1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
|
// SPDX-License-Identifier: GPL-2.0
/*
* STM32 Timer Encoder and Counter driver
*
* Copyright (C) STMicroelectronics 2018
*
* Author: Benjamin Gaignard <benjamin.gaignard@st.com>
*
*/
#include <linux/counter.h>
#include <linux/interrupt.h>
#include <linux/mfd/stm32-timers.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
TIM_CCMR_IC1F | TIM_CCMR_IC2F)
#define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
TIM_CCER_CC2P | TIM_CCER_CC2NP)
#define STM32_CH1_SIG 0
#define STM32_CH2_SIG 1
#define STM32_CLOCK_SIG 2
#define STM32_CH3_SIG 3
#define STM32_CH4_SIG 4
struct stm32_timer_regs {
u32 cr1;
u32 cnt;
u32 smcr;
u32 arr;
};
struct stm32_timer_cnt {
struct regmap *regmap;
struct clk *clk;
u32 max_arr;
bool enabled;
struct stm32_timer_regs bak;
bool has_encoder;
unsigned int nchannels;
unsigned int nr_irqs;
spinlock_t lock; /* protects nb_ovf */
u64 nb_ovf;
};
static const enum counter_function stm32_count_functions[] = {
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X2_A,
COUNTER_FUNCTION_QUADRATURE_X2_B,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int stm32_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cnt;
regmap_read(priv->regmap, TIM_CNT, &cnt);
*val = cnt;
return 0;
}
static int stm32_count_write(struct counter_device *counter,
struct counter_count *count, const u64 val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 ceiling;
regmap_read(priv->regmap, TIM_ARR, &ceiling);
if (val > ceiling)
return -EINVAL;
return regmap_write(priv->regmap, TIM_CNT, val);
}
static int stm32_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 smcr;
regmap_read(priv->regmap, TIM_SMCR, &smcr);
switch (smcr & TIM_SMCR_SMS) {
case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
*function = COUNTER_FUNCTION_INCREASE;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_1:
*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_2:
*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_3:
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
default:
return -EINVAL;
}
}
static int stm32_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1, sms;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
if (!priv->has_encoder)
return -EOPNOTSUPP;
sms = TIM_SMCR_SMS_ENCODER_MODE_1;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
if (!priv->has_encoder)
return -EOPNOTSUPP;
sms = TIM_SMCR_SMS_ENCODER_MODE_2;
break;
case COUNTER_FUNCTION_QUADRATURE_X4:
if (!priv->has_encoder)
return -EOPNOTSUPP;
sms = TIM_SMCR_SMS_ENCODER_MODE_3;
break;
default:
return -EINVAL;
}
/* Store enable status */
regmap_read(priv->regmap, TIM_CR1, &cr1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
/* Make sure that registers are updated */
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
/* Restore the enable status */
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
return 0;
}
static int stm32_count_direction_read(struct counter_device *counter,
struct counter_count *count,
enum counter_count_direction *direction)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
COUNTER_COUNT_DIRECTION_FORWARD;
return 0;
}
static int stm32_count_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 arr;
regmap_read(priv->regmap, TIM_ARR, &arr);
*ceiling = arr;
return 0;
}
static int stm32_count_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 ceiling)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
if (ceiling > priv->max_arr)
return -ERANGE;
/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
regmap_write(priv->regmap, TIM_ARR, ceiling);
return 0;
}
static int stm32_count_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
*enable = cr1 & TIM_CR1_CEN;
return 0;
}
static int stm32_count_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
if (enable) {
regmap_read(priv->regmap, TIM_CR1, &cr1);
if (!(cr1 & TIM_CR1_CEN))
clk_enable(priv->clk);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
TIM_CR1_CEN);
} else {
regmap_read(priv->regmap, TIM_CR1, &cr1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
if (cr1 & TIM_CR1_CEN)
clk_disable(priv->clk);
}
/* Keep enabled state to properly handle low power states */
priv->enabled = enable;
return 0;
}
static int stm32_count_prescaler_read(struct counter_device *counter,
struct counter_count *count, u64 *prescaler)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 psc;
regmap_read(priv->regmap, TIM_PSC, &psc);
*prescaler = psc + 1;
return 0;
}
static int stm32_count_prescaler_write(struct counter_device *counter,
struct counter_count *count, u64 prescaler)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 psc;
if (!prescaler || prescaler > MAX_TIM_PSC + 1)
return -ERANGE;
psc = prescaler - 1;
return regmap_write(priv->regmap, TIM_PSC, psc);
}
static int stm32_count_cap_read(struct counter_device *counter,
struct counter_count *count,
size_t ch, u64 *cap)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 ccrx;
if (ch >= priv->nchannels)
return -EOPNOTSUPP;
switch (ch) {
case 0:
regmap_read(priv->regmap, TIM_CCR1, &ccrx);
break;
case 1:
regmap_read(priv->regmap, TIM_CCR2, &ccrx);
break;
case 2:
regmap_read(priv->regmap, TIM_CCR3, &ccrx);
break;
case 3:
regmap_read(priv->regmap, TIM_CCR4, &ccrx);
break;
default:
return -EINVAL;
}
dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
*cap = ccrx;
return 0;
}
static int stm32_count_nb_ovf_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
unsigned long irqflags;
spin_lock_irqsave(&priv->lock, irqflags);
*val = priv->nb_ovf;
spin_unlock_irqrestore(&priv->lock, irqflags);
return 0;
}
static int stm32_count_nb_ovf_write(struct counter_device *counter,
struct counter_count *count, u64 val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
unsigned long irqflags;
spin_lock_irqsave(&priv->lock, irqflags);
priv->nb_ovf = val;
spin_unlock_irqrestore(&priv->lock, irqflags);
return 0;
}
static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
static struct counter_comp stm32_count_ext[] = {
COUNTER_COMP_DIRECTION(stm32_count_direction_read),
COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
COUNTER_COMP_CEILING(stm32_count_ceiling_read,
stm32_count_ceiling_write),
COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
stm32_count_prescaler_write),
COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
};
static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
};
static const enum counter_synapse_action stm32_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
};
static int stm32_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
enum counter_function function;
int err;
err = stm32_count_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
/* counts on internal clock when CEN=1 */
if (synapse->signal->id == STM32_CLOCK_SIG)
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
if (synapse->signal->id == STM32_CH1_SIG)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
if (synapse->signal->id == STM32_CH2_SIG)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X4:
/* counts up/down on both TI1FP1 and TI2FP2 edges */
if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
default:
return -EINVAL;
}
}
struct stm32_count_cc_regs {
u32 ccmr_reg;
u32 ccmr_mask;
u32 ccmr_bits;
u32 ccer_bits;
};
static const struct stm32_count_cc_regs stm32_cc[] = {
{ TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
{ TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
{ TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
{ TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
};
static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
bool enable)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
const struct stm32_count_cc_regs *cc;
u32 ccmr, ccer;
if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
dev_err(counter->parent, "invalid ch: %d\n", ch);
return -EINVAL;
}
cc = &stm32_cc[ch];
/*
* configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
* Select both edges / non-inverted to trigger a capture.
*/
if (enable) {
/* first clear possibly latched capture flag upon enabling */
if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
cc->ccmr_bits);
regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
} else {
regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
}
regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
regmap_read(priv->regmap, TIM_CCER, &ccer);
dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
ch, ccmr, ccer);
return 0;
}
static int stm32_count_events_configure(struct counter_device *counter)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
struct counter_event_node *event_node;
u32 dier = 0;
int i, ret;
list_for_each_entry(event_node, &counter->events_list, l) {
switch (event_node->event) {
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
/* first clear possibly latched UIF before enabling */
if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
dier |= TIM_DIER_UIE;
break;
case COUNTER_EVENT_CAPTURE:
ret = stm32_count_capture_configure(counter, event_node->channel, true);
if (ret)
return ret;
dier |= TIM_DIER_CCxIE(event_node->channel + 1);
break;
default:
/* should never reach this path */
return -EINVAL;
}
}
/* Enable / disable all events at once, from events_list, so write all DIER bits */
regmap_write(priv->regmap, TIM_DIER, dier);
/* check for disabled capture events */
for (i = 0 ; i < priv->nchannels; i++) {
if (!(dier & TIM_DIER_CCxIE(i + 1))) {
ret = stm32_count_capture_configure(counter, i, false);
if (ret)
return ret;
}
}
return 0;
}
static int stm32_count_watch_validate(struct counter_device *counter,
const struct counter_watch *watch)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
/* Interrupts are optional */
if (!priv->nr_irqs)
return -EOPNOTSUPP;
switch (watch->event) {
case COUNTER_EVENT_CAPTURE:
if (watch->channel >= priv->nchannels) {
dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
return -EINVAL;
}
return 0;
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
return 0;
default:
return -EINVAL;
}
}
static const struct counter_ops stm32_timer_cnt_ops = {
.count_read = stm32_count_read,
.count_write = stm32_count_write,
.function_read = stm32_count_function_read,
.function_write = stm32_count_function_write,
.action_read = stm32_action_read,
.events_configure = stm32_count_events_configure,
.watch_validate = stm32_count_watch_validate,
};
static int stm32_count_clk_get_freq(struct counter_device *counter,
struct counter_signal *signal, u64 *freq)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
*freq = clk_get_rate(priv->clk);
return 0;
}
static struct counter_comp stm32_count_clock_ext[] = {
COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
};
static struct counter_signal stm32_signals[] = {
/*
* Need to declare all the signals as a static array, and keep the signals order here,
* even if they're unused or unexisting on some timer instances. It's an abstraction,
* e.g. high level view of the counter features.
*
* Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
* and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
* to indicate that a signal doesn't affect the counter.
*/
{
.id = STM32_CH1_SIG,
.name = "Channel 1"
},
{
.id = STM32_CH2_SIG,
.name = "Channel 2"
},
{
.id = STM32_CLOCK_SIG,
.name = "Clock",
.ext = stm32_count_clock_ext,
.num_ext = ARRAY_SIZE(stm32_count_clock_ext),
},
{
.id = STM32_CH3_SIG,
.name = "Channel 3"
},
{
.id = STM32_CH4_SIG,
.name = "Channel 4"
},
};
static struct counter_synapse stm32_count_synapses[] = {
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[STM32_CH1_SIG]
},
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[STM32_CH2_SIG]
},
{
.actions_list = stm32_clock_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
.signal = &stm32_signals[STM32_CLOCK_SIG]
},
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[STM32_CH3_SIG]
},
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[STM32_CH4_SIG]
},
};
static struct counter_count stm32_counts = {
.id = 0,
.name = "STM32 Timer Counter",
.functions_list = stm32_count_functions,
.num_functions = ARRAY_SIZE(stm32_count_functions),
.synapses = stm32_count_synapses,
.num_synapses = ARRAY_SIZE(stm32_count_synapses),
.ext = stm32_count_ext,
.num_ext = ARRAY_SIZE(stm32_count_ext)
};
static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
{
struct counter_device *counter = ptr;
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
u32 sr, dier;
int i;
regmap_read(priv->regmap, TIM_SR, &sr);
regmap_read(priv->regmap, TIM_DIER, &dier);
/*
* Some status bits in SR don't match with the enable bits in DIER. Only take care of
* the possibly enabled bits in DIER (that matches in between SR and DIER).
*/
dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
sr &= dier;
if (sr & TIM_SR_UIF) {
spin_lock(&priv->lock);
priv->nb_ovf++;
spin_unlock(&priv->lock);
counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
/* SR flags can be cleared by writing 0, only clear relevant flag */
clr &= ~TIM_SR_UIF;
}
/* Check capture events */
for (i = 0 ; i < priv->nchannels; i++) {
if (sr & TIM_SR_CC_IF(i)) {
counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
clr &= ~TIM_SR_CC_IF(i);
dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
}
}
regmap_write(priv->regmap, TIM_SR, clr);
return IRQ_HANDLED;
};
static void stm32_timer_cnt_detect_channels(struct device *dev,
struct stm32_timer_cnt *priv)
{
u32 ccer, ccer_backup;
regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
regmap_read(priv->regmap, TIM_CCER, &ccer);
regmap_write(priv->regmap, TIM_CCER, ccer_backup);
priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
}
/* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
#define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
static const char * const stm32_timer_trigger_compat[] = {
"st,stm32-timer-trigger",
"st,stm32h7-timer-trigger",
};
static int stm32_timer_cnt_probe_encoder(struct device *dev,
struct stm32_timer_cnt *priv)
{
struct device *parent = dev->parent;
struct device_node *tnode = NULL, *pnode = parent->of_node;
int i, ret;
u32 idx;
/*
* Need to retrieve the trigger node index from DT, to be able
* to determine if the counter supports encoder mode. It also
* enforce backward compatibility, and allow to support other
* counter modes in this driver (when the timer doesn't support
* encoder).
*/
for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
if (!tnode) {
dev_err(dev, "Can't find trigger node\n");
return -ENODATA;
}
ret = of_property_read_u32(tnode, "reg", &idx);
if (ret) {
dev_err(dev, "Can't get index (%d)\n", ret);
return ret;
}
priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
return 0;
}
static int stm32_timer_cnt_probe(struct platform_device *pdev)
{
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct stm32_timer_cnt *priv;
struct counter_device *counter;
int i, ret;
if (IS_ERR_OR_NULL(ddata))
return -EINVAL;
counter = devm_counter_alloc(dev, sizeof(*priv));
if (!counter)
return -ENOMEM;
priv = counter_priv(counter);
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->max_arr = ddata->max_arr;
priv->nr_irqs = ddata->nr_irqs;
ret = stm32_timer_cnt_probe_encoder(dev, priv);
if (ret)
return ret;
stm32_timer_cnt_detect_channels(dev, priv);
counter->name = dev_name(dev);
counter->parent = dev;
counter->ops = &stm32_timer_cnt_ops;
counter->counts = &stm32_counts;
counter->num_counts = 1;
counter->signals = stm32_signals;
counter->num_signals = ARRAY_SIZE(stm32_signals);
spin_lock_init(&priv->lock);
platform_set_drvdata(pdev, priv);
/* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
if (priv->nr_irqs == 1) {
/* All events reported through the global interrupt */
ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
0, dev_name(dev), counter);
if (ret) {
dev_err(dev, "Failed to request irq %d (err %d)\n",
ddata->irq[0], ret);
return ret;
}
} else {
for (i = 0; i < priv->nr_irqs; i++) {
/*
* Only take care of update IRQ for overflow events, and cc for
* capture events.
*/
if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
continue;
ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
0, dev_name(dev), counter);
if (ret) {
dev_err(dev, "Failed to request irq %d (err %d)\n",
ddata->irq[i], ret);
return ret;
}
}
}
/* Reset input selector to its default input */
regmap_write(priv->regmap, TIM_TISEL, 0x0);
/* Register Counter device */
ret = devm_counter_add(dev, counter);
if (ret < 0)
dev_err_probe(dev, ret, "Failed to add counter\n");
return ret;
}
static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
{
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
/* Only take care of enabled counter: don't disturb other MFD child */
if (priv->enabled) {
/* Backup registers that may get lost in low power mode */
regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
/* Disable the counter */
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
clk_disable(priv->clk);
}
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
{
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
if (priv->enabled) {
clk_enable(priv->clk);
/* Restore registers that may have been lost */
regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
/* Also re-enables the counter */
regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
stm32_timer_cnt_resume);
static const struct of_device_id stm32_timer_cnt_of_match[] = {
{ .compatible = "st,stm32-timer-counter", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
static struct platform_driver stm32_timer_cnt_driver = {
.probe = stm32_timer_cnt_probe,
.driver = {
.name = "stm32-timer-counter",
.of_match_table = stm32_timer_cnt_of_match,
.pm = &stm32_timer_cnt_pm_ops,
},
};
module_platform_driver(stm32_timer_cnt_driver);
MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
MODULE_ALIAS("platform:stm32-timer-counter");
MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(COUNTER);
|