Age | Commit message (Collapse) | Author |
|
In subsequent patches the GICv3 driver will choose the regular interrupt
priority at boot time.
In preparation for using dynamic priorities, place the priorities in
variables and update the code to pass these as parameters. Users of
GICD_INT_DEF_PRI_X4 are modified to replicate the priority byte using
REPEAT_BYTE_U32().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240617111841.2529370-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|
As we're about to expose GICR_CTLR.{IR,CES} to guests, populate
the include file with the architectural values.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oupton@google.com>
Link: https://lore.kernel.org/r/20220405182327.205520-2-maz@kernel.org
|
|
The new memreserve cpuhp callback only needs to survive up until a point
where every CPU in the system has booted once. Beyond that, it becomes a
no-op and can be put in the bin.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211027151506.2085066-4-valentin.schneider@arm.com
|
|
Memory used by the LPI tables have to be made persistent for kexec to have
a chance to work, as explained in [1]. If they have been made persistent
and we are booting into a kexec'd kernel, we also need to free the pages
that were preemptively allocated by the new kernel for those tables.
Both of those operations currently happen during its_cpu_init(), which
happens in a _STARTING (IOW atomic) cpuhp callback for secondary
CPUs. efi_mem_reserve_iomem() issues a GFP_ATOMIC allocation, which
unfortunately doesn't work under PREEMPT_RT (this ends up grabbing a
non-raw spinlock, which can sleep under PREEMPT_RT). Similarly, freeing the
pages ends up grabbing a sleepable spinlock.
Since the memreserve is only required by kexec, it doesn't have to be done
so early in the secondary boot process. Issue the reservation in a new
CPUHP_AP_ONLINE_DYN cpuhp callback, and piggy-back the page freeing on top
of it. A CPU gets to run the body of this new callback exactly once.
As kexec issues a machine_shutdown() prior to machine_kexec(), it will be
serialized vs a CPU being plugged to life by the hotplug machinery - either
the CPU will have been brought up and have had its redistributor's pending
table memreserved, or it never went online and will have its table
allocated by the new kernel.
[1]: https://lore.kernel.org/lkml/20180921195954.21574-1-marc.zyngier@arm.com/
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211027151506.2085066-3-valentin.schneider@arm.com
|
|
Later patches will require tracking some per-rdist status. Reuse the bytes
"lost" to padding within the __percpu rdist struct as a flags field, and
re-encode ->lpi_enabled within said flags.
No change in functionality intended.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211027151506.2085066-2-valentin.schneider@arm.com
|
|
These definitions are in arm-gic-v3.h for historical reasons which no
longer apply. Move them to sysreg.h so the AIC driver can use them, as
it needs to peek into vGIC registers to deal with the GIC maintentance
interrupt.
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Hector Martin <marcan@marcan.st>
|
|
[maz: The GICv3 spec has evolved quite a bit since the draft the Linux
driver was written against, and some register definitions are simply gone]
As per the GICv3 specification, GIC{D,R}_SEIR are not assigned and the
locations (0x0068) are actually Reserved. GICR_MOV{LPI,ALL}R are two IMP
DEF registers and might be defined by some specific micro-architecture.
As they're not used anywhere in the kernel, just drop all of them.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
[maz: added context explaination]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200630134126.880-1-yuzenghui@huawei.com
|
|
When a vPE is made resident, the GIC starts parsing the virtual pending
table to deliver pending interrupts. This takes place asynchronously,
and can at times take a long while. Long enough that the vcpu enters
the guest and hits WFI before any interrupt has been signaled yet.
The vcpu then exits, blocks, and now gets a doorbell. Rince, repeat.
In order to avoid the above, a (optional on GICv4, mandatory on v4.1)
feature allows the GIC to feedback to the hypervisor whether it is
done parsing the VPT by clearing the GICR_VPENDBASER.Dirty bit.
The hypervisor can then wait until the GIC is ready before actually
running the vPE.
Plug the detection code as well as polling on vPE schedule. While
at it, tidy-up the kernel message that displays the GICv4 optional
features.
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
To implement the get/set_irqchip_state callbacks (limited to the
PENDING state), we have to use a particular set of hacks:
- Reading the pending state is done by using a pair of new redistributor
registers (GICR_VSGIR, GICR_VSGIPENDR), which allow the 16 interrupts
state to be retrieved.
- Setting the pending state is done by generating it as we'd otherwise do
for a guest (writing to GITS_SGIR).
- Clearing the pending state is done by emitting a VSGI command with the
"clear" bit set.
This requires some interesting locking though:
- When talking to the redistributor, we must make sure that the VPE
affinity doesn't change, hence taking the VPE lock.
- At the same time, we must ensure that nobody accesses the same
redistributor's GICR_VSGIR registers for a different VPE, which
would corrupt the reading of the pending bits. We thus take the
per-RD spinlock. Much fun.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20200304203330.4967-12-maz@kernel.org
|
|
The GICv4.1 ITS has yet another new command (VSGI) which allows
a VPE-targeted SGI to be configured (or have its pending state
cleared). Add support for this command and plumb it into the
activate irqdomain callback so that it is ready to be used.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20200304203330.4967-10-maz@kernel.org
|
|
There is no special reason to set virtual LPI pending table as
non-shareable. If we choose to hard code the shareability without
probing, Inner-Shareable is likely to be a better choice, as the
VPEs can move around and benefit from having the redistributors
snooping each other's cache, if that's something they can do.
Furthermore, Hisilicon hip08 ends up with unspecified errors when
mixing shareability attributes. So let's move to IS attributes for
the VPT. This has also been tested on D05 and didn't show any
regression.
Signed-off-by: Heyi Guo <guoheyi@huawei.com>
[maz: rewrote commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191130073849.38378-1-guoheyi@huawei.com
|
|
The GICv4.1 spec says that it is CONTRAINED UNPREDICTABLE to write to
any of the GICR_INV{LPI,ALL}R registers if GICR_SYNCR.Busy == 1.
To deal with it, we must ensure that only a single invalidation can
happen at a time for a given redistributor. Add a per-RD lock to that
effect and take it around the invalidation/syncr-read to deal with this.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20200304203330.4967-6-maz@kernel.org
|
|
To allow the direct injection of SGIs into a guest, the GICv4.1
architecture has to sacrifice the Active state so that SGIs look
a lot like LPIs (they are injected by the same mechanism).
In order not to break existing software, the architecture gives
offers guests OSs the choice: SGIs with or without an active
state. It is the hypervisors duty to honor the guest's choice.
For this, the architecture offers a discovery bit indicating whether
the GIC supports GICv4.1 SGIs (GICD_TYPER2.nASSGIcap), and another
bit indicating whether the guest wants Active-less SGIs or not
(controlled by GICD_CTLR.nASSGIreq).
A hypervisor not supporting GICv4.1 SGIs would leave nASSGIcap
clear, and a guest not knowing about GICv4.1 SGIs (or definitely
wanting an Active state) would leave nASSGIreq clear (both being
thankfully backward compatible with older revisions of the GIC).
Since Linux is perfectly happy without an active state on SGIs,
inform the hypervisor that we'll use that if offered.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20200304203330.4967-2-maz@kernel.org
|
|
Currently, we will not set vpe_l1_page for the current RD if we can
inherit the vPE configuration table from another RD (or ITS), which
results in an inconsistency between RDs within the same CommonLPIAff
group.
Let's rename it to vpe_l1_base to indicate the base address of the
vPE configuration table of this RD, and set it properly for *all*
v4.1 redistributors.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200206075711.1275-3-yuzenghui@huawei.com
|
|
Just like for INVALL, GICv4.1 has grown a VPE-aware INVLPI register.
Let's plumb it in and make use of the DirectLPI code in that case.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-16-maz@kernel.org
|
|
GICv4.1 redistributors have a VPE-aware INVALL register. Progress!
We can now emulate a guest-requested INVALL without emiting a
VINVALL command.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-14-maz@kernel.org
|
|
Making a VPE resident on GICv4.1 is pretty simple, as it is just a
single write to the local redistributor. We just need extra information
about which groups to enable, which the KVM code will have to provide.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-12-maz@kernel.org
|
|
masking/unmasking doorbells on GICv4.1 relies on a new INVDB command,
which broadcasts the invalidation to all RDs.
Implement the new command as well as the masking callbacks, and plug
the whole thing into the v4.1 VPE irqchip.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-11-maz@kernel.org
|
|
GICv4.1 defines a new VPE table that is potentially shared between
both the ITSs and the redistributors, following complicated affinity
rules.
To make things more confusing, the programming of this table at
the redistributor level is reusing the GICv4.0 GICR_VPROPBASER register
for something completely different.
The code flow is somewhat complexified by the need to respect the
affinities required by the HW, meaning that tables can either be
inherited from a previously discovered ITS or redistributor.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-6-maz@kernel.org
|
|
While GICv4.0 mandates 16 bit worth of VPEIDs, GICv4.1 allows smaller
implementations to be built. Add the required glue to dynamically
compute the limit.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-3-maz@kernel.org
|
|
GICv4.1 supports the RVPEID ("Residency per vPE ID"), which allows for
a much efficient way of making virtual CPUs resident (to allow direct
injection of interrupts).
The functionnality needs to be discovered on each and every redistributor
in the system, and disabled if the settings are inconsistent.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-2-maz@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Ingo Molnar:
"Most of the IRQ subsystem changes in this cycle were irq-chip driver
updates:
- Qualcomm PDC wakeup interrupt support
- Layerscape external IRQ support
- Broadcom bcm7038 PM and wakeup support
- Ingenic driver cleanup and modernization
- GICv3 ITS preparation for GICv4.1 updates
- GICv4 fixes
There's also the series from Frederic Weisbecker that fixes memory
ordering bugs for the irq-work logic, whose primary fix is to turn
work->irq_work.flags into an atomic variable and then convert the
complex (and buggy) atomic_cmpxchg() loop in irq_work_claim() into a
much simpler atomic_fetch_or() call.
There are also various smaller cleanups"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
pinctrl/sdm845: Add PDC wakeup interrupt map for GPIOs
pinctrl/msm: Setup GPIO chip in hierarchy
irqchip/qcom-pdc: Add irqchip set/get state calls
irqchip/qcom-pdc: Add irqdomain for wakeup capable GPIOs
irqchip/qcom-pdc: Do not toggle IRQ_ENABLE during mask/unmask
irqchip/qcom-pdc: Update max PDC interrupts
of/irq: Document properties for wakeup interrupt parent
genirq: Introduce irq_chip_get/set_parent_state calls
irqdomain: Add bus token DOMAIN_BUS_WAKEUP
genirq: Fix function documentation of __irq_alloc_descs()
irq_work: Fix IRQ_WORK_BUSY bit clearing
irqchip/ti-sci-inta: Use ERR_CAST inlined function instead of ERR_PTR(PTR_ERR(...))
irq_work: Slightly simplify IRQ_WORK_PENDING clearing
irq_work: Fix irq_work_claim() memory ordering
irq_work: Convert flags to atomic_t
irqchip: Ingenic: Add process for more than one irq at the same time.
irqchip: ingenic: Alloc generic chips from IRQ domain
irqchip: ingenic: Get virq number from IRQ domain
irqchip: ingenic: Error out if IRQ domain creation failed
irqchip: ingenic: Drop redundant irq_suspend / irq_resume functions
...
|
|
Now that we have a copy of TYPER in the ITS structure, rely on this
to provide the same service as its->device_ids, which gets axed.
Errata workarounds are now updating the cached fields instead of
requiring a separate field in the ITS structure.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191027144234.8395-7-maz@kernel.org
Link: https://lore.kernel.org/r/20191108165805.3071-7-maz@kernel.org
|
|
Now that we have a copy of TYPER in the ITS structure, rely on this
to provide the same service as its->ite_size, which gets axed.
Errata workarounds are now updating the cached fields instead of
requiring a separate field in the ITS structure.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191027144234.8395-6-maz@kernel.org
Link: https://lore.kernel.org/r/20191108165805.3071-6-maz@kernel.org
|
|
The GICv3 architecture specification is incredibly misleading when it
comes to PMR and the requirement for a DSB. It turns out that this DSB
is only required if the CPU interface sends an Upstream Control
message to the redistributor in order to update the RD's view of PMR.
This message is only sent when ICC_CTLR_EL1.PMHE is set, which isn't
the case in Linux. It can still be set from EL3, so some special care
is required. But the upshot is that in the (hopefuly large) majority
of the cases, we can drop the DSB altogether.
This relies on a new static key being set if the boot CPU has PMHE
set. The drawback is that this static key has to be exported to
modules.
Cc: Will Deacon <will@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
As is it usual for the GIC, it isn't disallowed to put together a system
that is majorly inconsistent, with a distributor supporting the
extended ranges while some of the CPUs don't.
Kindly tell the user that things are sailing isn't going to be smooth.
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Expand the pre-existing PPI support to be able to deal with the
Extended PPI range (EPPI). This includes obtaining the number of PPIs
from each individual redistributor, and compute the minimum set
(just in case someone builds something really clever...).
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add the required support for the ESPI range, which behave exactly like
the SPIs of old, only with new funky INTIDs.
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Some definitions of Inner Cacheability attibutes need to be corrected.
Fixes: 8c828a535e29f ("irqchip/gicv3-its: Restore all cacheability attributes")
Signed-off-by: Hongbo Yao <yaohongbo@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
According to ARM IHI 0069C (ID070116), we should use GITS_TYPER's
bits [7:4] as ITT_entry_size instead of [8:4]. Although this is
pretty annoying, it only results in a potential over-allocation
of memory, and nothing bad happens.
Fixes: 3dfa576bfb45 ("irqchip/gic-v3-its: Add probing for VLPI properties")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
[maz: massaged subject and commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
|
|
We're currently only tracking the page allocated to contain the
property table by its struct page. In the future, it is going to
be convenient to track both PA and VA for that page instead. Let's
do that.
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Tested-by: Lei Zhang <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pending tables for the redistributors are currently allocated
one at a time as each CPU boots. This is causing some grief
for Linux/RT (allocation from within a CPU hotplug notifier is
frown upon).
Let's move this allocation to take place at init time, when we
only have a single CPU. It means we're allocating memory for CPUs
that are not online yet, but most system will boot all of their
CPUs anyway, so that's not completely wasted.
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Tested-by: Lei Zhang <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Add support for handling 52bit guest physical address to the
VGIC layer. So far we have limited the guest physical address
to 48bits, by explicitly masking the upper bits. This patch
removes the restriction. We do not have to check if the host
supports 52bit as the gpa is always validated during an access.
(e.g, kvm_{read/write}_guest, kvm_is_visible_gfn()).
Also, the ITS table save-restore is also not affected with
the enhancement. The DTE entries already store the bits[51:8]
of the ITT_addr (with a 256byte alignment).
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <cdall@kernel.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[ Macro clean ups, fix PROPBASER and PENDBASER accesses ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
|
|
Instead of hardcoding the shifts and masks in the GICD_IIDR register
emulation, let's add the definition of these fields to the GIC header
files and use them.
This will make things more obvious when we're going to bump the revision
in the IIDR when we'll make guest-visible changes to the implementation.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
A recent extension to the GIC architecture allows a hypervisor to
arbitrarily reduce the number of LPIs available to a guest, no
matter what the GIC says about the valid range of IntIDs.
Let's factor in this information when computing the number of
available LPIs
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Instead of exposing the GIC distributor IntID field in the rdist
structure that is passed to the ITS, let's replace it with a
copy of the whole GICD_TYPER register. We are going to need
some of this information at a later time.
No functionnal change.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
GICv3 offers the possibility to signal SPIs using a pair of doorbells
(SETPI, CLRSPI) under the name of Message Based Interrupts (MBI).
They can be used as either traditional (edge) MSIs, or the more exotic
level-triggered flavour.
Let's implement support for platform MSI, which is the original intent
for this feature.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Cc: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lkml.kernel.org/r/20180508121438.11301-8-marc.zyngier@arm.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"The usual pile of boring changes:
- Consolidate tasklet functions to share code instead of duplicating
it
- The first step for making the low level entry handler management on
multi-platform kernels generic
- A new sysfs file which allows to retrieve the wakeup state of
interrupts.
- Ensure that the interrupt thread follows the effective affinity and
not the programmed affinity to avoid cross core wakeups.
- Two new interrupt controller drivers (Microsemi Ocelot and Qualcomm
PDC)
- Fix the wakeup path clock handling for Reneasas interrupt chips.
- Rework the boot time register reset for ARM GIC-V2/3
- Better suspend/resume support for ARM GIV-V3/ITS
- Add missing locking to the ARM GIC set_type() callback
- Small fixes for the irq simulator code
- SPDX identifiers for the irq core code and removal of boiler plate
- Small cleanups all over the place"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
openrisc: Set CONFIG_MULTI_IRQ_HANDLER
arm64: Set CONFIG_MULTI_IRQ_HANDLER
genirq: Make GENERIC_IRQ_MULTI_HANDLER depend on !MULTI_IRQ_HANDLER
irqchip/gic: Take lock when updating irq type
irqchip/gic: Update supports_deactivate static key to modern api
irqchip/gic-v3: Ensure GICR_CTLR.EnableLPI=0 is observed before enabling
irqchip: Add a driver for the Microsemi Ocelot controller
dt-bindings: interrupt-controller: Add binding for the Microsemi Ocelot interrupt controller
irqchip/gic-v3: Probe for SCR_EL3 being clear before resetting AP0Rn
irqchip/gic-v3: Don't try to reset AP0Rn
irqchip/gic-v3: Do not check trigger configuration of partitionned LPIs
genirq: Remove license boilerplate/references
genirq: Add missing SPDX identifiers
genirq/matrix: Cleanup SPDX identifier
genirq: Cleanup top of file comments
genirq: Pass desc to __irq_free instead of irq number
irqchip/gic-v3: Loudly complain about the use of IRQ_TYPE_NONE
irqchip/gic: Loudly complain about the use of IRQ_TYPE_NONE
RISC-V: Move to the new GENERIC_IRQ_MULTI_HANDLER handler
genirq: Add CONFIG_GENERIC_IRQ_MULTI_HANDLER
...
|
|
Booting with GICR_CTLR.EnableLPI=1 is usually a bad idea, and may
result in subtle memory corruption. Detecting this is thus pretty
important.
On detecting that LPIs are still enabled, we taint the kernel (because
we're not sure of anything anymore), and try to disable LPIs. This can
fail, as implementations are allowed to implement GICR_CTLR.EnableLPI
as a one-way enable, meaning the redistributors cannot be reprogrammed
with new tables.
Should this happen, we fail probing the redistributor and warn the user
that things are pretty dire.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[maz: reworded changelog, minor comment and message changes]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The vgic code is trying to be clever when injecting GICv2 SGIs,
and will happily populate LRs with the same interrupt number if
they come from multiple vcpus (after all, they are distinct
interrupt sources).
Unfortunately, this is against the letter of the architecture,
and the GICv2 architecture spec says "Each valid interrupt stored
in the List registers must have a unique VirtualID for that
virtual CPU interface.". GICv3 has similar (although slightly
ambiguous) restrictions.
This results in guests locking up when using GICv2-on-GICv3, for
example. The obvious fix is to stop trying so hard, and inject
a single vcpu per SGI per guest entry. After all, pending SGIs
with multiple source vcpus are pretty rare, and are mostly seen
in scenario where the physical CPUs are severely overcomitted.
But as we now only inject a single instance of a multi-source SGI per
vcpu entry, we may delay those interrupts for longer than strictly
necessary, and run the risk of injecting lower priority interrupts
in the meantime.
In order to address this, we adopt a three stage strategy:
- If we encounter a multi-source SGI in the AP list while computing
its depth, we force the list to be sorted
- When populating the LRs, we prevent the injection of any interrupt
of lower priority than that of the first multi-source SGI we've
injected.
- Finally, the injection of a multi-source SGI triggers the request
of a maintenance interrupt when there will be no pending interrupt
in the LRs (HCR_NPIE).
At the point where the last pending interrupt in the LRs switches
from Pending to Active, the maintenance interrupt will be delivered,
allowing us to add the remaining SGIs using the same process.
Cc: stable@vger.kernel.org
Fixes: 0919e84c0fc1 ("KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework")
Acked-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Some platforms power off GIC logic in suspend, so we need to
save/restore state. The distributor and redistributor registers need
to be handled in firmware code due to access permissions on those
registers, but the ITS registers can be restored in the kernel.
We limit this to systems where the ITS collections are implemented
in HW (as opposed to being backed by memory tables), as they are
the only ones that cannot be dealt with by the firmware.
Signed-off-by: Derek Basehore <dbasehore@chromium.org>
[maz: fixed changelog, dropped DT property, limited to HCC being >0]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq core updates from Thomas Gleixner:
"A rather large update for the interrupt core code and the irq chip drivers:
- Add a new bitmap matrix allocator and supporting changes, which is
used to replace the x86 vector allocator which comes with separate
pull request. This allows to replace the convoluted nested loop
allocation function in x86 with a facility which supports the
recently added property of managed interrupts proper and allows to
switch to a best effort vector reservation scheme, which addresses
problems with vector exhaustion.
- A large update to the ARM GIC-V3-ITS driver adding support for
range selectors.
- New interrupt controllers:
- Meson and Meson8 GPIO
- BCM7271 L2
- Socionext EXIU
If you expected that this will stop at some point, I have to
disappoint you. There are new ones posted already. Sigh!
- STM32 interrupt controller support for new platforms.
- A pile of fixes, cleanups and updates to the MIPS GIC driver
- The usual small fixes, cleanups and updates all over the place.
Most visible one is to move the irq chip drivers Kconfig switches
into a separate Kconfig menu"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
genirq: Fix type of shifting literal 1 in __setup_irq()
irqdomain: Drop pointless NULL check in virq_debug_show_one
genirq/proc: Return proper error code when irq_set_affinity() fails
irq/work: Use llist_for_each_entry_safe
irqchip: mips-gic: Print warning if inherited GIC base is used
irqchip/mips-gic: Add pr_fmt and reword pr_* messages
irqchip/stm32: Move the wakeup on interrupt mask
irqchip/stm32: Fix initial values
irqchip/stm32: Add stm32h7 support
dt-bindings/interrupt-controllers: Add compatible string for stm32h7
irqchip/stm32: Add multi-bank management
irqchip/stm32: Select GENERIC_IRQ_CHIP
irqchip/exiu: Add support for Socionext Synquacer EXIU controller
dt-bindings: Add description of Socionext EXIU interrupt controller
irqchip/gic-v3-its: Fix VPE activate callback return value
irqchip: mips-gic: Make IPI bitmaps static
irqchip: mips-gic: Share register writes in gic_set_type()
irqchip: mips-gic: Remove gic_vpes variable
irqchip: mips-gic: Use num_possible_cpus() to reserve IPIs
irqchip: mips-gic: Configure EIC when CPUs come online
...
|
|
A new feature Range Selector (RS) has been added to GIC specification
in order to support more than 16 CPUs at affinity level 0. New fields
are introduced in SGI system registers (ICC_SGI0R_EL1, ICC_SGI1R_EL1
and ICC_ASGI1R_EL1) to relax an artificial limit of 16 at level 0.
- A new RSS field in ICC_CTLR_EL3, ICC_CTLR_EL1 and ICV_CTLR_EL1:
[18] - Range Selector Support (RSS)
0b0 = Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 = Targeted SGIs with affinity level 0 values of 0-255 are supported.
- A new RS field in ICC_SGI0R_EL1, ICC_SGI1R_EL1 and ICC_ASGI1R_EL1:
[47:44] - RangeSelector (RS) which group of 16 TargetList[n] field
TargetList[n] represents aff0 value ((RS*16)+n)
When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.
- A new RSS field in GICD_TYPER:
[26] - Range Selector Support (RSS)
0b0 = Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 = Targeted SGIs with affinity level 0 values of 0-255 are supported.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The current ITS driver works fine as long as normal memory and GICR
regions are located within the lower 48bit (>=0 && <2^48) physical
address space. Some of the registers GICR_PEND/PROP, GICR_VPEND/VPROP
and GITS_CBASER are handled properly but not all when configuring
the hardware with 52bit physical address.
This patch does the following changes to support 52bit PA.
-Handle 52bit PA in GITS_BASERn.
-Fix ITT_addr width to 52bits, bits[51:8].
-Fix RDbase width to 52bits, bits[51:16].
-Fix VPT_addr width to 52bits, bits[51:16].
Definition of the GITS_BASERn register when ITS PageSize is 64KB:
-Bits[47:16] of the register provide bits[47:16] of the table PA.
-Bits[15:12] of the register provide bits[51:48] of the table PA.
-Bits[15:00] of the base physical address are 0.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
A long time ago, GITS_CTLR[1] used to be called GITC_CTLR.EnableVLPI.
It has been subsequently deprecated and is now an "Implementation
Defined" bit that may ot may not be set for GICv4. Brilliant.
And the current crop of the FastModel requires that bit for VLPIs
to be enabled. Oh well... Let's set it and find out what breaks.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
When a VPE is scheduled to run, the corresponding redistributor must
be told so, by setting VPROPBASER to the VM's property table, and
VPENDBASER to the vcpu's pending table.
When scheduled out, we preserve the IDAI and PendingLast bits. The
latter is specially important, as it tells the hypervisor that
there are pending interrupts for this vcpu.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|