summaryrefslogtreecommitdiff
path: root/arch/x86/platform/efi/fake_mem.c
blob: 41d57cad3d84a43da2fee20645169883e8d68ed8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// SPDX-License-Identifier: GPL-2.0
/*
 * fake_mem.c
 *
 * Copyright (C) 2015 FUJITSU LIMITED
 * Author: Taku Izumi <izumi.taku@jp.fujitsu.com>
 *
 * This code introduces new boot option named "efi_fake_mem"
 * By specifying this parameter, you can add arbitrary attribute to
 * specific memory range by updating original (firmware provided) EFI
 * memmap.
 */

#include <linux/kernel.h>
#include <linux/efi.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/types.h>
#include <linux/sort.h>
#include <asm/e820/api.h>
#include <asm/efi.h>

#define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM

static struct efi_mem_range efi_fake_mems[EFI_MAX_FAKEMEM];
static int nr_fake_mem;

static int __init cmp_fake_mem(const void *x1, const void *x2)
{
	const struct efi_mem_range *m1 = x1;
	const struct efi_mem_range *m2 = x2;

	if (m1->range.start < m2->range.start)
		return -1;
	if (m1->range.start > m2->range.start)
		return 1;
	return 0;
}

static void __init efi_fake_range(struct efi_mem_range *efi_range)
{
	struct efi_memory_map_data data = { 0 };
	int new_nr_map = efi.memmap.nr_map;
	efi_memory_desc_t *md;
	void *new_memmap;

	/* count up the number of EFI memory descriptor */
	for_each_efi_memory_desc(md)
		new_nr_map += efi_memmap_split_count(md, &efi_range->range);

	/* allocate memory for new EFI memmap */
	if (efi_memmap_alloc(new_nr_map, &data) != 0)
		return;

	/* create new EFI memmap */
	new_memmap = early_memremap(data.phys_map, data.size);
	if (!new_memmap) {
		__efi_memmap_free(data.phys_map, data.size, data.flags);
		return;
	}

	efi_memmap_insert(&efi.memmap, new_memmap, efi_range);

	/* swap into new EFI memmap */
	early_memunmap(new_memmap, data.size);

	efi_memmap_install(&data);
}

void __init efi_fake_memmap(void)
{
	int i;

	if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem)
		return;

	for (i = 0; i < nr_fake_mem; i++)
		efi_fake_range(&efi_fake_mems[i]);

	/* print new EFI memmap */
	efi_print_memmap();
}

static int __init setup_fake_mem(char *p)
{
	u64 start = 0, mem_size = 0, attribute = 0;
	int i;

	if (!p)
		return -EINVAL;

	while (*p != '\0') {
		mem_size = memparse(p, &p);
		if (*p == '@')
			start = memparse(p+1, &p);
		else
			break;

		if (*p == ':')
			attribute = simple_strtoull(p+1, &p, 0);
		else
			break;

		if (nr_fake_mem >= EFI_MAX_FAKEMEM)
			break;

		efi_fake_mems[nr_fake_mem].range.start = start;
		efi_fake_mems[nr_fake_mem].range.end = start + mem_size - 1;
		efi_fake_mems[nr_fake_mem].attribute = attribute;
		nr_fake_mem++;

		if (*p == ',')
			p++;
	}

	sort(efi_fake_mems, nr_fake_mem, sizeof(struct efi_mem_range),
	     cmp_fake_mem, NULL);

	for (i = 0; i < nr_fake_mem; i++)
		pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]",
			efi_fake_mems[i].attribute, efi_fake_mems[i].range.start,
			efi_fake_mems[i].range.end);

	return *p == '\0' ? 0 : -EINVAL;
}

early_param("efi_fake_mem", setup_fake_mem);

void __init efi_fake_memmap_early(void)
{
	int i;

	/*
	 * The late efi_fake_mem() call can handle all requests if
	 * EFI_MEMORY_SP support is disabled.
	 */
	if (!efi_soft_reserve_enabled())
		return;

	if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem)
		return;

	/*
	 * Given that efi_fake_memmap() needs to perform memblock
	 * allocations it needs to run after e820__memblock_setup().
	 * However, if efi_fake_mem specifies EFI_MEMORY_SP for a given
	 * address range that potentially needs to mark the memory as
	 * reserved prior to e820__memblock_setup(). Update e820
	 * directly if EFI_MEMORY_SP is specified for an
	 * EFI_CONVENTIONAL_MEMORY descriptor.
	 */
	for (i = 0; i < nr_fake_mem; i++) {
		struct efi_mem_range *mem = &efi_fake_mems[i];
		efi_memory_desc_t *md;
		u64 m_start, m_end;

		if ((mem->attribute & EFI_MEMORY_SP) == 0)
			continue;

		m_start = mem->range.start;
		m_end = mem->range.end;
		for_each_efi_memory_desc(md) {
			u64 start, end, size;

			if (md->type != EFI_CONVENTIONAL_MEMORY)
				continue;

			start = md->phys_addr;
			end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;

			if (m_start <= end && m_end >= start)
				/* fake range overlaps descriptor */;
			else
				continue;

			/*
			 * Trim the boundary of the e820 update to the
			 * descriptor in case the fake range overlaps
			 * !EFI_CONVENTIONAL_MEMORY
			 */
			start = max(start, m_start);
			end = min(end, m_end);
			size = end - start + 1;

			if (end <= start)
				continue;

			/*
			 * Ensure each efi_fake_mem instance results in
			 * a unique e820 resource
			 */
			e820__range_remove(start, size, E820_TYPE_RAM, 1);
			e820__range_add(start, size, E820_TYPE_SOFT_RESERVED);
			e820__update_table(e820_table);
		}
	}
}