ret;
}

/**
 * xdma_channel_isr - XDMA channel interrupt handler
 * @irq: IRQ number
 * @dev_id: Pointer to the DMA channel structure
 */
static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
{
	struct xdma_chan *xchan = dev_id;
	u32 complete_desc_num = 0;
	struct xdma_device *xdev = xchan->xdev_hdl;
	struct virt_dma_desc *vd, *next_vd;
	struct xdma_desc *desc;
	int ret;
	u32 st;
	bool repeat_tx;

	spin_lock(&xchan->vchan.lock);

	if (xchan->stop_requested)
		complete(&xchan->last_interrupt);

	/* get submitted request */
	vd = vchan_next_desc(&xchan->vchan);
	if (!vd)
		goto out;

	/* Clear-on-read the status register */
	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
	if (ret)
		goto out;

	desc = to_xdma_desc(vd);

	st &= XDMA_CHAN_STATUS_MASK;
	if ((st & XDMA_CHAN_ERROR_MASK) ||
	    !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
		desc->error = true;
		xdma_err(xdev, "channel error, status register value: 0x%x", st);
		goto out;
	}

	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
			  &complete_desc_num);
	if (ret)
		goto out;

	if (desc->interleaved_dma) {
		xchan->busy = false;
		desc->completed_desc_num += complete_desc_num;
		if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
			xdma_xfer_start(xchan);
			goto out;
		}

		/* last desc of any frame */
		desc->frames_left--;
		if (desc->frames_left)
			goto out;

		/* last desc of the last frame  */
		repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
		next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
		if (next_vd)
			repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
		if (repeat_tx) {
			desc->frames_left = desc->periods;
			desc->completed_desc_num = 0;
			vchan_cyclic_callback(vd);
		} else {
			list_del(&vd->node);
			vchan_cookie_complete(vd);
		}
		/* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
		xdma_xfer_start(xchan);
	} else if (!desc->cyclic) {
		xchan->busy = false;
		desc->completed_desc_num += complete_desc_num;

		/* if all data blocks are transferred, remove and complete the request */
		if (desc->completed_desc_num == desc->desc_num) {
			list_del(&vd->node);
			vchan_cookie_complete(vd);
			goto out;
		}

		if (desc->completed_desc_num > desc->desc_num ||
		    complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
			goto out;

		/* transfer the rest of data */
		xdma_xfer_start(xchan);
	} else {
		desc->completed_desc_num = complete_desc_num;
		vchan_cyclic_callback(vd);
	}

out:
	spin_unlock(&xchan->vchan.lock);
	return IRQ_HANDLED;
}

/**
 * xdma_irq_fini - Uninitialize IRQ
 * @xdev: DMA device pointer
 */
static void xdma_irq_fini(struct xdma_device *xdev)
{
	int i;

	/* disable interrupt */
	regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);

	/* free irq handler */
	for (i = 0; i < xdev->h2c_chan_num; i++)
		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);

	for (i = 0; i < xdev->c2h_chan_num; i++)
		free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
}

/**
 * xdma_set_vector_reg - configure hardware IRQ registers
 * @xdev: DMA device pointer
 * @vec_tbl_start: Start of IRQ registers
 * @irq_start: Start of IRQ
 * @irq_num: Number of IRQ
 */
static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
			       u32 irq_start, u32 irq_num)
{
	u32 shift, i, val = 0;
	int ret;

	/* Each IRQ register is 32 bit and contains 4 IRQs */
	while (irq_num > 0) {
		for (i = 0; i < 4; i++) {
			shift = XDMA_IRQ_VEC_SHIFT * i;
			val |= irq_start << shift;
			irq_start++;
			irq_num--;
			if (!irq_num)
				break;
		}

		/* write IRQ register */
		ret = regmap_write(xdev->rmap, vec_tbl_start, val);
		if (ret)
			return ret;
		vec_tbl_start += sizeof(u32);
		val = 0;
	}

	return 0;
}

/**
 * xdma_irq_init - initialize IRQs
 * @xdev: DMA device pointer
 */
static int xdma_irq_init(struct xdma_device *xdev)
{
	u32 irq = xdev->irq_start;
	u32 user_irq_start;
	int i, j, ret;

	/* return failure if there are not enough IRQs */
	if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
		xdma_err(xdev, "not enough irq");
		return -EINVAL;
	}

	/* setup H2C interrupt handler */
	for (i = 0; i < xdev->h2c_chan_num; i++) {
		ret = request_irq(irq, xdma_channel_isr, 0,
				  "xdma-h2c-channel", &xdev->h2c_chans[i]);
		if (ret) {
			xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
				 i, irq, ret);
			goto failed_init_h2c;
		}
		xdev->h2c_chans[i].irq = irq;
		irq++;
	}

	/* setup C2H interrupt handler */
	for (j = 0; j < xdev->c2h_chan_num; j++) {
		ret = request_irq(irq, xdma_channel_isr, 0,
				  "xdma-c2h-channel", &xdev->c2h_chans[j]);
		if (ret) {
			xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
				 j, irq, ret);
			goto failed_init_c2h;
		}
		xdev->c2h_chans[j].irq = irq;
		irq++;
	}

	/* config hardware IRQ registers */
	ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
				  XDMA_CHAN_NUM(xdev));
	if (ret) {
		xdma_err(xdev, "failed to set channel vectors: %d", ret);
		goto failed_init_c2h;
	}

	/* config user IRQ registers if needed */
	user_irq_start = XDMA_CHAN_NUM(xdev);
	if (xdev->irq_num > user_irq_start) {
		ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
					  user_irq_start,
					  xdev->irq_num - user_irq_start);
		if (ret) {
			xdma_err(xdev, "failed to set user vectors: %d", ret);
			goto failed_init_c2h;
		}
	}

	/* enable interrupt */
	ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
	if (ret)
		goto failed_init_c2h;

	return 0;

failed_init_c2h:
	while (j--)
		free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
failed_init_h2c:
	while (i--)
		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);

	return ret;
}

static bool xdma_filter_fn(struct dma_chan *chan, void *param)
{
	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
	struct xdma_chan_info *chan_info = param;

	return chan_info->dir == xdma_chan->dir;
}

/**
 * xdma_disable_user_irq - Disable user interrupt
 * @pdev: Pointer to the platform_device structure
 * @irq_num: System IRQ number
 */
void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
{
	struct xdma_device *xdev = platform_get_drvdata(pdev);
	u32 index;

	index = irq_num - xdev->irq_start;
	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
		xdma_err(xdev, "invalid user irq number");
		return;
	}
	index -= XDMA_CHAN_NUM(xdev);

	regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
}
EXPORT_SYMBOL(xdma_disable_user_irq);

/**
 * xdma_enable_user_irq - Enable user logic interrupt
 * @pdev: Pointer to the platform_device structure
 * @irq_num: System IRQ number
 */
int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
{
	struct xdma_device *xdev = platform_get_drvdata(pdev);
	u32 index;
	int ret;

	index = irq_num - xdev->irq_start;
	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
		xdma_err(xdev, "invalid user irq number");
		return -EINVAL;
	}
	index -= XDMA_CHAN_NUM(xdev);

	ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
	if (ret)
		return ret;

	return 0;
}
EXPORT_SYMBOL(xdma_enable_user_irq);

/**
 * xdma_get_user_irq - Get system IRQ number
 * @pdev: Pointer to the platform_device structure
 * @user_irq_index: User logic IRQ wire index
 *
 * Return: The system IRQ number allocated for the given wire index.
 */
int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
{
	struct xdma_device *xdev = platform_get_drvdata(pdev);

	if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
		xdma_err(xdev, "invalid user irq index");
		return -EINVAL;
	}

	return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
}
EXPORT_SYMBOL(xdma_get_user_irq);

/**
 * xdma_remove - Driver remove function
 * @pdev: Pointer to the platform_device structure
 */
static void xdma_remove(struct platform_device *pdev)
{
	struct xdma_device *xdev = platform_get_drvdata(pdev);

	if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
		xdma_irq_fini(xdev);

	if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
		dma_async_device_unregister(&xdev->dma_dev);
}

/**
 * xdma_probe - Driver probe function
 * @pdev: Pointer to the platform_device structure
 */
static int xdma_probe(struct platform_device *pdev)
{
	struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
	struct xdma_device *xdev;
	void __iomem *reg_base;
	struct resource *res;
	int ret = -ENODEV;

	if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
		dev_err(&pdev->dev, "invalid max dma channels %d",
			pdata->max_dma_channels);
		return -EINVAL;
	}

	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
	if (!xdev)
		return -ENOMEM;

	platform_set_drvdata(pdev, xdev);
	xdev->pdev = pdev;

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		xdma_err(xdev, "failed to get irq resource");
		goto failed;
	}
	xdev->irq_start = res->start;
	xdev->irq_num = resource_size(res);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		xdma_err(xdev, "failed to get io resource");
		goto failed;
	}

	reg_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(reg_base)) {
		xdma_err(xdev, "ioremap failed");
		goto failed;
	}

	xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
					   &xdma_regmap_config);
	if (!xdev->rmap) {
		xdma_err(xdev, "config regmap failed: %d", ret);
		goto failed;
	}
	INIT_LIST_HEAD(&xdev->dma_dev.channels);

	ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
	if (ret) {
		xdma_err(xdev, "config H2C channels failed: %d", ret);
		goto failed;
	}

	ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
	if (ret) {
		xdma_err(xdev, "config C2H channels failed: %d", ret);
		goto failed;
	}

	dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
	dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
	dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
	dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
	dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
	dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);

	xdev->dma_dev.dev = &pdev->dev;
	xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
	xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
	xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
	xdev->dma_dev.device_tx_status = xdma_tx_status;
	xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
	xdev->dma_dev.device_config = xdma_device_config;
	xdev->dma_dev.device_issue_pending = xdma_issue_pending;
	xdev->dma_dev.device_terminate_all = xdma_terminate_all;
	xdev->dma_dev.device_synchronize = xdma_synchronize;
	xdev->dma_dev.filter.map = pdata->device_map;
	xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
	xdev->dma_dev.filter.fn = xdma_filter_fn;
	xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
	xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;

	ret = dma_async_device_register(&xdev->dma_dev);
	if (ret) {
		xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
		goto failed;
	}
	xdev->status |= XDMA_DEV_STATUS_REG_DMA;

	ret = xdma_irq_init(xdev);
	if (ret) {
		xdma_err(xdev, "failed to init msix: %d", ret);
		goto failed;
	}
	xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;

	return 0;

failed:
	xdma_remove(pdev);

	return ret;
}

static const struct platform_device_id xdma_id_table[] = {
	{ "xdma", 0},
	{ },
};
MODULE_DEVICE_TABLE(platform, xdma_id_table);

static struct platform_driver xdma_driver = {
	.driver		= {
		.name = "xdma",
	},
	.id_table	= xdma_id_table,
	.probe		= xdma_probe,
	.remove_new	= xdma_remove,
};

module_platform_driver(xdma_driver);

MODULE_DESCRIPTION("AMD XDMA driver");
MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
MODULE_LICENSE("GPL");