summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/resctrl/monitor.c
blob: 851b561850e0c2311683c860c20943e46e70c544 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Resource Director Technology(RDT)
 * - Monitoring code
 *
 * Copyright (C) 2017 Intel Corporation
 *
 * Author:
 *    Vikas Shivappa <vikas.shivappa@intel.com>
 *
 * This replaces the cqm.c based on perf but we reuse a lot of
 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual June 2016, volume 3, section 17.17.
 */

#define pr_fmt(fmt)	"resctrl: " fmt

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/sizes.h>
#include <linux/slab.h>

#include <asm/cpu_device_id.h>
#include <asm/resctrl.h>

#include "internal.h"
#include "trace.h"

/**
 * struct rmid_entry - dirty tracking for all RMID.
 * @closid:	The CLOSID for this entry.
 * @rmid:	The RMID for this entry.
 * @busy:	The number of domains with cached data using this RMID.
 * @list:	Member of the rmid_free_lru list when busy == 0.
 *
 * Depending on the architecture the correct monitor is accessed using
 * both @closid and @rmid, or @rmid only.
 *
 * Take the rdtgroup_mutex when accessing.
 */
struct rmid_entry {
	u32				closid;
	u32				rmid;
	int				busy;
	struct list_head		list;
};

/*
 * @rmid_free_lru - A least recently used list of free RMIDs
 *     These RMIDs are guaranteed to have an occupancy less than the
 *     threshold occupancy
 */
static LIST_HEAD(rmid_free_lru);

/*
 * @closid_num_dirty_rmid    The number of dirty RMID each CLOSID has.
 *     Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
 *     Indexed by CLOSID. Protected by rdtgroup_mutex.
 */
static u32 *closid_num_dirty_rmid;

/*
 * @rmid_limbo_count - count of currently unused but (potentially)
 *     dirty RMIDs.
 *     This counts RMIDs that no one is currently using but that
 *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
 *     change the threshold occupancy value.
 */
static unsigned int rmid_limbo_count;

/*
 * @rmid_entry - The entry in the limbo and free lists.
 */
static struct rmid_entry	*rmid_ptrs;

/*
 * Global boolean for rdt_monitor which is true if any
 * resource monitoring is enabled.
 */
bool rdt_mon_capable;

/*
 * Global to indicate which monitoring events are enabled.
 */
unsigned int rdt_mon_features;

/*
 * This is the threshold cache occupancy in bytes at which we will consider an
 * RMID available for re-allocation.
 */
unsigned int resctrl_rmid_realloc_threshold;

/*
 * This is the maximum value for the reallocation threshold, in bytes.
 */
unsigned int resctrl_rmid_realloc_limit;

#define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))

static int snc_nodes_per_l3_cache = 1;

/*
 * The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
 * If rmid > rmid threshold, MBM total and local values should be multiplied
 * by the correction factor.
 *
 * The original table is modified for better code:
 *
 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
 *    for the case.
 * 2. MBM total and local correction table indexed by core counter which is
 *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
 *    to calculate corrected value by shifting:
 *    corrected_value = (original_value * correction_factor) >> 20
 */
static const struct mbm_correction_factor_table {
	u32 rmidthreshold;
	u64 cf;
} mbm_cf_table[] __initconst = {
	{7,	CF(1.000000)},
	{15,	CF(1.000000)},
	{15,	CF(0.969650)},
	{31,	CF(1.000000)},
	{31,	CF(1.066667)},
	{31,	CF(0.969650)},
	{47,	CF(1.142857)},
	{63,	CF(1.000000)},
	{63,	CF(1.185115)},
	{63,	CF(1.066553)},
	{79,	CF(1.454545)},
	{95,	CF(1.000000)},
	{95,	CF(1.230769)},
	{95,	CF(1.142857)},
	{95,	CF(1.066667)},
	{127,	CF(1.000000)},
	{127,	CF(1.254863)},
	{127,	CF(1.185255)},
	{151,	CF(1.000000)},
	{127,	CF(1.066667)},
	{167,	CF(1.000000)},
	{159,	CF(1.454334)},
	{183,	CF(1.000000)},
	{127,	CF(0.969744)},
	{191,	CF(1.280246)},
	{191,	CF(1.230921)},
	{215,	CF(1.000000)},
	{191,	CF(1.143118)},
};

static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
static u64 mbm_cf __read_mostly;

static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
{
	/* Correct MBM value. */
	if (rmid > mbm_cf_rmidthreshold)
		val = (val * mbm_cf) >> 20;

	return val;
}

/*
 * x86 and arm64 differ in their handling of monitoring.
 * x86's RMID are independent numbers, there is only one source of traffic
 * with an RMID value of '1'.
 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
 * value is no longer unique.
 * To account for this, resctrl uses an index. On x86 this is just the RMID,
 * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
 *
 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
 * must accept an attempt to read every index.
 */
static inline struct rmid_entry *__rmid_entry(u32 idx)
{
	struct rmid_entry *entry;
	u32 closid, rmid;

	entry = &rmid_ptrs[idx];
	resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);

	WARN_ON_ONCE(entry->closid != closid);
	WARN_ON_ONCE(entry->rmid != rmid);

	return entry;
}

/*
 * When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by
 * "snc_nodes_per_l3_cache == 1") no translation of the RMID value is
 * needed. The physical RMID is the same as the logical RMID.
 *
 * On a platform with SNC mode enabled, Linux enables RMID sharing mode
 * via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel
 * Resource Director Technology Architecture Specification" for a full
 * description of RMID sharing mode).
 *
 * In RMID sharing mode there are fewer "logical RMID" values available
 * to accumulate data ("physical RMIDs" are divided evenly between SNC
 * nodes that share an L3 cache). Linux creates an rdt_mon_domain for
 * each SNC node.
 *
 * The value loaded into IA32_PQR_ASSOC is the "logical RMID".
 *
 * Data is collected independently on each SNC node and can be retrieved
 * using the "physical RMID" value computed by this function and loaded
 * into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node.
 *
 * The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3
 * cache.  So a "physical RMID" may be read from any CPU that shares
 * the L3 cache with the desired SNC node, not just from a CPU in
 * the specific SNC node.
 */
static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;

	if (snc_nodes_per_l3_cache == 1)
		return lrmid;

	return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid;
}

static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
{
	u64 msr_val;

	/*
	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
	 * with a valid event code for supported resource type and the bits
	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
	 * are error bits.
	 */
	wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
	rdmsrl(MSR_IA32_QM_CTR, msr_val);

	if (msr_val & RMID_VAL_ERROR)
		return -EIO;
	if (msr_val & RMID_VAL_UNAVAIL)
		return -EINVAL;

	*val = msr_val;
	return 0;
}

static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom,
						 u32 rmid,
						 enum resctrl_event_id eventid)
{
	switch (eventid) {
	case QOS_L3_OCCUP_EVENT_ID:
		return NULL;
	case QOS_L3_MBM_TOTAL_EVENT_ID:
		return &hw_dom->arch_mbm_total[rmid];
	case QOS_L3_MBM_LOCAL_EVENT_ID:
		return &hw_dom->arch_mbm_local[rmid];
	}

	/* Never expect to get here */
	WARN_ON_ONCE(1);

	return NULL;
}

void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
			     u32 unused, u32 rmid,
			     enum resctrl_event_id eventid)
{
	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
	int cpu = cpumask_any(&d->hdr.cpu_mask);
	struct arch_mbm_state *am;
	u32 prmid;

	am = get_arch_mbm_state(hw_dom, rmid, eventid);
	if (am) {
		memset(am, 0, sizeof(*am));

		prmid = logical_rmid_to_physical_rmid(cpu, rmid);
		/* Record any initial, non-zero count value. */
		__rmid_read_phys(prmid, eventid, &am->prev_msr);
	}
}

/*
 * Assumes that hardware counters are also reset and thus that there is
 * no need to record initial non-zero counts.
 */
void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
{
	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);

	if (is_mbm_total_enabled())
		memset(hw_dom->arch_mbm_total, 0,
		       sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);

	if (is_mbm_local_enabled())
		memset(hw_dom->arch_mbm_local, 0,
		       sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
}

static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
{
	u64 shift = 64 - width, chunks;

	chunks = (cur_msr << shift) - (prev_msr << shift);
	return chunks >> shift;
}

int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
			   u32 unused, u32 rmid, enum resctrl_event_id eventid,
			   u64 *val, void *ignored)
{
	struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
	int cpu = cpumask_any(&d->hdr.cpu_mask);
	struct arch_mbm_state *am;
	u64 msr_val, chunks;
	u32 prmid;
	int ret;

	resctrl_arch_rmid_read_context_check();

	prmid = logical_rmid_to_physical_rmid(cpu, rmid);
	ret = __rmid_read_phys(prmid, eventid, &msr_val);
	if (ret)
		return ret;

	am = get_arch_mbm_state(hw_dom, rmid, eventid);
	if (am) {
		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
						 hw_res->mbm_width);
		chunks = get_corrected_mbm_count(rmid, am->chunks);
		am->prev_msr = msr_val;
	} else {
		chunks = msr_val;
	}

	*val = chunks * hw_res->mon_scale;

	return 0;
}

static void limbo_release_entry(struct rmid_entry *entry)
{
	lockdep_assert_held(&rdtgroup_mutex);

	rmid_limbo_count--;
	list_add_tail(&entry->list, &rmid_free_lru);

	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		closid_num_dirty_rmid[entry->closid]--;
}

/*
 * Check the RMIDs that are marked as busy for this domain. If the
 * reported LLC occupancy is below the threshold clear the busy bit and
 * decrement the count. If the busy count gets to zero on an RMID, we
 * free the RMID
 */
void __check_limbo(struct rdt_mon_domain *d, bool force_free)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
	struct rmid_entry *entry;
	u32 idx, cur_idx = 1;
	void *arch_mon_ctx;
	bool rmid_dirty;
	u64 val = 0;

	arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
	if (IS_ERR(arch_mon_ctx)) {
		pr_warn_ratelimited("Failed to allocate monitor context: %ld",
				    PTR_ERR(arch_mon_ctx));
		return;
	}

	/*
	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
	 * are marked as busy for occupancy < threshold. If the occupancy
	 * is less than the threshold decrement the busy counter of the
	 * RMID and move it to the free list when the counter reaches 0.
	 */
	for (;;) {
		idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
		if (idx >= idx_limit)
			break;

		entry = __rmid_entry(idx);
		if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
					   QOS_L3_OCCUP_EVENT_ID, &val,
					   arch_mon_ctx)) {
			rmid_dirty = true;
		} else {
			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);

			/*
			 * x86's CLOSID and RMID are independent numbers, so the entry's
			 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
			 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
			 * used to select the configuration. It is thus necessary to track both
			 * CLOSID and RMID because there may be dependencies between them
			 * on some architectures.
			 */
			trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
		}

		if (force_free || !rmid_dirty) {
			clear_bit(idx, d->rmid_busy_llc);
			if (!--entry->busy)
				limbo_release_entry(entry);
		}
		cur_idx = idx + 1;
	}

	resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
}

bool has_busy_rmid(struct rdt_mon_domain *d)
{
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();

	return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
}

static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
{
	struct rmid_entry *itr;
	u32 itr_idx, cmp_idx;

	if (list_empty(&rmid_free_lru))
		return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);

	list_for_each_entry(itr, &rmid_free_lru, list) {
		/*
		 * Get the index of this free RMID, and the index it would need
		 * to be if it were used with this CLOSID.
		 * If the CLOSID is irrelevant on this architecture, the two
		 * index values are always the same on every entry and thus the
		 * very first entry will be returned.
		 */
		itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
		cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);

		if (itr_idx == cmp_idx)
			return itr;
	}

	return ERR_PTR(-ENOSPC);
}

/**
 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
 *                                  RMID are clean, or the CLOSID that has
 *                                  the most clean RMID.
 *
 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
 * may not be able to allocate clean RMID. To avoid this the allocator will
 * choose the CLOSID with the most clean RMID.
 *
 * When the CLOSID and RMID are independent numbers, the first free CLOSID will
 * be returned.
 */
int resctrl_find_cleanest_closid(void)
{
	u32 cleanest_closid = ~0;
	int i = 0;

	lockdep_assert_held(&rdtgroup_mutex);

	if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		return -EIO;

	for (i = 0; i < closids_supported(); i++) {
		int num_dirty;

		if (closid_allocated(i))
			continue;

		num_dirty = closid_num_dirty_rmid[i];
		if (num_dirty == 0)
			return i;

		if (cleanest_closid == ~0)
			cleanest_closid = i;

		if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
			cleanest_closid = i;
	}

	if (cleanest_closid == ~0)
		return -ENOSPC;

	return cleanest_closid;
}

/*
 * For MPAM the RMID value is not unique, and has to be considered with
 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
 * allows all domains to be managed by a single free list.
 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
 */
int alloc_rmid(u32 closid)
{
	struct rmid_entry *entry;

	lockdep_assert_held(&rdtgroup_mutex);

	entry = resctrl_find_free_rmid(closid);
	if (IS_ERR(entry))
		return PTR_ERR(entry);

	list_del(&entry->list);
	return entry->rmid;
}

static void add_rmid_to_limbo(struct rmid_entry *entry)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	struct rdt_mon_domain *d;
	u32 idx;

	lockdep_assert_held(&rdtgroup_mutex);

	/* Walking r->domains, ensure it can't race with cpuhp */
	lockdep_assert_cpus_held();

	idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);

	entry->busy = 0;
	list_for_each_entry(d, &r->mon_domains, hdr.list) {
		/*
		 * For the first limbo RMID in the domain,
		 * setup up the limbo worker.
		 */
		if (!has_busy_rmid(d))
			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
						RESCTRL_PICK_ANY_CPU);
		set_bit(idx, d->rmid_busy_llc);
		entry->busy++;
	}

	rmid_limbo_count++;
	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
		closid_num_dirty_rmid[entry->closid]++;
}

void free_rmid(u32 closid, u32 rmid)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	struct rmid_entry *entry;

	lockdep_assert_held(&rdtgroup_mutex);

	/*
	 * Do not allow the default rmid to be free'd. Comparing by index
	 * allows architectures that ignore the closid parameter to avoid an
	 * unnecessary check.
	 */
	if (!resctrl_arch_mon_capable() ||
	    idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
						RESCTRL_RESERVED_RMID))
		return;

	entry = __rmid_entry(idx);

	if (is_llc_occupancy_enabled())
		add_rmid_to_limbo(entry);
	else
		list_add_tail(&entry->list, &rmid_free_lru);
}

static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
				       u32 rmid, enum resctrl_event_id evtid)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);

	switch (evtid) {
	case QOS_L3_MBM_TOTAL_EVENT_ID:
		return &d->mbm_total[idx];
	case QOS_L3_MBM_LOCAL_EVENT_ID:
		return &d->mbm_local[idx];
	default:
		return NULL;
	}
}

static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
	int cpu = smp_processor_id();
	struct rdt_mon_domain *d;
	struct mbm_state *m;
	int err, ret;
	u64 tval = 0;

	if (rr->first) {
		resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
		m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
		if (m)
			memset(m, 0, sizeof(struct mbm_state));
		return 0;
	}

	if (rr->d) {
		/* Reading a single domain, must be on a CPU in that domain. */
		if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
			return -EINVAL;
		rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
						 rr->evtid, &tval, rr->arch_mon_ctx);
		if (rr->err)
			return rr->err;

		rr->val += tval;

		return 0;
	}

	/* Summing domains that share a cache, must be on a CPU for that cache. */
	if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
		return -EINVAL;

	/*
	 * Legacy files must report the sum of an event across all
	 * domains that share the same L3 cache instance.
	 * Report success if a read from any domain succeeds, -EINVAL
	 * (translated to "Unavailable" for user space) if reading from
	 * all domains fail for any reason.
	 */
	ret = -EINVAL;
	list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
		if (d->ci->id != rr->ci->id)
			continue;
		err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
					     rr->evtid, &tval, rr->arch_mon_ctx);
		if (!err) {
			rr->val += tval;
			ret = 0;
		}
	}

	if (ret)
		rr->err = ret;

	return ret;
}

/*
 * mbm_bw_count() - Update bw count from values previously read by
 *		    __mon_event_count().
 * @closid:	The closid used to identify the cached mbm_state.
 * @rmid:	The rmid used to identify the cached mbm_state.
 * @rr:		The struct rmid_read populated by __mon_event_count().
 *
 * Supporting function to calculate the memory bandwidth
 * and delta bandwidth in MBps. The chunks value previously read by
 * __mon_event_count() is compared with the chunks value from the previous
 * invocation. This must be called once per second to maintain values in MBps.
 */
static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
	u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	struct mbm_state *m = &rr->d->mbm_local[idx];
	u64 cur_bw, bytes, cur_bytes;

	cur_bytes = rr->val;
	bytes = cur_bytes - m->prev_bw_bytes;
	m->prev_bw_bytes = cur_bytes;

	cur_bw = bytes / SZ_1M;

	m->prev_bw = cur_bw;
}

/*
 * This is scheduled by mon_event_read() to read the CQM/MBM counters
 * on a domain.
 */
void mon_event_count(void *info)
{
	struct rdtgroup *rdtgrp, *entry;
	struct rmid_read *rr = info;
	struct list_head *head;
	int ret;

	rdtgrp = rr->rgrp;

	ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);

	/*
	 * For Ctrl groups read data from child monitor groups and
	 * add them together. Count events which are read successfully.
	 * Discard the rmid_read's reporting errors.
	 */
	head = &rdtgrp->mon.crdtgrp_list;

	if (rdtgrp->type == RDTCTRL_GROUP) {
		list_for_each_entry(entry, head, mon.crdtgrp_list) {
			if (__mon_event_count(entry->closid, entry->mon.rmid,
					      rr) == 0)
				ret = 0;
		}
	}

	/*
	 * __mon_event_count() calls for newly created monitor groups may
	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
	 * Discard error if any of the monitor event reads succeeded.
	 */
	if (ret == 0)
		rr->err = 0;
}

/*
 * Feedback loop for MBA software controller (mba_sc)
 *
 * mba_sc is a feedback loop where we periodically read MBM counters and
 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
 * that:
 *
 *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
 *
 * This uses the MBM counters to measure the bandwidth and MBA throttle
 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
 * fact that resctrl rdtgroups have both monitoring and control.
 *
 * The frequency of the checks is 1s and we just tag along the MBM overflow
 * timer. Having 1s interval makes the calculation of bandwidth simpler.
 *
 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
 * be a need to increase the bandwidth to avoid unnecessarily restricting
 * the L2 <-> L3 traffic.
 *
 * Since MBA controls the L2 external bandwidth where as MBM measures the
 * L3 external bandwidth the following sequence could lead to such a
 * situation.
 *
 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
 * after some time rdtgroup has mostly L2 <-> L3 traffic.
 *
 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
 * throttle MSRs already have low percentage values.  To avoid
 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
 */
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
{
	u32 closid, rmid, cur_msr_val, new_msr_val;
	struct mbm_state *pmbm_data, *cmbm_data;
	struct rdt_ctrl_domain *dom_mba;
	struct rdt_resource *r_mba;
	u32 cur_bw, user_bw, idx;
	struct list_head *head;
	struct rdtgroup *entry;

	if (!is_mbm_local_enabled())
		return;

	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;

	closid = rgrp->closid;
	rmid = rgrp->mon.rmid;
	idx = resctrl_arch_rmid_idx_encode(closid, rmid);
	pmbm_data = &dom_mbm->mbm_local[idx];

	dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
	if (!dom_mba) {
		pr_warn_once("Failure to get domain for MBA update\n");
		return;
	}

	cur_bw = pmbm_data->prev_bw;
	user_bw = dom_mba->mbps_val[closid];

	/* MBA resource doesn't support CDP */
	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);

	/*
	 * For Ctrl groups read data from child monitor groups.
	 */
	head = &rgrp->mon.crdtgrp_list;
	list_for_each_entry(entry, head, mon.crdtgrp_list) {
		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
		cur_bw += cmbm_data->prev_bw;
	}

	/*
	 * Scale up/down the bandwidth linearly for the ctrl group.  The
	 * bandwidth step is the bandwidth granularity specified by the
	 * hardware.
	 * Always increase throttling if current bandwidth is above the
	 * target set by user.
	 * But avoid thrashing up and down on every poll by checking
	 * whether a decrease in throttling is likely to push the group
	 * back over target. E.g. if currently throttling to 30% of bandwidth
	 * on a system with 10% granularity steps, check whether moving to
	 * 40% would go past the limit by multiplying current bandwidth by
	 * "(30 + 10) / 30".
	 */
	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
	} else if (cur_msr_val < MAX_MBA_BW &&
		   (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
	} else {
		return;
	}

	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
}

static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
		       u32 closid, u32 rmid)
{
	struct rmid_read rr = {0};

	rr.r = r;
	rr.d = d;

	/*
	 * This is protected from concurrent reads from user
	 * as both the user and we hold the global mutex.
	 */
	if (is_mbm_total_enabled()) {
		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
		rr.val = 0;
		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
		if (IS_ERR(rr.arch_mon_ctx)) {
			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
					    PTR_ERR(rr.arch_mon_ctx));
			return;
		}

		__mon_event_count(closid, rmid, &rr);

		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
	}
	if (is_mbm_local_enabled()) {
		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
		rr.val = 0;
		rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
		if (IS_ERR(rr.arch_mon_ctx)) {
			pr_warn_ratelimited("Failed to allocate monitor context: %ld",
					    PTR_ERR(rr.arch_mon_ctx));
			return;
		}

		__mon_event_count(closid, rmid, &rr);

		/*
		 * Call the MBA software controller only for the
		 * control groups and when user has enabled
		 * the software controller explicitly.
		 */
		if (is_mba_sc(NULL))
			mbm_bw_count(closid, rmid, &rr);

		resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
	}
}

/*
 * Handler to scan the limbo list and move the RMIDs
 * to free list whose occupancy < threshold_occupancy.
 */
void cqm_handle_limbo(struct work_struct *work)
{
	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
	struct rdt_mon_domain *d;

	cpus_read_lock();
	mutex_lock(&rdtgroup_mutex);

	d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);

	__check_limbo(d, false);

	if (has_busy_rmid(d)) {
		d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
							   RESCTRL_PICK_ANY_CPU);
		schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
					 delay);
	}

	mutex_unlock(&rdtgroup_mutex);
	cpus_read_unlock();
}

/**
 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
 *                             domain.
 * @dom:           The domain the limbo handler should run for.
 * @delay_ms:      How far in the future the handler should run.
 * @exclude_cpu:   Which CPU the handler should not run on,
 *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
 */
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
			     int exclude_cpu)
{
	unsigned long delay = msecs_to_jiffies(delay_ms);
	int cpu;

	cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
	dom->cqm_work_cpu = cpu;

	if (cpu < nr_cpu_ids)
		schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
}

void mbm_handle_overflow(struct work_struct *work)
{
	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
	struct rdtgroup *prgrp, *crgrp;
	struct rdt_mon_domain *d;
	struct list_head *head;
	struct rdt_resource *r;

	cpus_read_lock();
	mutex_lock(&rdtgroup_mutex);

	/*
	 * If the filesystem has been unmounted this work no longer needs to
	 * run.
	 */
	if (!resctrl_mounted || !resctrl_arch_mon_capable())
		goto out_unlock;

	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
	d = container_of(work, struct rdt_mon_domain, mbm_over.work);

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
			mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);

		if (is_mba_sc(NULL))
			update_mba_bw(prgrp, d);
	}

	/*
	 * Re-check for housekeeping CPUs. This allows the overflow handler to
	 * move off a nohz_full CPU quickly.
	 */
	d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
						   RESCTRL_PICK_ANY_CPU);
	schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);

out_unlock:
	mutex_unlock(&rdtgroup_mutex);
	cpus_read_unlock();
}

/**
 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
 *                                domain.
 * @dom:           The domain the overflow handler should run for.
 * @delay_ms:      How far in the future the handler should run.
 * @exclude_cpu:   Which CPU the handler should not run on,
 *		   RESCTRL_PICK_ANY_CPU to pick any CPU.
 */
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
				int exclude_cpu)
{
	unsigned long delay = msecs_to_jiffies(delay_ms);
	int cpu;

	/*
	 * When a domain comes online there is no guarantee the filesystem is
	 * mounted. If not, there is no need to catch counter overflow.
	 */
	if (!resctrl_mounted || !resctrl_arch_mon_capable())
		return;
	cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
	dom->mbm_work_cpu = cpu;

	if (cpu < nr_cpu_ids)
		schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
}

static int dom_data_init(struct rdt_resource *r)
{
	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
	u32 num_closid = resctrl_arch_get_num_closid(r);
	struct rmid_entry *entry = NULL;
	int err = 0, i;
	u32 idx;

	mutex_lock(&rdtgroup_mutex);
	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
		u32 *tmp;

		/*
		 * If the architecture hasn't provided a sanitised value here,
		 * this may result in larger arrays than necessary. Resctrl will
		 * use a smaller system wide value based on the resources in
		 * use.
		 */
		tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
		if (!tmp) {
			err = -ENOMEM;
			goto out_unlock;
		}

		closid_num_dirty_rmid = tmp;
	}

	rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
	if (!rmid_ptrs) {
		if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
			kfree(closid_num_dirty_rmid);
			closid_num_dirty_rmid = NULL;
		}
		err = -ENOMEM;
		goto out_unlock;
	}

	for (i = 0; i < idx_limit; i++) {
		entry = &rmid_ptrs[i];
		INIT_LIST_HEAD(&entry->list);

		resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
		list_add_tail(&entry->list, &rmid_free_lru);
	}

	/*
	 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
	 * are always allocated. These are used for the rdtgroup_default
	 * control group, which will be setup later in rdtgroup_init().
	 */
	idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
					   RESCTRL_RESERVED_RMID);
	entry = __rmid_entry(idx);
	list_del(&entry->list);

out_unlock:
	mutex_unlock(&rdtgroup_mutex);

	return err;
}

static void __exit dom_data_exit(void)
{
	mutex_lock(&rdtgroup_mutex);

	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
		kfree(closid_num_dirty_rmid);
		closid_num_dirty_rmid = NULL;
	}

	kfree(rmid_ptrs);
	rmid_ptrs = NULL;

	mutex_unlock(&rdtgroup_mutex);
}

static struct mon_evt llc_occupancy_event = {
	.name		= "llc_occupancy",
	.evtid		= QOS_L3_OCCUP_EVENT_ID,
};

static struct mon_evt mbm_total_event = {
	.name		= "mbm_total_bytes",
	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
};

static struct mon_evt mbm_local_event = {
	.name		= "mbm_local_bytes",
	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
};

/*
 * Initialize the event list for the resource.
 *
 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
 * because as per the SDM the total and local memory bandwidth
 * are enumerated as part of L3 monitoring.
 */
static void l3_mon_evt_init(struct rdt_resource *r)
{
	INIT_LIST_HEAD(&r->evt_list);

	if (is_llc_occupancy_enabled())
		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
	if (is_mbm_total_enabled())
		list_add_tail(&mbm_total_event.list, &r->evt_list);
	if (is_mbm_local_enabled())
		list_add_tail(&mbm_local_event.list, &r->evt_list);
}

/*
 * The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1
 * which indicates that RMIDs are configured in legacy mode.
 * This mode is incompatible with Linux resctrl semantics
 * as RMIDs are partitioned between SNC nodes, which requires
 * a user to know which RMID is allocated to a task.
 * Clearing bit 0 reconfigures the RMID counters for use
 * in RMID sharing mode. This mode is better for Linux.
 * The RMID space is divided between all SNC nodes with the
 * RMIDs renumbered to start from zero in each node when
 * counting operations from tasks. Code to read the counters
 * must adjust RMID counter numbers based on SNC node. See
 * logical_rmid_to_physical_rmid() for code that does this.
 */
void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d)
{
	if (snc_nodes_per_l3_cache > 1)
		msr_clear_bit(MSR_RMID_SNC_CONFIG, 0);
}

/* CPU models that support MSR_RMID_SNC_CONFIG */
static const struct x86_cpu_id snc_cpu_ids[] __initconst = {
	X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0),
	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0),
	X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0),
	X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0),
	{}
};

/*
 * There isn't a simple hardware bit that indicates whether a CPU is running
 * in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the
 * number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in
 * the same NUMA node as CPU0.
 * It is not possible to accurately determine SNC state if the system is
 * booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes
 * to L3 caches. It will be OK if system is booted with hyperthreading
 * disabled (since this doesn't affect the ratio).
 */
static __init int snc_get_config(void)
{
	struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE);
	const cpumask_t *node0_cpumask;
	int cpus_per_node, cpus_per_l3;
	int ret;

	if (!x86_match_cpu(snc_cpu_ids) || !ci)
		return 1;

	cpus_read_lock();
	if (num_online_cpus() != num_present_cpus())
		pr_warn("Some CPUs offline, SNC detection may be incorrect\n");
	cpus_read_unlock();

	node0_cpumask = cpumask_of_node(cpu_to_node(0));

	cpus_per_node = cpumask_weight(node0_cpumask);
	cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map);

	if (!cpus_per_node || !cpus_per_l3)
		return 1;

	ret = cpus_per_l3 / cpus_per_node;

	/* sanity check: Only valid results are 1, 2, 3, 4 */
	switch (ret) {
	case 1:
		break;
	case 2 ... 4:
		pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret);
		rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE;
		break;
	default:
		pr_warn("Ignore improbable SNC node count %d\n", ret);
		ret = 1;
		break;
	}

	return ret;
}

int __init rdt_get_mon_l3_config(struct rdt_resource *r)
{
	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
	unsigned int threshold;
	int ret;

	snc_nodes_per_l3_cache = snc_get_config();

	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
	r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;

	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
		hw_res->mbm_width += mbm_offset;
	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
		pr_warn("Ignoring impossible MBM counter offset\n");

	/*
	 * A reasonable upper limit on the max threshold is the number
	 * of lines tagged per RMID if all RMIDs have the same number of
	 * lines tagged in the LLC.
	 *
	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
	 */
	threshold = resctrl_rmid_realloc_limit / r->num_rmid;

	/*
	 * Because num_rmid may not be a power of two, round the value
	 * to the nearest multiple of hw_res->mon_scale so it matches a
	 * value the hardware will measure. mon_scale may not be a power of 2.
	 */
	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);

	ret = dom_data_init(r);
	if (ret)
		return ret;

	if (rdt_cpu_has(X86_FEATURE_BMEC)) {
		u32 eax, ebx, ecx, edx;

		/* Detect list of bandwidth sources that can be tracked */
		cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
		hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;

		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
			mbm_total_event.configurable = true;
			mbm_config_rftype_init("mbm_total_bytes_config");
		}
		if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
			mbm_local_event.configurable = true;
			mbm_config_rftype_init("mbm_local_bytes_config");
		}
	}

	l3_mon_evt_init(r);

	r->mon_capable = true;

	return 0;
}

void __exit rdt_put_mon_l3_config(void)
{
	dom_data_exit();
}

void __init intel_rdt_mbm_apply_quirk(void)
{
	int cf_index;

	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
		pr_info("No MBM correction factor available\n");
		return;
	}

	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
	mbm_cf = mbm_cf_table[cf_index].cf;
}