1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
|
// SPDX-License-Identifier: GPL-2.0
/*
* The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
*
* Copyright (c) 2024 Synopsys Inc.
* Author: Shahab Vahedi <shahab@synopsys.com>
*/
#include <linux/bug.h>
#include "bpf_jit.h"
/* ARC core registers. */
enum {
ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
ARC_R_30, ARC_R_BLINK,
/*
* Having ARC_R_IMM encoded as source register means there is an
* immediate that must be interpreted from the next 4 bytes. If
* encoded as the destination register though, it implies that the
* output of the operation is not assigned to any register. The
* latter is helpful if we only care about updating the CPU status
* flags.
*/
ARC_R_IMM = 62
};
/*
* Remarks about the rationale behind the chosen mapping:
*
* - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
* argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
* argument register in the ABI. Therefore BPF_REG_5, as the fifth
* argument, must be pushed onto the stack. This is a must for calling
* in-kernel functions.
*
* - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
* for 64-bit results. However, because they're already used for BPF_REG_1,
* the next available scratch registers, r8 and r9, are the best candidates
* for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
* is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
* (r1,r0).
* It is worth mentioning that scratch registers are the best choice for
* BPF_REG_0, because it is very popular in BPF instruction encoding.
*
* - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
* Its life span is one single BPF instruction. Since during the
* analyze_reg_usage(), it is not known if temporary registers are used,
* it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
* don't matter in analysing phase and don't need saving. This temporary
* register is added as yet another index in the bpf2arc array, so it will
* unfold like the rest of registers during the code generation process.
*
* - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
* (r15,r14) register pair. The (r13,r12) is not a good choice, because
* in ARCv2 ABI, r12 is not a callee-saved register and this can cause
* problem when calling an in-kernel function. Theoretically, the mapping
* could start from (r14,r13), but it is not a conventional ARCv2 register
* pair. To have a future proof design, I opted for this arrangement.
* If/when we decide to add ARCv2 instructions that do use register pairs,
* the mapping, hopefully, doesn't need to be revisited.
*/
const u8 bpf2arc[][2] = {
/* Return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {ARC_R_8, ARC_R_9},
/* Arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {ARC_R_0, ARC_R_1},
[BPF_REG_2] = {ARC_R_2, ARC_R_3},
[BPF_REG_3] = {ARC_R_4, ARC_R_5},
[BPF_REG_4] = {ARC_R_6, ARC_R_7},
/* Remaining arguments, to be passed on the stack per 32-bit ABI */
[BPF_REG_5] = {ARC_R_22, ARC_R_23},
/* Callee-saved registers that in-kernel function will preserve */
[BPF_REG_6] = {ARC_R_14, ARC_R_15},
[BPF_REG_7] = {ARC_R_16, ARC_R_17},
[BPF_REG_8] = {ARC_R_18, ARC_R_19},
[BPF_REG_9] = {ARC_R_20, ARC_R_21},
/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
[BPF_REG_FP] = {ARC_R_FP, },
/* Register for blinding constants */
[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
/* Temporary registers for internal use */
[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
};
#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
#define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
#define REG_LO(r) (bpf2arc[(r)][0])
#define REG_HI(r) (bpf2arc[(r)][1])
/*
* To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
* the stack needs to be restored by ARG5_SIZE.
*/
#define ARG5_SIZE 8
/* Instruction lengths in bytes. */
enum {
INSN_len_normal = 4, /* Normal instructions length. */
INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
};
/* ZZ defines the size of operation in encodings that it is used. */
enum {
ZZ_1_byte = 1,
ZZ_2_byte = 2,
ZZ_4_byte = 0,
ZZ_8_byte = 3
};
/*
* AA is mostly about address write back mode. It determines if the
* address in question should be updated before usage or after:
* addr += offset; data = *addr;
* data = *addr; addr += offset;
*
* In "scaling" mode, the effective address will become the sum
* of "address" + "index"*"size". The "size" is specified by the
* "ZZ" field. There is no write back when AA is set for scaling:
* data = *(addr + offset<<zz)
*/
enum {
AA_none = 0,
AA_pre = 1, /* in assembly known as "a/aw". */
AA_post = 2, /* in assembly known as "ab". */
AA_scale = 3 /* in assembly known as "as". */
};
/* X flag determines the mode of extension. */
enum {
X_zero = 0,
X_sign = 1
};
/* Condition codes. */
enum {
CC_always = 0, /* condition is true all the time */
CC_equal = 1, /* if status32.z flag is set */
CC_unequal = 2, /* if status32.z flag is clear */
CC_positive = 3, /* if status32.n flag is clear */
CC_negative = 4, /* if status32.n flag is set */
CC_less_u = 5, /* less than (unsigned) */
CC_less_eq_u = 14, /* less than or equal (unsigned) */
CC_great_eq_u = 6, /* greater than or equal (unsigned) */
CC_great_u = 13, /* greater than (unsigned) */
CC_less_s = 11, /* less than (signed) */
CC_less_eq_s = 12, /* less than or equal (signed) */
CC_great_eq_s = 10, /* greater than or equal (signed) */
CC_great_s = 9 /* greater than (signed) */
};
#define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
#define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
#define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
#define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
#define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
/* Operands in most of the encodings. */
#define OP_A(x) ((x) & 0x03f)
#define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
#define OP_C(x) (((x) & 0x03f) << 6)
#define OP_IMM (OP_C(ARC_R_IMM))
#define COND(x) (OP_A((x) & 31))
#define FLAG(x) (((x) & 1) << 15)
/*
* The 4-byte encoding of "mov b,c":
*
* 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_MOV 0x200a0000
/*
* The 4-byte encoding of "mov b,s12" (used for moving small immediates):
*
* 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
*
* b: BBBbbb destination register
* s: SSSSSSssssss source immediate (signed)
*/
#define OPC_MOVI 0x208a0000
#define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
/*
* The 4-byte encoding of "mov[.qq] b,u6", used for conditional
* moving of even smaller immediates:
*
* 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
*
* qq: qqqqq condition code
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* b: BBBbbb destination register
* c: cccccc source
*/
#define OPC_MOV_CC 0x20ca0000
#define MOV_CC_I BIT(5)
#define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
/*
* The 4-byte encoding of "sexb b,c" (8-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXB 0x202f0005
/*
* The 4-byte encoding of "sexh b,c" (16-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXH 0x202f0006
/*
* The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
*
* 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
*
* zz: size mode
* aa: address write back mode
* x: extension mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc destination register
*/
#define OPC_LOAD 0x10000000
#define LOAD_X(x) ((x) << 6)
#define LOAD_ZZ(x) ((x) << 7)
#define LOAD_AA(x) ((x) << 9)
#define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
#define LOAD_C(x) ((x) & 0x03f)
/* Unsigned and signed loads. */
#define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
#define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
/* 32-bit load. */
#define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
#define OPC_POP \
(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
*
* 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
*
* zz: zz size mode
* aa: aa address write back mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc source reg to be stored
*/
#define OPC_STORE 0x18000000
#define STORE_ZZ(x) ((x) << 1)
#define STORE_AA(x) ((x) << 3)
#define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
/* 32-bit store. */
#define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
/* "push reg" is merely a "st.aw reg,[sp,-4]". */
#define OPC_PUSH \
(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "add a,b,c":
*
* 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADD 0x20000000
/* Addition with updating the pertinent flags in "status32" register. */
#define OPC_ADDF (OPC_ADD | FLAG(1))
#define ADDI BIT(22)
#define ADDI_U6(x) OP_C(x)
#define OPC_ADDI (OPC_ADD | ADDI)
#define OPC_ADDIF (OPC_ADDI | FLAG(1))
#define OPC_ADD_I (OPC_ADD | OP_IMM)
/*
* The 4-byte encoding of "adc a,b,c" (addition with carry):
*
* 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADC 0x20010000
#define ADCI BIT(22)
#define ADCI_U6(x) OP_C(x)
#define OPC_ADCI (OPC_ADC | ADCI)
/*
* The 4-byte encoding of "sub a,b,c":
*
* 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SUB 0x20020000
/* Subtraction with updating the pertinent flags in "status32" register. */
#define OPC_SUBF (OPC_SUB | FLAG(1))
#define SUBI BIT(22)
#define SUBI_U6(x) OP_C(x)
#define OPC_SUBI (OPC_SUB | SUBI)
#define OPC_SUB_I (OPC_SUB | OP_IMM)
/*
* The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
*
* 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SBC 0x20030000
/*
* The 4-byte encoding of "cmp[.qq] b,c":
*
* 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st operand
* c: cccccc the 2nd operand
*/
#define OPC_CMP 0x20cc8000
/*
* The 4-byte encoding of "neg a,b":
*
* 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
*
* a: aaaaaa result
* b: BBBbbb input
*/
#define OPC_NEG 0x204e0000
/*
* The 4-byte encoding of "mpy a,b,c".
* mpy is the signed 32-bit multiplication with the lower 32-bit
* of the product as the result.
*
* 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPY 0x201a0000
#define OPC_MPYI (OPC_MPY | OP_IMM)
/*
* The 4-byte encoding of "mpydu a,b,c".
* mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
* the product in register "a" and the higher 32-bit in register "a+1".
*
* 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa 64-bit result in registers (R_a+1,R_a)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPYDU 0x28190000
#define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
/*
* The 4-byte encoding of "divu a,b,c" (unsigned division):
*
* 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVU 0x28050000
#define OPC_DIVUI (OPC_DIVU | OP_IMM)
/*
* The 4-byte encoding of "div a,b,c" (signed division):
*
* 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVS 0x28040000
#define OPC_DIVSI (OPC_DIVS | OP_IMM)
/*
* The 4-byte encoding of "remu a,b,c" (unsigned remainder):
*
* 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMU 0x28090000
#define OPC_REMUI (OPC_REMU | OP_IMM)
/*
* The 4-byte encoding of "rem a,b,c" (signed remainder):
*
* 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMS 0x28080000
#define OPC_REMSI (OPC_REMS | OP_IMM)
/*
* The 4-byte encoding of "and a,b,c":
*
* 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
*
* f: indicates if zero and negative flags should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_AND 0x20040000
#define OPC_ANDI (OPC_AND | OP_IMM)
/*
* The 4-byte encoding of "tst[.qq] b,c".
* Checks if the two input operands have any bit set at the same
* position.
*
* 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_TST 0x20cb8000
/*
* The 4-byte encoding of "or a,b,c":
*
* 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_OR 0x20050000
#define OPC_ORI (OPC_OR | OP_IMM)
/*
* The 4-byte encoding of "xor a,b,c":
*
* 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_XOR 0x20070000
#define OPC_XORI (OPC_XOR | OP_IMM)
/*
* The 4-byte encoding of "not b,c":
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
*
* b: BBBbbb result
* c: cccccc input
*/
#define OPC_NOT 0x202f000a
/*
* The 4-byte encoding of "btst b,u6":
*
* 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
*
* b: BBBbbb input number to check
* u6: uuuuuu 6-bit unsigned number specifying bit position to check
*/
#define OPC_BTSTU6 0x20518000
#define BTST_U6(x) (OP_C((x) & 63))
/*
* The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
*
* 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 5-bit immediate, else a reg.
*
* b: BBBbbb result and the first operand (number to be shifted)
* c: cccccc amount to be shifted
*/
#define OPC_ASL 0x28000000
#define ASL_I BIT(22)
#define ASLI_U6(x) OP_C((x) & 31)
#define OPC_ASLI (OPC_ASL | ASL_I)
/*
* The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
*
* 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_ASR 0x28020000
#define ASR_I ASL_I
#define ASRI_U6(x) ASLI_U6(x)
#define OPC_ASRI (OPC_ASR | ASR_I)
/*
* The 4-byte encoding of "lsr a,b,c" (logical shift right):
*
* 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_LSR 0x28010000
#define LSR_I ASL_I
#define LSRI_U6(x) ASLI_U6(x)
#define OPC_LSRI (OPC_LSR | LSR_I)
/*
* The 4-byte encoding of "swape b,c":
*
* 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SWAPE 0x282f0009
/*
* Encoding for jump to an address in register:
* j reg_c
*
* 0010_0000 1110_0000 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JMP 0x20e00000
/* Jump to "branch-and-link" register, which effectively is a "return". */
#define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
/*
* Encoding for jump-and-link to an address in register:
* jl reg_c
*
* 0010_0000 0010_0010 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JL 0x20220000
/*
* Encoding for (conditional) branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s21
* B[qq] s21
*
* 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
*
* qq: qqqqq condition code
* s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: S_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_BCC 0x00000000
#define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
/*
* Encoding for unconditional branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s25
* B s25
*
* 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
*
* s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_B 0x00010000
#define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
static inline void emit_2_bytes(u8 *buf, u16 bytes)
{
*((u16 *)buf) = bytes;
}
static inline void emit_4_bytes(u8 *buf, u32 bytes)
{
emit_2_bytes(buf, bytes >> 16);
emit_2_bytes(buf + 2, bytes & 0xffff);
}
static inline u8 bpf_to_arc_size(u8 size)
{
switch (size) {
case BPF_B:
return ZZ_1_byte;
case BPF_H:
return ZZ_2_byte;
case BPF_W:
return ZZ_4_byte;
case BPF_DW:
return ZZ_8_byte;
default:
return ZZ_4_byte;
}
}
/************** Encoders (Deal with ARC regs) ************/
/* Move an immediate to register with a 4-byte instruction. */
static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
{
const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rd <- rs */
static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* The emitted code may have different sizes based on "imm". */
static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (IN_S12_RANGE(imm))
return arc_movi_r(buf, rd, imm);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* The emitted code will always have the same size (8). */
static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* Conditional move. */
static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Conditional move of a small immediate to rd. */
static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
{
const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from a byte. */
static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from two bytes. */
static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st reg, [reg_mem, off] */
static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
OP_B(reg_mem) | STORE_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st.aw reg, [sp, -4] */
static u8 arc_push_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_PUSH | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld reg, [reg_mem, off] (unsigned) */
static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.x reg, [reg_mem, off] (sign extend) */
static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.ab reg,[sp,4] */
static u8 arc_pop_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_POP | LOAD_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,Rc */
static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,Rc */
static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,u6 */
static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,u6 */
static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Rb,imm */
static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* adc Ra,Ra,Rc */
static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* adc Ra,Ra,u6 */
static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,Rc */
static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub.f Ra,Ra,Rc */
static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,u6 */
static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,imm */
static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* sbc Ra,Ra,Rc */
static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* cmp Rb,Rc */
static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* cmp.z Rb,Rc
*
* This "cmp.z" variant of compare instruction is used on lower
* 32-bits of register pairs after "cmp"ing their upper parts. If the
* upper parts are equal (z), then this one will proceed to check the
* rest.
*/
static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* neg Ra,Rb */
static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
{
const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,Rc */
static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
{
const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,imm */
static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* mpydu Ra,Ra,Rc */
static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpydu Ra,Ra,imm */
static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* divu Rd,Rd,Rs */
static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* divu Rd,Rd,imm */
static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* div Rd,Rd,Rs */
static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* div Rd,Rd,imm */
static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* remu Rd,Rd,Rs */
static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* remu Rd,Rd,imm */
static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* rem Rd,Rd,Rs */
static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rem Rd,Rd,imm */
static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* and Rd,Rd,Rs */
static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* and Rd,Rd,limm */
static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* tst Rd,Rs */
static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* This particular version, "tst.z ...", is meant to be used after a
* "tst" on the low 32-bit of register pairs. If that "tst" is not
* zero, then we don't need to test the upper 32-bits lest it sets
* the zero flag.
*/
static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
{
const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_swape_r(u8 *buf, u8 r)
{
const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_jmp_return(u8 *buf)
{
if (buf)
emit_4_bytes(buf, OPC_J_BLINK);
return INSN_len_normal;
}
static u8 arc_jl(u8 *buf, u8 reg)
{
const u32 insn = OPC_JL | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Conditional jump to an address that is max 21 bits away (signed).
*
* b<cc> s21
*/
static u8 arc_bcc(u8 *buf, u8 cc, int offset)
{
const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Unconditional jump to an address that is max 25 bits away (signed).
*
* b s25
*/
static u8 arc_b(u8 *buf, s32 offset)
{
const u32 insn = OPC_B | B_S25(offset);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/************* Packers (Deal with BPF_REGs) **************/
inline u8 zext(u8 *buf, u8 rd)
{
if (rd != BPF_REG_FP)
return arc_movi_r(buf, REG_HI(rd), 0);
else
return 0;
}
u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
if (sign_ext == 8)
len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 16)
len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 32 && rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
/* Unsigned move. */
if (rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
{
return arc_mov_i(buf, REG_LO(reg), imm);
}
u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
/* First handle the low 32-bit part. */
len = mov_r32(buf, rd, rs, sign_ext);
/* Now propagate the sign bit of LO to HI. */
if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
}
return len;
}
/* Unsigned move. */
if (rd == rs)
return 0;
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
if (rs != BPF_REG_FP)
len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
else
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
return len;
}
/* Sign extend the 32-bit immediate into 64-bit register pair. */
u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
{
u8 len = 0;
len = arc_mov_i(buf, REG_LO(reg), imm);
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP) {
if (imm >= 0)
len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
else
len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
}
return len;
}
/*
* This is merely used for translation of "LD R, IMM64" instructions
* of the BPF. These sort of instructions are sometimes used for
* relocations. If during the normal pass, the relocation value is
* not known, the BPF instruction may look something like:
*
* LD R <- 0x0000_0001_0000_0001
*
* Which will nicely translate to two 4-byte ARC instructions:
*
* mov R_lo, 1 # imm is small enough to be s12
* mov R_hi, 1 # same
*
* However, during the extra pass, the IMM64 will have changed
* to the resolved address and looks something like:
*
* LD R <- 0x0000_0000_1234_5678
*
* Now, the translated code will require 12 bytes:
*
* mov R_lo, 0x12345678 # this is an 8-byte instruction
* mov R_hi, 0 # still 4 bytes
*
* Which in practice will result in overwriting the following
* instruction. To avoid such cases, we will always emit codes
* with fixed sizes.
*/
u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
return len;
}
/*
* If the "off"set is too big (doesn't encode as S9) for:
*
* {ld,st} r, [rm, off]
*
* Then emit:
*
* add r10, REG_LO(rm), off
*
* and make sure that r10 becomes the effective address:
*
* {ld,st} r, [r10, 0]
*/
static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
u8 rm, u8 *arc_reg_mem)
{
u8 len = 0;
*arc_reg_mem = REG_LO(rm);
if (!IN_S9_RANGE(*off) ||
(size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
len += arc_add_i(BUF(buf, len),
REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
*arc_reg_mem = REG_LO(JIT_REG_TMP);
*off = 0;
}
return len;
}
/* store rs, [rd, off] */
u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, ZZ_4_byte);
len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, zz);
}
return len;
}
/*
* For {8,16,32}-bit stores:
* mov r21, imm
* st r21, [...]
* For 64-bit stores:
* mov r21, imm
* st r21, [...]
* mov r21, {0,-1}
* st r21, [...+4]
*/
u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
const u8 arc_rs = REG_HI(JIT_REG_TMP);
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off, ZZ_4_byte);
imm = (imm >= 0 ? 0 : -1);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
}
return len;
}
/*
* For the calling convention of a little endian machine, the LO part
* must be on top of the stack.
*/
static u8 push_r64(u8 *buf, u8 reg)
{
u8 len = 0;
#ifdef __LITTLE_ENDIAN
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
len += arc_push_r(BUF(buf, len), REG_LO(reg));
#else
len += arc_push_r(BUF(buf, len), REG_LO(reg));
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
#endif
return len;
}
/* load rd, [rs, off] */
u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
if (size == BPF_B || size == BPF_H || size == BPF_W) {
const u8 zz = bpf_to_arc_size(size);
/* Use LD.X only if the data size is less than 32-bit. */
if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
} else {
len += arc_ld_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
}
if (sign_ext) {
/* Propagate the sign bit to the higher reg. */
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
} else {
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
}
} else if (size == BPF_DW) {
/*
* We are about to issue 2 consecutive loads:
*
* ld rx, [rb, off+0]
* ld ry, [rb, off+4]
*
* If "rx" and "rb" are the same registers, then the order
* should change to guarantee that "rb" remains intact
* during these 2 operations:
*
* ld ry, [rb, off+4]
* ld rx, [rb, off+0]
*/
if (REG_LO(rd) != arc_reg_mem) {
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
}
}
return len;
}
u8 add_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_addi_r(buf, REG_LO(rd), imm);
else
return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
u8 add_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
if (IN_U6_RANGE(imm)) {
len = arc_addif_r(buf, REG_LO(rd), imm);
len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
} else {
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
}
return len;
}
u8 sub_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_subi_r(buf, REG_LO(rd), imm);
else
return arc_sub_i(buf, REG_LO(rd), imm);
}
u8 sub_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 neg_r32(u8 *buf, u8 r)
{
return arc_neg_r(buf, REG_LO(r), REG_LO(r));
}
/* In a two's complement system, -r is (~r + 1). */
u8 neg_r64(u8 *buf, u8 r)
{
u8 len;
len = arc_not_r(buf, REG_LO(r), REG_LO(r));
len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
len += add_r64_i32(BUF(buf, len), r, 1);
return len;
}
u8 mul_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* MUL B, C
* --------
* mpy t0, B_hi, C_lo
* mpy t1, B_lo, C_hi
* mpydu B_lo, B_lo, C_lo
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*/
u8 mul_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 C_hi = REG_HI(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_mpy_r(buf, t0, B_hi, C_lo);
len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
len += arc_add_r(BUF(buf, len), B_hi, t0);
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
/*
* MUL B, imm
* ----------
*
* To get a 64-bit result from a signed 64x32 multiplication:
*
* B_hi B_lo *
* sign imm
* -----------------------------
* HI(B_lo*imm) LO(B_lo*imm) +
* B_hi*imm +
* B_lo*sign
* -----------------------------
* res_hi res_lo
*
* mpy t1, B_lo, sign(imm)
* mpy t0, B_hi, imm
* mpydu B_lo, B_lo, imm
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*
* Note: We can't use signed double multiplication, "mpyd", instead of an
* unsigned version, "mpydu", and then get rid of the sign adjustments
* calculated in "t1". The signed multiplication, "mpyd", will consider
* both operands, "B_lo" and "imm", as signed inputs. However, for this
* 64x32 multiplication, "B_lo" must be treated as an unsigned number.
*/
u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len = 0;
if (imm == 1)
return 0;
/* Is the sign-extension of the immediate "-1"? */
if (imm < 0)
len += arc_neg_r(BUF(buf, len), t1, B_lo);
len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
len += arc_add_r(BUF(buf, len), B_hi, t0);
/* Add the "sign*B_lo" part, if necessary. */
if (imm < 0)
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_divs_i(buf, REG_LO(rd), imm);
else
return arc_divu_i(buf, REG_LO(rd), imm);
}
u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_rems_i(buf, REG_LO(rd), imm);
else
return arc_remu_i(buf, REG_LO(rd), imm);
}
u8 and_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_and_i(buf, REG_LO(rd), imm);
}
u8 and_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 or_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_or_i(buf, REG_LO(rd), imm);
}
u8 or_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
return len;
}
u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
u8 xor_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_xor_i(buf, REG_LO(rd), imm);
}
u8 xor_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
/* "asl a,b,c" --> "a = (b << (c & 31))". */
u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* algorithm
* ---------
* if (n <= 32)
* to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
* lo <<= n
* hi <<= n
* hi |= to_hi
* else
* hi = lo << (n-32)
* lo = 0
*
* assembly translation for "LSH B, C"
* (heavily influenced by ARC gcc)
* -----------------------------------
* not t0, C_lo # The first 3 lines are almost the same as:
* lsr t1, B_lo, 1 # neg t0, C_lo
* lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
* mov t0, C_lo* # with one important difference. In "neg"
* asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
* asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
* or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
* btst t0, 5 # setting it to 0 when C_lo=0.
* mov.ne B_hi, B_lo**
* mov.ne B_lo, 0
*
* *The "mov t0, C_lo" is necessary to cover the cases that C is the same
* register as B.
*
* **ARC performs a shift in this manner: B <<= (C & 31)
* For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
* "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
* "B << 3" are the same.
*
* The behaviour is undefined for n >= 64.
*/
u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
return len;
}
/*
* if (n < 32)
* to_hi = B_lo >> 32-n # extract upper n bits
* lo <<= n
* hi <<=n
* hi |= to_hi
* else if (n < 64)
* hi = lo << n-32
* lo = 0
*/
u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_lsri_r(buf, t0, B_lo, 32 - n);
len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
} else if (n <= 63) {
len = arc_asli_r(buf, B_hi, B_lo, n - 32);
len += arc_movi_r(BUF(buf, len), B_lo, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For better commentary, see lsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi >>= n
* lo >>= n
* lo |= to_lo
* else
* lo = hi >> (n-32)
* hi = 0
*
* RSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* lsr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* mov.ne B_lo, B_hi
* mov.ne B_hi, 0
*/
u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
return len;
}
/*
* if (n < 32)
* to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi >>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi >> n-32
* hi = 0
*/
u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For comparison, see rsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi s>>= n
* lo >>= n
* lo |= to_lo
* else
* hi_sign = hi s>>31
* lo = hi s>> (n-32)
* hi = hi_sign
*
* ARSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* asr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
* mov.ne B_lo, B_hi
* mov.ne B_hi, t0
*/
u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
return len;
}
/*
* if (n < 32)
* to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi s>>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi s>> n-32
* hi = (lo[msb] ? -1 : 0)
*/
u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_asri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, -1);
len += arc_btst_i(BUF(buf, len), B_lo, 31);
len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
{
u8 len = 0;
#ifdef __BIG_ENDIAN
const u8 host_endian = BPF_FROM_BE;
#else
const u8 host_endian = BPF_FROM_LE;
#endif
if (host_endian != endian || force) {
switch (size) {
case 16:
/*
* r = B4B3_B2B1 << 16 --> r = B2B1_0000
* then, swape(r) would become the desired 0000_B1B2
*/
len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
fallthrough;
case 32:
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
/*
* swap "hi" and "lo":
* hi ^= lo;
* lo ^= hi;
* hi ^= lo;
* and then swap the bytes in "hi" and "lo".
*/
len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_HI(rd));
break;
default:
/* The caller must have handled this. */
}
} else {
/*
* If the same endianness, there's not much to do other
* than zeroing out the upper bytes based on the "size".
*/
switch (size) {
case 16:
len = arc_and_i(buf, REG_LO(rd), 0xffff);
fallthrough;
case 32:
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
break;
default:
/* The caller must have handled this. */
}
}
return len;
}
/*
* To create a frame, all that is needed is:
*
* push fp
* mov fp, sp
* sub sp, <frame_size>
*
* "push fp" is taken care of separately while saving the clobbered registers.
* All that remains is copying SP value to FP and shrinking SP's address space
* for any possible function call to come.
*/
static inline u8 frame_create(u8 *buf, u16 size)
{
u8 len;
len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
if (IN_U6_RANGE(size))
len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
else
len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
return len;
}
/*
* mov sp, fp
*
* The value of SP upon entering was copied to FP.
*/
static inline u8 frame_restore(u8 *buf)
{
return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
}
/*
* Going from a JITed code to the native caller:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
*/
static u8 bpf_to_arc_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
return len;
}
/*
* Coming back from an external (in-kernel) function to the JITed code:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
*/
u8 arc_to_bpf_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
return len;
}
/*
* This translation leads to:
*
* mov r10, addr # always an 8-byte instruction
* jl [r10]
*
* The length of the "mov" must be fixed (8), otherwise it may diverge
* during the normal and extra passes:
*
* normal pass extra pass
*
* 180: mov r10,0 | 180: mov r10,0x700578d8
* 184: jl [r10] | 188: jl [r10]
* 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
* 18c: adc r17,r17,0 |
*
* In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
* has led to an increase in the length of the "mov" instruction.
* Inadvertently, that caused the loss of the "add.f" instruction.
*/
static u8 jump_and_link(u8 *buf, u32 addr)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
return len;
}
/*
* This function determines which ARC registers must be saved and restored.
* It does so by looking into:
*
* "bpf_reg": The clobbered (destination) BPF register
* "is_call": Indicator if the current instruction is a call
*
* When a register of interest is clobbered, its corresponding bit position
* in return value, "usage", is set to true.
*/
u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
{
u32 usage = 0;
/* BPF registers that must be saved. */
if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
usage |= BIT(REG_LO(bpf_reg));
usage |= BIT(REG_HI(bpf_reg));
/*
* Using the frame pointer register implies that it should
* be saved and reinitialised with the current frame data.
*/
} else if (bpf_reg == BPF_REG_FP) {
usage |= BIT(REG_LO(BPF_REG_FP));
/* Could there be some ARC registers that must to be saved? */
} else {
if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_LO(bpf_reg));
if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_HI(bpf_reg));
}
/* A "call" indicates that ARC's "blink" reg must be saved. */
usage |= is_call ? BIT(ARC_R_BLINK) : 0;
return usage;
}
/*
* push blink # if blink is marked as clobbered
* push r[0-n] # if r[i] is marked as clobbered
* push fp # if fp is marked as clobbered
* mov fp, sp # if frame_size > 0 (clobbers fp)
* sub sp, <frame_size> # same as above
*/
u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
{
u8 len = 0;
u32 gp_regs = 0;
/* Deal with blink first. */
if (usage & BIT(ARC_R_BLINK))
len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
u8 reg = __builtin_ffs(gp_regs) - 1;
len += arc_push_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with fp last. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_push_r(BUF(buf, len), ARC_R_FP);
if (frame_size > 0)
len += frame_create(BUF(buf, len), frame_size);
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
return len;
}
/*
* mov sp, fp # if frame_size > 0
* pop fp # if fp is marked as clobbered
* pop r[n-0] # if r[i] is marked as clobbered
* pop blink # if blink is marked as clobbered
* mov r0, r8 # always: ABI_return <- BPF_return
* mov r1, r9 # continuation of above
* j [blink] # always
*
* "fp being marked as clobbered" and "frame_size > 0" are the two sides of
* the same coin.
*/
u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
{
u32 len = 0;
u32 gp_regs = 0;
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
if (frame_size > 0)
len += frame_restore(BUF(buf, len));
/* Deal with fp first. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_pop_r(BUF(buf, len), ARC_R_FP);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
/* "usage" is 32-bit, each bit indicating an ARC register. */
u8 reg = 31 - __builtin_clz(gp_regs);
len += arc_pop_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with blink last. */
if (usage & BIT(ARC_R_BLINK))
len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
/* Wrap up the return value and jump back to the caller. */
len += bpf_to_arc_return(BUF(buf, len));
len += arc_jmp_return(BUF(buf, len));
return len;
}
/*
* For details on the algorithm, see the comments of "gen_jcc_64()".
*
* This data structure is holding information for jump translations.
*
* jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
* cond: The condition that the ARC branch instruction must use
*
* e.g.:
*
* BPF_JGE R1, R0, @target
* ------------------------
* |
* v
* 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
* 0x1004: bhi @target # first jump (branch higher)
* 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
* 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
* 0x1010: bhs @target # third jump (branch higher or same)
* 0x1014: ...
*
* The jit_off(set) of the "bhi" is 4 bytes.
* The cond(ition) for the "bhi" is "CC_great_u".
*
* The jit_off(set) is necessary for calculating the exact displacement
* to the "target" address:
*
* jit_address + jit_off(set) - @target
* 0x1000 + 4 - @target
*/
#define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
#define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
#define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
const struct {
/*
* "jit_off" is common between all "jmp[]" and is coupled with
* "cond" of each "jmp[]" instance. e.g.:
*
* arcv2_64_jccs.jit_off[1]
* arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
*
* Are indicating that the second jump in JITed code of "UGT"
* is at offset "jit_off[1]" while its condition is "cond[1]".
*/
u8 jit_off[JCC64_NR_OF_JMPS];
struct {
u8 cond[JCC64_NR_OF_JMPS];
} jmp[ARC_CC_SLE + 1];
} arcv2_64_jccs = {
.jit_off = {
INSN_len_normal * 1,
INSN_len_normal * 2,
INSN_len_normal * 4
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_UGT] = {
.cond = {CC_great_u, CC_less_u, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_UGE] = {
.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_ULT] = {
.cond = {CC_less_u, CC_great_u, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_ULE] = {
.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_SGT] = {
.cond = {CC_great_s, CC_less_s, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_SGE] = {
.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_SLT] = {
.cond = {CC_less_s, CC_great_s, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_SLE] = {
.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
}
};
/*
* The displacement (offset) for ARC's "b"ranch instruction is the distance
* from the aligned version of _current_ instruction (PCL) to the target
* instruction:
*
* DISP = TARGET - PCL # PCL is the word aligned PC
*/
static inline s32 get_displacement(u32 curr_off, u32 targ_off)
{
return (s32)(targ_off - (curr_off & ~3L));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S25, because no "condition code" is supposed to be encoded.
*/
static inline bool is_valid_far_disp(s32 disp)
{
return (!(disp & 1) && IN_S25_RANGE(disp));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S21, because "condition code" is supposed to be encoded too.
*/
static inline bool is_valid_near_disp(s32 disp)
{
return (!(disp & 1) && IN_S21_RANGE(disp));
}
/*
* cmp rd_hi, rs_hi
* cmp.z rd_lo, rs_lo
* b{eq,ne} @target
* | |
* | `--> "eq" param is false (JNE)
* `-----> "eq" param is true (JEQ)
*/
static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
return len;
}
/*
* tst rd_hi, rs_hi
* tst.z rd_lo, rs_lo
* bne @target
*/
static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
{
u8 len = 0;
s32 disp;
len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), CC_unequal, disp);
return len;
}
/*
* Verify if all the jumps for a JITed jcc64 operation are valid,
* by consulting the data stored at "arcv2_64_jccs".
*/
static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
{
size_t i;
if (cond >= ARC_CC_LAST)
return false;
for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
u32 from, to;
from = curr_off + arcv2_64_jccs.jit_off[i];
/* for the 2nd jump, we jump to the end of block. */
if (i != JCC64_SKIP_JMP)
to = targ_off;
else
to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
/* There is a "cc" in the instruction, so a "near" jump. */
if (!is_valid_near_disp(get_displacement(from, to)))
return false;
}
return true;
}
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
{
s32 disp;
switch (cond) {
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
return check_jcc_64(curr_off, targ_off, cond);
case ARC_CC_EQ:
case ARC_CC_NE:
case ARC_CC_SET:
/*
* The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
* 3rd instruction. See comments of "gen_j{set,_eq}_64()".
*/
curr_off += 2 * INSN_len_normal;
disp = get_displacement(curr_off, targ_off);
/* There is a "cc" field in the issued instruction. */
return is_valid_near_disp(disp);
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
return is_valid_far_disp(disp);
default:
return false;
}
}
/*
* The template for the 64-bit jumps with the following BPF conditions
*
* u< u<= u> u>= s< s<= s> s>=
*
* Looks like below:
*
* cmp rd_hi, rs_hi
* b<c1> @target
* b<c2> @end
* cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
* b<c3> @target
* end:
*
* "c1" is the condition that JIT is handling minus the equality part.
* For instance if we have to translate an "unsigned greater or equal",
* then "c1" will be "unsigned greater". We won't know about equality
* until all 64-bits of data (higeher and lower registers) are processed.
*
* "c2" is the counter logic of "c1". For instance, if "c1" is originated
* from "s>", then "c2" would be "s<". Notice that equality doesn't play
* a role here either, because the lower 32 bits are not processed yet.
*
* "c3" is the unsigned version of "c1", no matter if the BPF condition
* was signed or unsigned. An unsigned version is necessary, because the
* MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
* scheme. Otherwise, 64-bit comparisons like
* (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
* would yield an incorrect result. Finally, if there is an equality
* check in the BPF condition, it will be reflected in "c3".
*
* You can find all the instances of this template where the
* "arcv2_64_jccs" is getting initialised.
*/
static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
u32 curr_off, u32 targ_off)
{
s32 disp;
u32 end_off;
const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
u8 len = 0;
/* cmp rd_hi, rs_hi */
len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
/* b<c1> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[0], disp);
/* b<c2> @end */
end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
disp = get_displacement(curr_off + len, end_off);
len += arc_bcc(BUF(buf, len), cc[1], disp);
/* cmp rd_lo, rs_lo */
len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
/* b<c3> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[2], disp);
return len;
}
/*
* This function only applies the necessary logic to make the proper
* translations. All the sanity checks must have already been done
* by calling the check_jmp_64().
*/
u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
u8 len = 0;
bool eq = false;
s32 disp;
switch (cond) {
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
break;
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
break;
case ARC_CC_EQ:
eq = true;
fallthrough;
case ARC_CC_NE:
len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
break;
case ARC_CC_SET:
len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
break;
default:
#ifdef ARC_BPF_JIT_DEBUG
pr_err("64-bit jump condition is not known.");
BUG();
#endif
}
return len;
}
/*
* The condition codes to use when generating JIT instructions
* for 32-bit jumps.
*
* The "ARC_CC_AL" index is not really used by the code, but it
* is here for the sake of completeness.
*
* The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
* instruction that precedes the conditional branch.
*/
const u8 arcv2_32_jmps[ARC_CC_LAST] = {
[ARC_CC_UGT] = CC_great_u,
[ARC_CC_UGE] = CC_great_eq_u,
[ARC_CC_ULT] = CC_less_u,
[ARC_CC_ULE] = CC_less_eq_u,
[ARC_CC_SGT] = CC_great_s,
[ARC_CC_SGE] = CC_great_eq_s,
[ARC_CC_SLT] = CC_less_s,
[ARC_CC_SLE] = CC_less_eq_s,
[ARC_CC_AL] = CC_always,
[ARC_CC_EQ] = CC_equal,
[ARC_CC_NE] = CC_unequal,
[ARC_CC_SET] = CC_unequal
};
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
{
u8 addendum;
s32 disp;
if (cond >= ARC_CC_LAST)
return false;
/*
* The unconditional jump happens immediately, while the rest
* are either preceded by a "cmp" or "tst" instruction.
*/
addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
disp = get_displacement(curr_off + addendum, targ_off);
if (ARC_CC_AL)
return is_valid_far_disp(disp);
else
return is_valid_near_disp(disp);
}
/*
* The JITed code for 32-bit (conditional) branches:
*
* ARC_CC_AL @target
* b @jit_targ_addr
*
* ARC_CC_SET rd, rs, @target
* tst rd, rs
* bnz @jit_targ_addr
*
* ARC_CC_xx rd, rs, @target
* cmp rd, rs
* b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
*/
u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
/*
* Although this must have already been checked by "check_jmp_32()",
* we're not going to risk accessing "arcv2_32_jmps" array without
* the boundary check.
*/
if (cond >= ARC_CC_LAST) {
#ifdef ARC_BPF_JIT_DEBUG
pr_err("32-bit jump condition is not known.");
BUG();
#endif
return 0;
}
/* If there is a "condition", issue the "cmp" or "tst" first. */
if (cond != ARC_CC_AL) {
if (cond == ARC_CC_SET)
len = tst_r32(buf, rd, rs);
else
len = cmp_r32(buf, rd, rs);
/*
* The issued instruction affects the "disp"lacement as
* it alters the "curr_off" by its "len"gth. The "curr_off"
* should always point to the jump instruction.
*/
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
} else {
/* The straight forward unconditional jump. */
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
}
return len;
}
/*
* Generate code for functions calls. There can be two types of calls:
*
* - Calling another BPF function
* - Calling an in-kernel function which is compiled by ARC gcc
*
* In the later case, we must comply to ARCv2 ABI and handle arguments
* and return values accordingly.
*/
u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
{
u8 len = 0;
/*
* In case of an in-kernel function call, always push the 5th
* argument onto the stack, because that's where the ABI dictates
* it should be found. If the callee doesn't really use it, no harm
* is done. The stack is readjusted either way after the call.
*/
if (external_func)
len += push_r64(BUF(buf, len), BPF_REG_5);
len += jump_and_link(BUF(buf, len), func_addr);
if (external_func)
len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
return len;
}
|