1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/process.c
*
* Original Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/compat.h>
#include <linux/efi.h>
#include <linux/elf.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/nospec.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/personality.h>
#include <linux/notifier.h>
#include <trace/events/power.h>
#include <linux/percpu.h>
#include <linux/thread_info.h>
#include <linux/prctl.h>
#include <linux/stacktrace.h>
#include <asm/alternative.h>
#include <asm/compat.h>
#include <asm/cpufeature.h>
#include <asm/cacheflush.h>
#include <asm/exec.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>
#include <asm/switch_to.h>
#include <asm/system_misc.h>
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __ro_after_init;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
/*
* Function pointers to optional machine specific functions
*/
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
/*
* Called by kexec, immediately prior to machine_kexec().
*
* This must completely disable all secondary CPUs; simply causing those CPUs
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
* kexec'd kernel to use any and all RAM as it sees fit, without having to
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
*/
void machine_shutdown(void)
{
smp_shutdown_nonboot_cpus(reboot_cpu);
}
/*
* Halting simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this.
*/
void machine_halt(void)
{
local_irq_disable();
smp_send_stop();
while (1);
}
/*
* Power-off simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this. When the system power is turned off, it will take all CPUs
* with it.
*/
void machine_power_off(void)
{
local_irq_disable();
smp_send_stop();
do_kernel_power_off();
}
/*
* Restart requires that the secondary CPUs stop performing any activity
* while the primary CPU resets the system. Systems with multiple CPUs must
* provide a HW restart implementation, to ensure that all CPUs reset at once.
* This is required so that any code running after reset on the primary CPU
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
* executing pre-reset code, and using RAM that the primary CPU's code wishes
* to use. Implementing such co-ordination would be essentially impossible.
*/
void machine_restart(char *cmd)
{
/* Disable interrupts first */
local_irq_disable();
smp_send_stop();
/*
* UpdateCapsule() depends on the system being reset via
* ResetSystem().
*/
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_reboot(reboot_mode, NULL);
/* Now call the architecture specific reboot code. */
do_kernel_restart(cmd);
/*
* Whoops - the architecture was unable to reboot.
*/
printk("Reboot failed -- System halted\n");
while (1);
}
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
static const char *const btypes[] = {
bstr(NONE, "--"),
bstr( JC, "jc"),
bstr( C, "-c"),
bstr( J , "j-")
};
#undef bstr
static void print_pstate(struct pt_regs *regs)
{
u64 pstate = regs->pstate;
if (compat_user_mode(regs)) {
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
pstate,
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
pstate & PSR_AA32_F_BIT ? 'F' : 'f',
pstate & PSR_AA32_DIT_BIT ? '+' : '-',
pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
} else {
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
PSR_BTYPE_SHIFT];
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
pstate,
pstate & PSR_N_BIT ? 'N' : 'n',
pstate & PSR_Z_BIT ? 'Z' : 'z',
pstate & PSR_C_BIT ? 'C' : 'c',
pstate & PSR_V_BIT ? 'V' : 'v',
pstate & PSR_D_BIT ? 'D' : 'd',
pstate & PSR_A_BIT ? 'A' : 'a',
pstate & PSR_I_BIT ? 'I' : 'i',
pstate & PSR_F_BIT ? 'F' : 'f',
pstate & PSR_PAN_BIT ? '+' : '-',
pstate & PSR_UAO_BIT ? '+' : '-',
pstate & PSR_TCO_BIT ? '+' : '-',
pstate & PSR_DIT_BIT ? '+' : '-',
pstate & PSR_SSBS_BIT ? '+' : '-',
btype_str);
}
}
void __show_regs(struct pt_regs *regs)
{
int i, top_reg;
u64 lr, sp;
if (compat_user_mode(regs)) {
lr = regs->compat_lr;
sp = regs->compat_sp;
top_reg = 12;
} else {
lr = regs->regs[30];
sp = regs->sp;
top_reg = 29;
}
show_regs_print_info(KERN_DEFAULT);
print_pstate(regs);
if (!user_mode(regs)) {
printk("pc : %pS\n", (void *)regs->pc);
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
} else {
printk("pc : %016llx\n", regs->pc);
printk("lr : %016llx\n", lr);
}
printk("sp : %016llx\n", sp);
if (system_uses_irq_prio_masking())
printk("pmr_save: %08llx\n", regs->pmr_save);
i = top_reg;
while (i >= 0) {
printk("x%-2d: %016llx", i, regs->regs[i]);
while (i-- % 3)
pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
pr_cont("\n");
}
}
void show_regs(struct pt_regs *regs)
{
__show_regs(regs);
dump_backtrace(regs, NULL, KERN_DEFAULT);
}
static void tls_thread_flush(void)
{
write_sysreg(0, tpidr_el0);
if (system_supports_tpidr2())
write_sysreg_s(0, SYS_TPIDR2_EL0);
if (is_compat_task()) {
current->thread.uw.tp_value = 0;
/*
* We need to ensure ordering between the shadow state and the
* hardware state, so that we don't corrupt the hardware state
* with a stale shadow state during context switch.
*/
barrier();
write_sysreg(0, tpidrro_el0);
}
}
static void flush_tagged_addr_state(void)
{
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
clear_thread_flag(TIF_TAGGED_ADDR);
}
void flush_thread(void)
{
fpsimd_flush_thread();
tls_thread_flush();
flush_ptrace_hw_breakpoint(current);
flush_tagged_addr_state();
}
void arch_release_task_struct(struct task_struct *tsk)
{
fpsimd_release_task(tsk);
}
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
if (current->mm)
fpsimd_preserve_current_state();
*dst = *src;
/* We rely on the above assignment to initialize dst's thread_flags: */
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
/*
* Detach src's sve_state (if any) from dst so that it does not
* get erroneously used or freed prematurely. dst's copies
* will be allocated on demand later on if dst uses SVE.
* For consistency, also clear TIF_SVE here: this could be done
* later in copy_process(), but to avoid tripping up future
* maintainers it is best not to leave TIF flags and buffers in
* an inconsistent state, even temporarily.
*/
dst->thread.sve_state = NULL;
clear_tsk_thread_flag(dst, TIF_SVE);
/*
* In the unlikely event that we create a new thread with ZA
* enabled we should retain the ZA state so duplicate it here.
* This may be shortly freed if we exec() or if CLONE_SETTLS
* but it's simpler to do it here. To avoid confusing the rest
* of the code ensure that we have a sve_state allocated
* whenever za_state is allocated.
*/
if (thread_za_enabled(&src->thread)) {
dst->thread.sve_state = kzalloc(sve_state_size(src),
GFP_KERNEL);
if (!dst->thread.sve_state)
return -ENOMEM;
dst->thread.za_state = kmemdup(src->thread.za_state,
za_state_size(src),
GFP_KERNEL);
if (!dst->thread.za_state) {
kfree(dst->thread.sve_state);
dst->thread.sve_state = NULL;
return -ENOMEM;
}
} else {
dst->thread.za_state = NULL;
clear_tsk_thread_flag(dst, TIF_SME);
}
/* clear any pending asynchronous tag fault raised by the parent */
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
return 0;
}
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
{
unsigned long clone_flags = args->flags;
unsigned long stack_start = args->stack;
unsigned long tls = args->tls;
struct pt_regs *childregs = task_pt_regs(p);
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
/*
* In case p was allocated the same task_struct pointer as some
* other recently-exited task, make sure p is disassociated from
* any cpu that may have run that now-exited task recently.
* Otherwise we could erroneously skip reloading the FPSIMD
* registers for p.
*/
fpsimd_flush_task_state(p);
ptrauth_thread_init_kernel(p);
if (likely(!args->fn)) {
*childregs = *current_pt_regs();
childregs->regs[0] = 0;
/*
* Read the current TLS pointer from tpidr_el0 as it may be
* out-of-sync with the saved value.
*/
*task_user_tls(p) = read_sysreg(tpidr_el0);
if (system_supports_tpidr2())
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
if (stack_start) {
if (is_compat_thread(task_thread_info(p)))
childregs->compat_sp = stack_start;
else
childregs->sp = stack_start;
}
/*
* If a TLS pointer was passed to clone, use it for the new
* thread. We also reset TPIDR2 if it's in use.
*/
if (clone_flags & CLONE_SETTLS) {
p->thread.uw.tp_value = tls;
p->thread.tpidr2_el0 = 0;
}
} else {
/*
* A kthread has no context to ERET to, so ensure any buggy
* ERET is treated as an illegal exception return.
*
* When a user task is created from a kthread, childregs will
* be initialized by start_thread() or start_compat_thread().
*/
memset(childregs, 0, sizeof(struct pt_regs));
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
p->thread.cpu_context.x19 = (unsigned long)args->fn;
p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
}
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
p->thread.cpu_context.sp = (unsigned long)childregs;
/*
* For the benefit of the unwinder, set up childregs->stackframe
* as the final frame for the new task.
*/
p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
ptrace_hw_copy_thread(p);
return 0;
}
void tls_preserve_current_state(void)
{
*task_user_tls(current) = read_sysreg(tpidr_el0);
if (system_supports_tpidr2() && !is_compat_task())
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
}
static void tls_thread_switch(struct task_struct *next)
{
tls_preserve_current_state();
if (is_compat_thread(task_thread_info(next)))
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
else if (!arm64_kernel_unmapped_at_el0())
write_sysreg(0, tpidrro_el0);
write_sysreg(*task_user_tls(next), tpidr_el0);
if (system_supports_tpidr2())
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
}
/*
* Force SSBS state on context-switch, since it may be lost after migrating
* from a CPU which treats the bit as RES0 in a heterogeneous system.
*/
static void ssbs_thread_switch(struct task_struct *next)
{
/*
* Nothing to do for kernel threads, but 'regs' may be junk
* (e.g. idle task) so check the flags and bail early.
*/
if (unlikely(next->flags & PF_KTHREAD))
return;
/*
* If all CPUs implement the SSBS extension, then we just need to
* context-switch the PSTATE field.
*/
if (cpus_have_const_cap(ARM64_SSBS))
return;
spectre_v4_enable_task_mitigation(next);
}
/*
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
* shadow copy so that we can restore this upon entry from userspace.
*
* This is *only* for exception entry from EL0, and is not valid until we
* __switch_to() a user task.
*/
DEFINE_PER_CPU(struct task_struct *, __entry_task);
static void entry_task_switch(struct task_struct *next)
{
__this_cpu_write(__entry_task, next);
}
/*
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
* Ensure access is disabled when switching to a 32bit task, ensure
* access is enabled when switching to a 64bit task.
*/
static void erratum_1418040_thread_switch(struct task_struct *next)
{
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
!this_cpu_has_cap(ARM64_WORKAROUND_1418040))
return;
if (is_compat_thread(task_thread_info(next)))
sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
else
sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
}
static void erratum_1418040_new_exec(void)
{
preempt_disable();
erratum_1418040_thread_switch(current);
preempt_enable();
}
/*
* __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
* this function must be called with preemption disabled and the update to
* sctlr_user must be made in the same preemption disabled block so that
* __switch_to() does not see the variable update before the SCTLR_EL1 one.
*/
void update_sctlr_el1(u64 sctlr)
{
/*
* EnIA must not be cleared while in the kernel as this is necessary for
* in-kernel PAC. It will be cleared on kernel exit if needed.
*/
sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
/* ISB required for the kernel uaccess routines when setting TCF0. */
isb();
}
/*
* Thread switching.
*/
__notrace_funcgraph __sched
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next)
{
struct task_struct *last;
fpsimd_thread_switch(next);
tls_thread_switch(next);
hw_breakpoint_thread_switch(next);
contextidr_thread_switch(next);
entry_task_switch(next);
ssbs_thread_switch(next);
erratum_1418040_thread_switch(next);
ptrauth_thread_switch_user(next);
/*
* Complete any pending TLB or cache maintenance on this CPU in case
* the thread migrates to a different CPU.
* This full barrier is also required by the membarrier system
* call.
*/
dsb(ish);
/*
* MTE thread switching must happen after the DSB above to ensure that
* any asynchronous tag check faults have been logged in the TFSR*_EL1
* registers.
*/
mte_thread_switch(next);
/* avoid expensive SCTLR_EL1 accesses if no change */
if (prev->thread.sctlr_user != next->thread.sctlr_user)
update_sctlr_el1(next->thread.sctlr_user);
/* the actual thread switch */
last = cpu_switch_to(prev, next);
return last;
}
struct wchan_info {
unsigned long pc;
int count;
};
static bool get_wchan_cb(void *arg, unsigned long pc)
{
struct wchan_info *wchan_info = arg;
if (!in_sched_functions(pc)) {
wchan_info->pc = pc;
return false;
}
return wchan_info->count++ < 16;
}
unsigned long __get_wchan(struct task_struct *p)
{
struct wchan_info wchan_info = {
.pc = 0,
.count = 0,
};
if (!try_get_task_stack(p))
return 0;
arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
put_task_stack(p);
return wchan_info.pc;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
#ifdef CONFIG_COMPAT
int compat_elf_check_arch(const struct elf32_hdr *hdr)
{
if (!system_supports_32bit_el0())
return false;
if ((hdr)->e_machine != EM_ARM)
return false;
if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
return false;
/*
* Prevent execve() of a 32-bit program from a deadline task
* if the restricted affinity mask would be inadmissible on an
* asymmetric system.
*/
return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
!dl_task_check_affinity(current, system_32bit_el0_cpumask());
}
#endif
/*
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
*/
void arch_setup_new_exec(void)
{
unsigned long mmflags = 0;
if (is_compat_task()) {
mmflags = MMCF_AARCH32;
/*
* Restrict the CPU affinity mask for a 32-bit task so that
* it contains only 32-bit-capable CPUs.
*
* From the perspective of the task, this looks similar to
* what would happen if the 64-bit-only CPUs were hot-unplugged
* at the point of execve(), although we try a bit harder to
* honour the cpuset hierarchy.
*/
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
force_compatible_cpus_allowed_ptr(current);
} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
relax_compatible_cpus_allowed_ptr(current);
}
current->mm->context.flags = mmflags;
ptrauth_thread_init_user();
mte_thread_init_user();
erratum_1418040_new_exec();
if (task_spec_ssb_noexec(current)) {
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
PR_SPEC_ENABLE);
}
}
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
/*
* Control the relaxed ABI allowing tagged user addresses into the kernel.
*/
static unsigned int tagged_addr_disabled;
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
{
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (system_supports_mte())
valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
| PR_MTE_TAG_MASK;
if (arg & ~valid_mask)
return -EINVAL;
/*
* Do not allow the enabling of the tagged address ABI if globally
* disabled via sysctl abi.tagged_addr_disabled.
*/
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
return -EINVAL;
if (set_mte_ctrl(task, arg) != 0)
return -EINVAL;
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
return 0;
}
long get_tagged_addr_ctrl(struct task_struct *task)
{
long ret = 0;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
ret = PR_TAGGED_ADDR_ENABLE;
ret |= get_mte_ctrl(task);
return ret;
}
/*
* Global sysctl to disable the tagged user addresses support. This control
* only prevents the tagged address ABI enabling via prctl() and does not
* disable it for tasks that already opted in to the relaxed ABI.
*/
static struct ctl_table tagged_addr_sysctl_table[] = {
{
.procname = "tagged_addr_disabled",
.mode = 0644,
.data = &tagged_addr_disabled,
.maxlen = sizeof(int),
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
static int __init tagged_addr_init(void)
{
if (!register_sysctl("abi", tagged_addr_sysctl_table))
return -EINVAL;
return 0;
}
core_initcall(tagged_addr_init);
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
#ifdef CONFIG_BINFMT_ELF
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
bool has_interp, bool is_interp)
{
/*
* For dynamically linked executables the interpreter is
* responsible for setting PROT_BTI on everything except
* itself.
*/
if (is_interp != has_interp)
return prot;
if (!(state->flags & ARM64_ELF_BTI))
return prot;
if (prot & PROT_EXEC)
prot |= PROT_BTI;
return prot;
}
#endif
|