summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/include/hyp/switch.h
blob: 07d37ff88a3f2a69352ae123a08cf37ebfcb273e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#ifndef __ARM64_KVM_HYP_SWITCH_H__
#define __ARM64_KVM_HYP_SWITCH_H__

#include <hyp/adjust_pc.h>
#include <hyp/fault.h>

#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>

#include <kvm/arm_psci.h>

#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/extable.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>

struct kvm_exception_table_entry {
	int insn, fixup;
};

extern struct kvm_exception_table_entry __start___kvm_ex_table;
extern struct kvm_exception_table_entry __stop___kvm_ex_table;

/* Check whether the FP regs are owned by the guest */
static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
}

/* Save the 32-bit only FPSIMD system register state */
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
}

static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	if (kvm_arm_support_pmu_v3()) {
		write_sysreg(0, pmselr_el0);
		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	}

	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);

	if (cpus_have_final_cap(ARM64_SME)) {
		sysreg_clear_set_s(SYS_HFGRTR_EL2,
				   HFGxTR_EL2_nSMPRI_EL1_MASK |
				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
				   0);
		sysreg_clear_set_s(SYS_HFGWTR_EL2,
				   HFGxTR_EL2_nSMPRI_EL1_MASK |
				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
				   0);
	}
}

static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
{
	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);

	write_sysreg(0, hstr_el2);
	if (kvm_arm_support_pmu_v3())
		write_sysreg(0, pmuserenr_el0);

	if (cpus_have_final_cap(ARM64_SME)) {
		sysreg_clear_set_s(SYS_HFGRTR_EL2, 0,
				   HFGxTR_EL2_nSMPRI_EL1_MASK |
				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
		sysreg_clear_set_s(SYS_HFGWTR_EL2, 0,
				   HFGxTR_EL2_nSMPRI_EL1_MASK |
				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
	}
}

static inline void ___activate_traps(struct kvm_vcpu *vcpu)
{
	u64 hcr = vcpu->arch.hcr_el2;

	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
		hcr |= HCR_TVM;

	write_sysreg(hcr, hcr_el2);

	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
}

static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
{
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE) {
		vcpu->arch.hcr_el2 &= ~HCR_VSE;
		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
	}
}

static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
{
	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
}

static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
{
	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
	__sve_restore_state(vcpu_sve_pffr(vcpu),
			    &vcpu->arch.ctxt.fp_regs.fpsr);
	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
}

/*
 * We trap the first access to the FP/SIMD to save the host context and
 * restore the guest context lazily.
 * If FP/SIMD is not implemented, handle the trap and inject an undefined
 * instruction exception to the guest. Similarly for trapped SVE accesses.
 */
static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	bool sve_guest;
	u8 esr_ec;
	u64 reg;

	if (!system_supports_fpsimd())
		return false;

	sve_guest = vcpu_has_sve(vcpu);
	esr_ec = kvm_vcpu_trap_get_class(vcpu);

	/* Don't handle SVE traps for non-SVE vcpus here: */
	if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
		return false;

	/* Valid trap.  Switch the context: */

	/* First disable enough traps to allow us to update the registers */
	if (has_vhe()) {
		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
		if (sve_guest)
			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;

		sysreg_clear_set(cpacr_el1, 0, reg);
	} else {
		reg = CPTR_EL2_TFP;
		if (sve_guest)
			reg |= CPTR_EL2_TZ;

		sysreg_clear_set(cptr_el2, reg, 0);
	}
	isb();

	/* Write out the host state if it's in the registers */
	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);

	/* Restore the guest state */
	if (sve_guest)
		__hyp_sve_restore_guest(vcpu);
	else
		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);

	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;

	return true;
}

static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
{
	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
	int rt = kvm_vcpu_sys_get_rt(vcpu);
	u64 val = vcpu_get_reg(vcpu, rt);

	/*
	 * The normal sysreg handling code expects to see the traps,
	 * let's not do anything here.
	 */
	if (vcpu->arch.hcr_el2 & HCR_TVM)
		return false;

	switch (sysreg) {
	case SYS_SCTLR_EL1:
		write_sysreg_el1(val, SYS_SCTLR);
		break;
	case SYS_TTBR0_EL1:
		write_sysreg_el1(val, SYS_TTBR0);
		break;
	case SYS_TTBR1_EL1:
		write_sysreg_el1(val, SYS_TTBR1);
		break;
	case SYS_TCR_EL1:
		write_sysreg_el1(val, SYS_TCR);
		break;
	case SYS_ESR_EL1:
		write_sysreg_el1(val, SYS_ESR);
		break;
	case SYS_FAR_EL1:
		write_sysreg_el1(val, SYS_FAR);
		break;
	case SYS_AFSR0_EL1:
		write_sysreg_el1(val, SYS_AFSR0);
		break;
	case SYS_AFSR1_EL1:
		write_sysreg_el1(val, SYS_AFSR1);
		break;
	case SYS_MAIR_EL1:
		write_sysreg_el1(val, SYS_MAIR);
		break;
	case SYS_AMAIR_EL1:
		write_sysreg_el1(val, SYS_AMAIR);
		break;
	case SYS_CONTEXTIDR_EL1:
		write_sysreg_el1(val, SYS_CONTEXTIDR);
		break;
	default:
		return false;
	}

	__kvm_skip_instr(vcpu);
	return true;
}

static inline bool esr_is_ptrauth_trap(u64 esr)
{
	switch (esr_sys64_to_sysreg(esr)) {
	case SYS_APIAKEYLO_EL1:
	case SYS_APIAKEYHI_EL1:
	case SYS_APIBKEYLO_EL1:
	case SYS_APIBKEYHI_EL1:
	case SYS_APDAKEYLO_EL1:
	case SYS_APDAKEYHI_EL1:
	case SYS_APDBKEYLO_EL1:
	case SYS_APDBKEYHI_EL1:
	case SYS_APGAKEYLO_EL1:
	case SYS_APGAKEYHI_EL1:
		return true;
	}

	return false;
}

#define __ptrauth_save_key(ctxt, key)					\
	do {								\
	u64 __val;                                                      \
	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
} while(0)

DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);

static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	struct kvm_cpu_context *ctxt;
	u64 val;

	if (!vcpu_has_ptrauth(vcpu))
		return false;

	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
	__ptrauth_save_key(ctxt, APIA);
	__ptrauth_save_key(ctxt, APIB);
	__ptrauth_save_key(ctxt, APDA);
	__ptrauth_save_key(ctxt, APDB);
	__ptrauth_save_key(ctxt, APGA);

	vcpu_ptrauth_enable(vcpu);

	val = read_sysreg(hcr_el2);
	val |= (HCR_API | HCR_APK);
	write_sysreg(val, hcr_el2);

	return true;
}

static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
	    handle_tx2_tvm(vcpu))
		return true;

	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
		return true;

	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
		return kvm_hyp_handle_ptrauth(vcpu, exit_code);

	return false;
}

static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
		return true;

	return false;
}

static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (!__populate_fault_info(vcpu))
		return true;

	return false;
}

static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	if (!__populate_fault_info(vcpu))
		return true;

	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
		bool valid;

		valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_abt_issea(vcpu) &&
			!kvm_vcpu_abt_iss1tw(vcpu);

		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

			if (ret == 1)
				return true;

			/* Promote an illegal access to an SError.*/
			if (ret == -1)
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
		}
	}

	return false;
}

typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);

static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);

static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);

/*
 * Allow the hypervisor to handle the exit with an exit handler if it has one.
 *
 * Returns true if the hypervisor handled the exit, and control should go back
 * to the guest, or false if it hasn't.
 */
static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
	exit_handler_fn fn;

	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];

	if (fn)
		return fn(vcpu, exit_code);

	return false;
}

static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	/*
	 * Check for the conditions of Cortex-A510's #2077057. When these occur
	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
	 * Are we single-stepping the guest, and took a PAC exception from the
	 * active-not-pending state?
	 */
	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);

	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
}

/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
	/*
	 * Save PSTATE early so that we can evaluate the vcpu mode
	 * early on.
	 */
	synchronize_vcpu_pstate(vcpu, exit_code);

	/*
	 * Check whether we want to repaint the state one way or
	 * another.
	 */
	early_exit_filter(vcpu, exit_code);

	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);

	if (ARM_SERROR_PENDING(*exit_code) &&
	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);

		/*
		 * HVC already have an adjusted PC, which we need to
		 * correct in order to return to after having injected
		 * the SError.
		 *
		 * SMC, on the other hand, is *trapped*, meaning its
		 * preferred return address is the SMC itself.
		 */
		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
	}

	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

	/* Check if there's an exit handler and allow it to handle the exit. */
	if (kvm_hyp_handle_exit(vcpu, exit_code))
		goto guest;
exit:
	/* Return to the host kernel and handle the exit */
	return false;

guest:
	/* Re-enter the guest */
	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
	return true;
}

static inline void __kvm_unexpected_el2_exception(void)
{
	extern char __guest_exit_panic[];
	unsigned long addr, fixup;
	struct kvm_exception_table_entry *entry, *end;
	unsigned long elr_el2 = read_sysreg(elr_el2);

	entry = &__start___kvm_ex_table;
	end = &__stop___kvm_ex_table;

	while (entry < end) {
		addr = (unsigned long)&entry->insn + entry->insn;
		fixup = (unsigned long)&entry->fixup + entry->fixup;

		if (addr != elr_el2) {
			entry++;
			continue;
		}

		write_sysreg(fixup, elr_el2);
		return;
	}

	/* Trigger a panic after restoring the hyp context. */
	write_sysreg(__guest_exit_panic, elr_el2);
}

#endif /* __ARM64_KVM_HYP_SWITCH_H__ */