summaryrefslogtreecommitdiff
path: root/drivers/dma/apple-admac.c
blob: 90f28bda29c8bd41e19b340e779c351634d29283 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
 *
 * Copyright (C) The Asahi Linux Contributors
 */

#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>

#include "dmaengine.h"

#define NCHANNELS_MAX	64
#define IRQ_NOUTPUTS	4

/*
 * For allocation purposes we split the cache
 * memory into blocks of fixed size (given in bytes).
 */
#define SRAM_BLOCK	2048

#define RING_WRITE_SLOT		GENMASK(1, 0)
#define RING_READ_SLOT		GENMASK(5, 4)
#define RING_FULL		BIT(9)
#define RING_EMPTY		BIT(8)
#define RING_ERR		BIT(10)

#define STATUS_DESC_DONE	BIT(0)
#define STATUS_ERR		BIT(6)

#define FLAG_DESC_NOTIFY	BIT(16)

#define REG_TX_START		0x0000
#define REG_TX_STOP		0x0004
#define REG_RX_START		0x0008
#define REG_RX_STOP		0x000c
#define REG_IMPRINT		0x0090
#define REG_TX_SRAM_SIZE	0x0094
#define REG_RX_SRAM_SIZE	0x0098

#define REG_CHAN_CTL(ch)	(0x8000 + (ch) * 0x200)
#define REG_CHAN_CTL_RST_RINGS	BIT(0)

#define REG_DESC_RING(ch)	(0x8070 + (ch) * 0x200)
#define REG_REPORT_RING(ch)	(0x8074 + (ch) * 0x200)

#define REG_RESIDUE(ch)		(0x8064 + (ch) * 0x200)

#define REG_BUS_WIDTH(ch)	(0x8040 + (ch) * 0x200)

#define BUS_WIDTH_8BIT		0x00
#define BUS_WIDTH_16BIT		0x01
#define BUS_WIDTH_32BIT		0x02
#define BUS_WIDTH_FRAME_2_WORDS	0x10
#define BUS_WIDTH_FRAME_4_WORDS	0x20

#define REG_CHAN_SRAM_CARVEOUT(ch)	(0x8050 + (ch) * 0x200)
#define CHAN_SRAM_CARVEOUT_SIZE		GENMASK(31, 16)
#define CHAN_SRAM_CARVEOUT_BASE		GENMASK(15, 0)

#define REG_CHAN_FIFOCTL(ch)	(0x8054 + (ch) * 0x200)
#define CHAN_FIFOCTL_LIMIT	GENMASK(31, 16)
#define CHAN_FIFOCTL_THRESHOLD	GENMASK(15, 0)

#define REG_DESC_WRITE(ch)	(0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
#define REG_REPORT_READ(ch)	(0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)

#define REG_TX_INTSTATE(idx)		(0x0030 + (idx) * 4)
#define REG_RX_INTSTATE(idx)		(0x0040 + (idx) * 4)
#define REG_CHAN_INTSTATUS(ch, idx)	(0x8010 + (ch) * 0x200 + (idx) * 4)
#define REG_CHAN_INTMASK(ch, idx)	(0x8020 + (ch) * 0x200 + (idx) * 4)

struct admac_data;
struct admac_tx;

struct admac_chan {
	unsigned int no;
	struct admac_data *host;
	struct dma_chan chan;
	struct tasklet_struct tasklet;

	u32 carveout;

	spinlock_t lock;
	struct admac_tx *current_tx;
	int nperiod_acks;

	/*
	 * We maintain a 'submitted' and 'issued' list mainly for interface
	 * correctness. Typical use of the driver (per channel) will be
	 * prepping, submitting and issuing a single cyclic transaction which
	 * will stay current until terminate_all is called.
	 */
	struct list_head submitted;
	struct list_head issued;

	struct list_head to_free;
};

struct admac_sram {
	u32 size;
	/*
	 * SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than
	 * 64K and a 32-bit bitfield over 2K blocks covers it.
	 */
	u32 allocated;
};

struct admac_data {
	struct dma_device dma;
	struct device *dev;
	__iomem void *base;
	struct reset_control *rstc;

	struct mutex cache_alloc_lock;
	struct admac_sram txcache, rxcache;

	int irq;
	int irq_index;
	int nchannels;
	struct admac_chan channels[];
};

struct admac_tx {
	struct dma_async_tx_descriptor tx;
	bool cyclic;
	dma_addr_t buf_addr;
	dma_addr_t buf_end;
	size_t buf_len;
	size_t period_len;

	size_t submitted_pos;
	size_t reclaimed_pos;

	struct list_head node;
};

static int admac_alloc_sram_carveout(struct admac_data *ad,
				     enum dma_transfer_direction dir,
				     u32 *out)
{
	struct admac_sram *sram;
	int i, ret = 0, nblocks;

	if (dir == DMA_MEM_TO_DEV)
		sram = &ad->txcache;
	else
		sram = &ad->rxcache;

	mutex_lock(&ad->cache_alloc_lock);

	nblocks = sram->size / SRAM_BLOCK;
	for (i = 0; i < nblocks; i++)
		if (!(sram->allocated & BIT(i)))
			break;

	if (i < nblocks) {
		*out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) |
			FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK);
		sram->allocated |= BIT(i);
	} else {
		ret = -EBUSY;
	}

	mutex_unlock(&ad->cache_alloc_lock);

	return ret;
}

static void admac_free_sram_carveout(struct admac_data *ad,
				     enum dma_transfer_direction dir,
				     u32 carveout)
{
	struct admac_sram *sram;
	u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout);
	int i;

	if (dir == DMA_MEM_TO_DEV)
		sram = &ad->txcache;
	else
		sram = &ad->rxcache;

	if (WARN_ON(base >= sram->size))
		return;

	mutex_lock(&ad->cache_alloc_lock);
	i = base / SRAM_BLOCK;
	sram->allocated &= ~BIT(i);
	mutex_unlock(&ad->cache_alloc_lock);
}

static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
{
	void __iomem *addr = ad->base + reg;
	u32 curr = readl_relaxed(addr);

	writel_relaxed((curr & ~mask) | (val & mask), addr);
}

static struct admac_chan *to_admac_chan(struct dma_chan *chan)
{
	return container_of(chan, struct admac_chan, chan);
}

static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct admac_tx, tx);
}

static enum dma_transfer_direction admac_chan_direction(int channo)
{
	/* Channel directions are hardwired */
	return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
}

static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct admac_tx *adtx = to_admac_tx(tx);
	struct admac_chan *adchan = to_admac_chan(tx->chan);
	unsigned long flags;
	dma_cookie_t cookie;

	spin_lock_irqsave(&adchan->lock, flags);
	cookie = dma_cookie_assign(tx);
	list_add_tail(&adtx->node, &adchan->submitted);
	spin_unlock_irqrestore(&adchan->lock, flags);

	return cookie;
}

static int admac_desc_free(struct dma_async_tx_descriptor *tx)
{
	kfree(to_admac_tx(tx));

	return 0;
}

static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
		size_t period_len, enum dma_transfer_direction direction,
		unsigned long flags)
{
	struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
	struct admac_tx *adtx;

	if (direction != admac_chan_direction(adchan->no))
		return NULL;

	adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
	if (!adtx)
		return NULL;

	adtx->cyclic = true;

	adtx->buf_addr = buf_addr;
	adtx->buf_len = buf_len;
	adtx->buf_end = buf_addr + buf_len;
	adtx->period_len = period_len;

	adtx->submitted_pos = 0;
	adtx->reclaimed_pos = 0;

	dma_async_tx_descriptor_init(&adtx->tx, chan);
	adtx->tx.tx_submit = admac_tx_submit;
	adtx->tx.desc_free = admac_desc_free;

	return &adtx->tx;
}

/*
 * Write one hardware descriptor for a dmaengine cyclic transaction.
 */
static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
					struct admac_tx *tx)
{
	dma_addr_t addr;

	addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);

	/* If happens means we have buggy code */
	WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);

	dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
		channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);

	writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
	writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
	writel_relaxed(tx->period_len,      ad->base + REG_DESC_WRITE(channo));
	writel_relaxed(FLAG_DESC_NOTIFY,    ad->base + REG_DESC_WRITE(channo));

	tx->submitted_pos += tx->period_len;
	tx->submitted_pos %= 2 * tx->buf_len;
}

/*
 * Write all the hardware descriptors for a dmaengine cyclic
 * transaction there is space for.
 */
static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
				    struct admac_tx *tx)
{
	int i;

	for (i = 0; i < 4; i++) {
		if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
			break;
		admac_cyclic_write_one_desc(ad, channo, tx);
	}
}

static int admac_ring_noccupied_slots(int ringval)
{
	int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
	int rdslot = FIELD_GET(RING_READ_SLOT, ringval);

	if (wrslot != rdslot) {
		return (wrslot + 4 - rdslot) % 4;
	} else {
		WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);

		if (ringval & RING_FULL)
			return 4;
		else
			return 0;
	}
}

/*
 * Read from hardware the residue of a cyclic dmaengine transaction.
 */
static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
				     struct admac_tx *adtx)
{
	u32 ring1, ring2;
	u32 residue1, residue2;
	int nreports;
	size_t pos;

	ring1 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
	residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
	ring2 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
	residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));

	if (residue2 > residue1) {
		/*
		 * Controller must have loaded next descriptor between
		 * the two residue reads
		 */
		nreports = admac_ring_noccupied_slots(ring1) + 1;
	} else {
		/* No descriptor load between the two reads, ring2 is safe to use */
		nreports = admac_ring_noccupied_slots(ring2);
	}

	pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;

	return adtx->buf_len - pos % adtx->buf_len;
}

static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
				       struct dma_tx_state *txstate)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	struct admac_data *ad = adchan->host;
	struct admac_tx *adtx;

	enum dma_status ret;
	size_t residue;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&adchan->lock, flags);
	adtx = adchan->current_tx;

	if (adtx && adtx->tx.cookie == cookie) {
		ret = DMA_IN_PROGRESS;
		residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
	} else {
		ret = DMA_IN_PROGRESS;
		residue = 0;
		list_for_each_entry(adtx, &adchan->issued, node) {
			if (adtx->tx.cookie == cookie) {
				residue = adtx->buf_len;
				break;
			}
		}
	}
	spin_unlock_irqrestore(&adchan->lock, flags);

	dma_set_residue(txstate, residue);
	return ret;
}

static void admac_start_chan(struct admac_chan *adchan)
{
	struct admac_data *ad = adchan->host;
	u32 startbit = 1 << (adchan->no / 2);

	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
		       ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
		       ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));

	switch (admac_chan_direction(adchan->no)) {
	case DMA_MEM_TO_DEV:
		writel_relaxed(startbit, ad->base + REG_TX_START);
		break;
	case DMA_DEV_TO_MEM:
		writel_relaxed(startbit, ad->base + REG_RX_START);
		break;
	default:
		break;
	}
	dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
}

static void admac_stop_chan(struct admac_chan *adchan)
{
	struct admac_data *ad = adchan->host;
	u32 stopbit = 1 << (adchan->no / 2);

	switch (admac_chan_direction(adchan->no)) {
	case DMA_MEM_TO_DEV:
		writel_relaxed(stopbit, ad->base + REG_TX_STOP);
		break;
	case DMA_DEV_TO_MEM:
		writel_relaxed(stopbit, ad->base + REG_RX_STOP);
		break;
	default:
		break;
	}
	dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
}

static void admac_reset_rings(struct admac_chan *adchan)
{
	struct admac_data *ad = adchan->host;

	writel_relaxed(REG_CHAN_CTL_RST_RINGS,
		       ad->base + REG_CHAN_CTL(adchan->no));
	writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
}

static void admac_start_current_tx(struct admac_chan *adchan)
{
	struct admac_data *ad = adchan->host;
	int ch = adchan->no;

	admac_reset_rings(adchan);
	writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));

	admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
	admac_start_chan(adchan);
	admac_cyclic_write_desc(ad, ch, adchan->current_tx);
}

static void admac_issue_pending(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	struct admac_tx *tx;
	unsigned long flags;

	spin_lock_irqsave(&adchan->lock, flags);
	list_splice_tail_init(&adchan->submitted, &adchan->issued);
	if (!list_empty(&adchan->issued) && !adchan->current_tx) {
		tx = list_first_entry(&adchan->issued, struct admac_tx, node);
		list_del(&tx->node);

		adchan->current_tx = tx;
		adchan->nperiod_acks = 0;
		admac_start_current_tx(adchan);
	}
	spin_unlock_irqrestore(&adchan->lock, flags);
}

static int admac_pause(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);

	admac_stop_chan(adchan);

	return 0;
}

static int admac_resume(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);

	admac_start_chan(adchan);

	return 0;
}

static int admac_terminate_all(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&adchan->lock, flags);
	admac_stop_chan(adchan);
	admac_reset_rings(adchan);

	adchan->current_tx = NULL;
	/*
	 * Descriptors can only be freed after the tasklet
	 * has been killed (in admac_synchronize).
	 */
	list_splice_tail_init(&adchan->submitted, &adchan->to_free);
	list_splice_tail_init(&adchan->issued, &adchan->to_free);
	spin_unlock_irqrestore(&adchan->lock, flags);

	return 0;
}

static void admac_synchronize(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	struct admac_tx *adtx, *_adtx;
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&adchan->lock, flags);
	list_splice_tail_init(&adchan->to_free, &head);
	spin_unlock_irqrestore(&adchan->lock, flags);

	tasklet_kill(&adchan->tasklet);

	list_for_each_entry_safe(adtx, _adtx, &head, node) {
		list_del(&adtx->node);
		admac_desc_free(&adtx->tx);
	}
}

static int admac_alloc_chan_resources(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	struct admac_data *ad = adchan->host;
	int ret;

	dma_cookie_init(&adchan->chan);
	ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no),
					&adchan->carveout);
	if (ret < 0)
		return ret;

	writel_relaxed(adchan->carveout,
		       ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no));
	return 0;
}

static void admac_free_chan_resources(struct dma_chan *chan)
{
	struct admac_chan *adchan = to_admac_chan(chan);

	admac_terminate_all(chan);
	admac_synchronize(chan);
	admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no),
				 adchan->carveout);
}

static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
					   struct of_dma *ofdma)
{
	struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
	unsigned int index;

	if (dma_spec->args_count != 1)
		return NULL;

	index = dma_spec->args[0];

	if (index >= ad->nchannels) {
		dev_err(ad->dev, "channel index %u out of bounds\n", index);
		return NULL;
	}

	return dma_get_slave_channel(&ad->channels[index].chan);
}

static int admac_drain_reports(struct admac_data *ad, int channo)
{
	int count;

	for (count = 0; count < 4; count++) {
		u32 countval_hi, countval_lo, unk1, flags;

		if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
			break;

		countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
		countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
		unk1 =        readl_relaxed(ad->base + REG_REPORT_READ(channo));
		flags =       readl_relaxed(ad->base + REG_REPORT_READ(channo));

		dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
			channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
	}

	return count;
}

static void admac_handle_status_err(struct admac_data *ad, int channo)
{
	bool handled = false;

	if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
		writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
		dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
		handled = true;
	}

	if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
		writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
		dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
		handled = true;
	}

	if (unlikely(!handled)) {
		dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
		admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
			     STATUS_ERR, 0);
	}
}

static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
{
	struct admac_chan *adchan = &ad->channels[channo];
	unsigned long flags;
	int nreports;

	writel_relaxed(STATUS_DESC_DONE,
		       ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));

	spin_lock_irqsave(&adchan->lock, flags);
	nreports = admac_drain_reports(ad, channo);

	if (adchan->current_tx) {
		struct admac_tx *tx = adchan->current_tx;

		adchan->nperiod_acks += nreports;
		tx->reclaimed_pos += nreports * tx->period_len;
		tx->reclaimed_pos %= 2 * tx->buf_len;

		admac_cyclic_write_desc(ad, channo, tx);
		tasklet_schedule(&adchan->tasklet);
	}
	spin_unlock_irqrestore(&adchan->lock, flags);
}

static void admac_handle_chan_int(struct admac_data *ad, int no)
{
	u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));

	if (cause & STATUS_ERR)
		admac_handle_status_err(ad, no);

	if (cause & STATUS_DESC_DONE)
		admac_handle_status_desc_done(ad, no);
}

static irqreturn_t admac_interrupt(int irq, void *devid)
{
	struct admac_data *ad = devid;
	u32 rx_intstate, tx_intstate;
	int i;

	rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
	tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));

	if (!tx_intstate && !rx_intstate)
		return IRQ_NONE;

	for (i = 0; i < ad->nchannels; i += 2) {
		if (tx_intstate & 1)
			admac_handle_chan_int(ad, i);
		tx_intstate >>= 1;
	}

	for (i = 1; i < ad->nchannels; i += 2) {
		if (rx_intstate & 1)
			admac_handle_chan_int(ad, i);
		rx_intstate >>= 1;
	}

	return IRQ_HANDLED;
}

static void admac_chan_tasklet(struct tasklet_struct *t)
{
	struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
	struct admac_tx *adtx;
	struct dmaengine_desc_callback cb;
	struct dmaengine_result tx_result;
	int nacks;

	spin_lock_irq(&adchan->lock);
	adtx = adchan->current_tx;
	nacks = adchan->nperiod_acks;
	adchan->nperiod_acks = 0;
	spin_unlock_irq(&adchan->lock);

	if (!adtx || !nacks)
		return;

	tx_result.result = DMA_TRANS_NOERROR;
	tx_result.residue = 0;

	dmaengine_desc_get_callback(&adtx->tx, &cb);
	while (nacks--)
		dmaengine_desc_callback_invoke(&cb, &tx_result);
}

static int admac_device_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct admac_chan *adchan = to_admac_chan(chan);
	struct admac_data *ad = adchan->host;
	bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
	int wordsize = 0;
	u32 bus_width = 0;

	switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		wordsize = 1;
		bus_width |= BUS_WIDTH_8BIT;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		wordsize = 2;
		bus_width |= BUS_WIDTH_16BIT;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		wordsize = 4;
		bus_width |= BUS_WIDTH_32BIT;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * We take port_window_size to be the number of words in a frame.
	 *
	 * The controller has some means of out-of-band signalling, to the peripheral,
	 * of words position in a frame. That's where the importance of this control
	 * comes from.
	 */
	switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
	case 0 ... 1:
		break;
	case 2:
		bus_width |= BUS_WIDTH_FRAME_2_WORDS;
		break;
	case 4:
		bus_width |= BUS_WIDTH_FRAME_4_WORDS;
		break;
	default:
		return -EINVAL;
	}

	writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));

	/*
	 * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
	 * held in controller's per-channel FIFO. Transfers seem to be triggered
	 * around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
	 *
	 * The numbers we set are more or less arbitrary.
	 */
	writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
		       | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
		       ad->base + REG_CHAN_FIFOCTL(adchan->no));

	return 0;
}

static int admac_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct admac_data *ad;
	struct dma_device *dma;
	int nchannels;
	int err, irq, i;

	err = of_property_read_u32(np, "dma-channels", &nchannels);
	if (err || nchannels > NCHANNELS_MAX) {
		dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
		return -EINVAL;
	}

	ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
	if (!ad)
		return -ENOMEM;

	platform_set_drvdata(pdev, ad);
	ad->dev = &pdev->dev;
	ad->nchannels = nchannels;
	mutex_init(&ad->cache_alloc_lock);

	/*
	 * The controller has 4 IRQ outputs. Try them all until
	 * we find one we can use.
	 */
	for (i = 0; i < IRQ_NOUTPUTS; i++) {
		irq = platform_get_irq_optional(pdev, i);
		if (irq >= 0) {
			ad->irq_index = i;
			break;
		}
	}

	if (irq < 0)
		return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
	ad->irq = irq;

	ad->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ad->base))
		return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
				     "unable to obtain MMIO resource\n");

	ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
	if (IS_ERR(ad->rstc))
		return PTR_ERR(ad->rstc);

	dma = &ad->dma;

	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
	dma_cap_set(DMA_CYCLIC, dma->cap_mask);

	dma->dev = &pdev->dev;
	dma->device_alloc_chan_resources = admac_alloc_chan_resources;
	dma->device_free_chan_resources = admac_free_chan_resources;
	dma->device_tx_status = admac_tx_status;
	dma->device_issue_pending = admac_issue_pending;
	dma->device_terminate_all = admac_terminate_all;
	dma->device_synchronize = admac_synchronize;
	dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
	dma->device_config = admac_device_config;
	dma->device_pause = admac_pause;
	dma->device_resume = admac_resume;

	dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
			BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
			BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);

	INIT_LIST_HEAD(&dma->channels);
	for (i = 0; i < nchannels; i++) {
		struct admac_chan *adchan = &ad->channels[i];

		adchan->host = ad;
		adchan->no = i;
		adchan->chan.device = &ad->dma;
		spin_lock_init(&adchan->lock);
		INIT_LIST_HEAD(&adchan->submitted);
		INIT_LIST_HEAD(&adchan->issued);
		INIT_LIST_HEAD(&adchan->to_free);
		list_add_tail(&adchan->chan.device_node, &dma->channels);
		tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
	}

	err = reset_control_reset(ad->rstc);
	if (err)
		return dev_err_probe(&pdev->dev, err,
				     "unable to trigger reset\n");

	err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
	if (err) {
		dev_err_probe(&pdev->dev, err,
				"unable to register interrupt\n");
		goto free_reset;
	}

	err = dma_async_device_register(&ad->dma);
	if (err) {
		dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
		goto free_irq;
	}

	err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
	if (err) {
		dma_async_device_unregister(&ad->dma);
		dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
		goto free_irq;
	}

	ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE);
	ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE);

	dev_info(&pdev->dev, "Audio DMA Controller\n");
	dev_info(&pdev->dev, "imprint %x TX cache %u RX cache %u\n",
		 readl_relaxed(ad->base + REG_IMPRINT), ad->txcache.size, ad->rxcache.size);

	return 0;

free_irq:
	free_irq(ad->irq, ad);
free_reset:
	reset_control_rearm(ad->rstc);
	return err;
}

static int admac_remove(struct platform_device *pdev)
{
	struct admac_data *ad = platform_get_drvdata(pdev);

	of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&ad->dma);
	free_irq(ad->irq, ad);
	reset_control_rearm(ad->rstc);

	return 0;
}

static const struct of_device_id admac_of_match[] = {
	{ .compatible = "apple,admac", },
	{ }
};
MODULE_DEVICE_TABLE(of, admac_of_match);

static struct platform_driver apple_admac_driver = {
	.driver = {
		.name = "apple-admac",
		.of_match_table = admac_of_match,
	},
	.probe = admac_probe,
	.remove = admac_remove,
};
module_platform_driver(apple_admac_driver);

MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
MODULE_LICENSE("GPL");