Age | Commit message (Collapse) | Author |
|
During mount we will call btrfs_orphan_cleanup() to remove any inodes that
were previously deleted (have a link count of 0) but for which we were not
able before to remove their items from the subvolume tree. The removal of
the items will happen by triggering eviction, when we do the final iput()
on them at btrfs_orphan_cleanup(), which will end in the loop at
btrfs_evict_inode() that truncates inode items.
In a dire situation we may have a transaction abort due to -ENOSPC when
attempting to truncate the inode items, and in that case the orphan item
(key type BTRFS_ORPHAN_ITEM_KEY) will remain in the subvolume tree and
when we hit the next iteration of the while loop at btrfs_orphan_cleanup()
we will find the same orphan item as before, and then we will return
-EINVAL from btrfs_orphan_cleanup() through the following if statement:
if (found_key.offset == last_objectid) {
btrfs_err(fs_info,
"Error removing orphan entry, stopping orphan cleanup");
ret = -EINVAL;
goto out;
}
This makes the mount operation fail with -EINVAL, when it should have been
-ENOSPC. This is confusing because -EINVAL might lead a user into thinking
it provided invalid mount options for example.
An example where this happens:
$ mount test.img /mnt
mount: /mnt: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.
$ dmesg
[ 2542.356934] BTRFS: device fsid 977fff75-1181-4d2b-a739-384fa710d16e devid 1 transid 47409973 /dev/loop0 scanned by mount (4459)
[ 2542.357451] BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm
[ 2542.357461] BTRFS info (device loop0): disk space caching is enabled
[ 2542.742287] BTRFS info (device loop0): auto enabling async discard
[ 2542.764554] BTRFS info (device loop0): checking UUID tree
[ 2551.743065] ------------[ cut here ]------------
[ 2551.743068] BTRFS: Transaction aborted (error -28)
[ 2551.743149] WARNING: CPU: 7 PID: 215 at fs/btrfs/block-group.c:3494 btrfs_write_dirty_block_groups+0x397/0x3d0 [btrfs]
[ 2551.743311] Modules linked in: btrfs blake2b_generic (...)
[ 2551.743353] CPU: 7 PID: 215 Comm: kworker/u24:5 Not tainted 6.4.0-rc6-btrfs-next-134+ #1
[ 2551.743356] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[ 2551.743357] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[ 2551.743405] RIP: 0010:btrfs_write_dirty_block_groups+0x397/0x3d0 [btrfs]
[ 2551.743449] Code: 8b 43 0c (...)
[ 2551.743451] RSP: 0018:ffff982c005a7c40 EFLAGS: 00010286
[ 2551.743452] RAX: 0000000000000000 RBX: ffff88fc6e44b400 RCX: 0000000000000000
[ 2551.743453] RDX: 0000000000000002 RSI: ffffffff8dff0878 RDI: 00000000ffffffff
[ 2551.743454] RBP: ffff88fc51817208 R08: 0000000000000000 R09: ffff982c005a7ae0
[ 2551.743455] R10: 0000000000000001 R11: 0000000000000001 R12: ffff88fc43d2e570
[ 2551.743456] R13: ffff88fc43d2e400 R14: ffff88fc8fb08ee0 R15: ffff88fc6e44b530
[ 2551.743457] FS: 0000000000000000(0000) GS:ffff89035fbc0000(0000) knlGS:0000000000000000
[ 2551.743458] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 2551.743459] CR2: 00007fa8cdf2f6f4 CR3: 0000000124850003 CR4: 0000000000370ee0
[ 2551.743462] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 2551.743463] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 2551.743464] Call Trace:
[ 2551.743472] <TASK>
[ 2551.743474] ? __warn+0x80/0x130
[ 2551.743478] ? btrfs_write_dirty_block_groups+0x397/0x3d0 [btrfs]
[ 2551.743520] ? report_bug+0x1f4/0x200
[ 2551.743523] ? handle_bug+0x42/0x70
[ 2551.743526] ? exc_invalid_op+0x14/0x70
[ 2551.743528] ? asm_exc_invalid_op+0x16/0x20
[ 2551.743532] ? btrfs_write_dirty_block_groups+0x397/0x3d0 [btrfs]
[ 2551.743574] ? _raw_spin_unlock+0x15/0x30
[ 2551.743576] ? btrfs_run_delayed_refs+0x1bd/0x200 [btrfs]
[ 2551.743609] commit_cowonly_roots+0x1e9/0x260 [btrfs]
[ 2551.743652] btrfs_commit_transaction+0x42e/0xfa0 [btrfs]
[ 2551.743693] ? __pfx_autoremove_wake_function+0x10/0x10
[ 2551.743697] flush_space+0xf1/0x5d0 [btrfs]
[ 2551.743743] ? _raw_spin_unlock+0x15/0x30
[ 2551.743745] ? finish_task_switch+0x91/0x2a0
[ 2551.743748] ? _raw_spin_unlock+0x15/0x30
[ 2551.743750] ? btrfs_get_alloc_profile+0xc9/0x1f0 [btrfs]
[ 2551.743793] btrfs_async_reclaim_metadata_space+0xe1/0x230 [btrfs]
[ 2551.743837] process_one_work+0x1d9/0x3e0
[ 2551.743844] worker_thread+0x4a/0x3b0
[ 2551.743847] ? __pfx_worker_thread+0x10/0x10
[ 2551.743849] kthread+0xee/0x120
[ 2551.743852] ? __pfx_kthread+0x10/0x10
[ 2551.743854] ret_from_fork+0x29/0x50
[ 2551.743860] </TASK>
[ 2551.743861] ---[ end trace 0000000000000000 ]---
[ 2551.743863] BTRFS info (device loop0: state A): dumping space info:
[ 2551.743866] BTRFS info (device loop0: state A): space_info DATA has 126976 free, is full
[ 2551.743868] BTRFS info (device loop0: state A): space_info total=13458472960, used=13458137088, pinned=143360, reserved=0, may_use=0, readonly=65536 zone_unusable=0
[ 2551.743870] BTRFS info (device loop0: state A): space_info METADATA has -51625984 free, is full
[ 2551.743872] BTRFS info (device loop0: state A): space_info total=771751936, used=770146304, pinned=1605632, reserved=0, may_use=51625984, readonly=0 zone_unusable=0
[ 2551.743874] BTRFS info (device loop0: state A): space_info SYSTEM has 14663680 free, is not full
[ 2551.743875] BTRFS info (device loop0: state A): space_info total=14680064, used=16384, pinned=0, reserved=0, may_use=0, readonly=0 zone_unusable=0
[ 2551.743877] BTRFS info (device loop0: state A): global_block_rsv: size 53231616 reserved 51544064
[ 2551.743878] BTRFS info (device loop0: state A): trans_block_rsv: size 0 reserved 0
[ 2551.743879] BTRFS info (device loop0: state A): chunk_block_rsv: size 0 reserved 0
[ 2551.743880] BTRFS info (device loop0: state A): delayed_block_rsv: size 0 reserved 0
[ 2551.743881] BTRFS info (device loop0: state A): delayed_refs_rsv: size 786432 reserved 0
[ 2551.743886] BTRFS: error (device loop0: state A) in btrfs_write_dirty_block_groups:3494: errno=-28 No space left
[ 2551.743911] BTRFS info (device loop0: state EA): forced readonly
[ 2551.743951] BTRFS warning (device loop0: state EA): could not allocate space for delete; will truncate on mount
[ 2551.743962] BTRFS error (device loop0: state EA): Error removing orphan entry, stopping orphan cleanup
[ 2551.743973] BTRFS warning (device loop0: state EA): Skipping commit of aborted transaction.
[ 2551.743989] BTRFS error (device loop0: state EA): could not do orphan cleanup -22
So make the btrfs_orphan_cleanup() return the value of BTRFS_FS_ERROR(),
if it's set, and -EINVAL otherwise.
For that same example, after this change, the mount operation fails with
-ENOSPC:
$ mount test.img /mnt
mount: /mnt: mount(2) system call failed: No space left on device.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently when we turn the fs into an error state, typically after a
transaction abort, we don't store the error anywhere, we just set a bit
(BTRFS_FS_STATE_ERROR) at struct btrfs_fs_info::fs_state to signal the
error state.
There are cases where it would be useful to have access to the specific
error in order to provide a more meaningful error to users/applications.
This change adds a member to struct btrfs_fs_info to store the error and
removes the BTRFS_FS_STATE_ERROR bit. When there's no error, the new
member (fs_error) has a value of 0, otherwise its value is a negative
errno value.
Followup changes will make use of this new member.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When doing a priority metadata space reclaim, while we are going through
the flush states and running their respective operations, it's possible
that a transaction abort happened, for example when running delayed refs
we hit -ENOSPC or in the critical section of transaction commit we failed
with -ENOSPC or some other error. In these cases a transaction was aborted
and the fs turned into error state. If that happened, then it makes no
sense to steal from the global block reserve and return success to the
caller if the stealing was successful - the caller will later get an
error when attempting to modify the fs. Instead make the ticket fail if
we have the fs in error state and don't attempt to steal from the global
rsv, as it's not only it's pointless, it also simplifies debugging some
-ENOSPC problems.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When dumping a space info also sum the available space for all block
groups and then print it. This often useful for debugging -ENOSPC
related problems.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When dumping a space info, we iterate over all its block groups and then
print their size and the amounts of bytes used, reserved, pinned, etc.
When debugging -ENOSPC problems it's also useful to know how much space
is available (free), so calculate that and print it as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When dumping a space info's block groups, also print the number of bytes
used for super blocks and delalloc. This is often useful for debugging
-ENOSPC problems.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When dumping free space, with btrfs_dump_free_space(), we pass a bytes
argument in order to count how many free space entries in the block group
have a size greater than or equal to that number of bytes. We then print
how many suitable entries we found, but we don't print the target number
of bytes, we just say "bytes". Change the message to actually print the
number of bytes, which makes debugging -ENOSPC issues a bit easier.
Also sligthly change the odd grammar and terminology: the sentence is
ending with 'is', which doesn't make sense, and the term 'blocks' is
confusing as we are referring to free space entries within the block
group's free space cache.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Update the comment for btrfs_join_transaction_nostart() to be more clear
about how it works and how it's different from btrfs_attach_transaction().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When joining a transaction with TRANS_JOIN_NOSTART, if we don't find a
running transaction we end up creating one. This goes against the purpose
of TRANS_JOIN_NOSTART which is to join a running transaction if its state
is at or below the state TRANS_STATE_COMMIT_START, otherwise return an
-ENOENT error and don't start a new transaction. So fix this to not create
a new transaction if there's no running transaction at or below that
state.
CC: stable@vger.kernel.org # 4.14+
Fixes: a6d155d2e363 ("Btrfs: fix deadlock between fiemap and transaction commits")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BACKGROUND]
Currently memove_extent_buffer() does a loop where it strop at any page
boundary inside [dst_offset, dst_offset + len) or [src_offset,
src_offset + len).
This is mostly allowing us to do copy_pages(), but if we're going to use
folios we will need to handle multi-page (the old behavior) or single
folio (the new optimization).
The current code would be a burden for future changes.
[ENHANCEMENT]
Instead of sticking with copy_pages(), here we utilize the new
__write_extent_buffer() helper to handle the writes.
Unlike the refactoring in memcpy_extent_buffer(), we can not just rely
on the write_extent_buffer() and only handle page boundaries inside src
range.
The function write_extent_buffer() itself is still doing forward
writing, thus it cannot handle the following case: (already in the
extent buffer memory operation tests, cross page overlapping run 2)
Src Page boundary
|///////|
|///|////|
Dst
In the above case, if we just follow page boundary in the src range, we
have no need to do any split, just one __write_extent_buffer() with
use_memmove = true.
But __write_extent_buffer() would split the dst range into two,
so it first copies the beginning part of the src range into the first half
of the dst range.
After this operation, the beginning of the dst range is already updated,
causing corruption.
So we have to follow the old behavior of handling both page boundaries.
And since we're the last caller of copy_pages(), we can remove it
completely.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BACKGROUND]
Currently memcpy_extent_buffer() does a loop where it would stop at
any page boundary inside [dst_offset, dst_offset + len) or [src_offset,
src_offset + len).
This is mostly allowing us to do copy_pages(), but if we're going to use
folios we will need to handle multi-page (the old behavior) or single
folio (the new optimization).
The current code would be a burden for future changes.
[ENHANCEMENT]
There is a hidden pitfall of the naming memcpy_extent_buffer(), unlike
regular memcpy(), this function can handle overlapping ranges.
So here we extract write_extent_buffer() into a new internal helper,
__write_extent_buffer(), and add a new parameter @use_memmove, to
indicate whether we should use memmove() or regular memcpy().
Now we can go __write_extent_buffer() to handle writing into the dst
range, with proper overlapping detection.
This has a tiny change to the chance of calling memmove().
As the split only happens at the source range page boundaries, the
memcpy/memmove() range would be slightly larger than the old code,
thus slightly increase the chance we call memmove() other than memcopy().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_clone_extent_buffer() calls copy_page() at each iteration but we
can copy all pages at the end in one go if there were no errors.
This would make later conversion to folios easier.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BACKGROUND]
copy_extent_buffer_full() currently does different handling for regular
and subpage cases, for regular cases it does a page by page copying.
For subpage cases, it just copies the content.
This is fine for the page based extent buffer code, but for the incoming
folio conversion, it can be a burden to add a new branch just to handle
all the different combinations (subpage vs regular, one single folio vs
multi pages).
[ENHANCE]
Instead of handling the different combinations, just go one single
handling for all cases, utilizing write_extent_buffer() to do the
copying.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Helpers write_extent_buffer_chunk_tree_uuid() and
write_extent_buffer_fsid(), they can be implemented by
write_extent_buffer().
These two helpers are not that frequently used, they only get called
during initialization of a new tree block. There is not much need for
those slightly optimized versions. And since they can be easily
converted to one write_extent_buffer() call, define them as inline
helpers.
This would make later page/folio switch much easier, as all change only
need to happen in write_extent_buffer().
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BACKGROUND]
Currently we handle extent bitmaps manually in
extent_buffer_bitmap_set() and extent_buffer_bitmap_clear().
Although with various helpers like eb_bitmap_offset() it's still a little
messy to read. The code seems to be a copy of bitmap_set(), but with
all the cross-page handling embedded into the code.
[ENHANCEMENT]
This patch would enhance the readability by introducing two helpers:
- memset_extent_buffer()
To handle the byte aligned range, thus all the cross-page handling is
done there.
- extent_buffer_get_byte()
This for the first and the last byte operations, which only need to
grab one byte, thus no need for any cross-page handling.
So we can split both extent_buffer_bitmap_set() and
extent_buffer_bitmap_clear() into 3 parts:
- Handle the first byte
If the range fits inside the first byte, we can exit early.
- Handle the byte aligned part
This is the part which can have cross-page operations, and it would
be handled by memset_extent_buffer().
- Handle the last byte
This refactoring does not only make the code a little easier to read,
but also makes later folio/page switch much easier, as the switch only
needs to be done inside memset_extent_buffer() and extent_buffer_get_byte().
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The new self tests would populate a memory range with random bytes, then
copy it to the extent buffer, so that we can verify if the extent buffer
memory operation and memmove()/memcopy() are resulting the same
contents.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Enhance extent bitmap tests for the following aspects:
- Remove unnecessary @len from __test_eb_bitmaps()
We can fetch the length from extent buffer
- Explicitly distinguish bit and byte length
Now every start/len inside bitmap tests would have either "byte_" or
"bit_" prefix to make it more explicit.
- Better error reporting
If we have mismatch bits, the error report would dump the following
contents:
* start bytenr
* bit number
* the full byte from bitmap
* the full byte from the extent
This is to save developers time so obvious problem can be found
immediately
- Extract bitmap set/clear and check operation into two helpers
This is to save some code lines, as we will have more tests to do.
- Add new tests
The following tests are added, mostly for the incoming extent bitmap
accessor refactoring:
* Set bits inside the same byte
* Clear bits inside the same byte
* Cross byte boundary set
* Cross byte boundary clear
* Cross multi-byte boundary set
* Cross multi-byte boundary clear
Those new tests have already saved my backend for the incoming extent
buffer bitmap refactoring.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Some of these loop types aren't described, and they should be with the
definitions to make it easier to tell what each of them do.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is a race between systemd and mount, as both of them try to register
the device in the kernel. When systemd loses the race, it prints the
following message:
BTRFS error: device /dev/sdb7 belongs to fsid 1b3bacbf-14db-49c9-a3ef-547998aacc4e, and the fs is already mounted.
The 'btrfs dev scan' registers one device at a time, so there is no way
for the mount thread to wait in the kernel for all the devices to have
registered as it won't know if all the devices are discovered.
For now, improve the error log by printing the command name and process
ID along with the error message.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For zoned file systems we need to use run_delalloc_zoned to submit
writeback, as we need to write out partial allocations when running into
zone active limits.
submit_uncompressed_range currently always calls cow_file_range to
allocate blocks and thus misses the active zone limits handling. Fix
this by passing the pages_dirty argument to run_delalloc_zoned and always
using it from submit_uncompressed_range as it does the right thing for
zoned and non-zoned file systems.
To account for the fact that run_delalloc_zoned is now also used for
non-zoned file systems rename it to run_delalloc_cow, and add comment
describing it.
Fixes: 42c011000963 ("btrfs: zoned: introduce dedicated data write path for zoned filesystems")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
extent_write_locked_range currently expects that either all or no
pages are dirty when it is called. Bur run_delalloc_zoned is called
directly in the writepages path, and has the dirty bit cleared only
for locked_page and which the extent_write_cache_pages currently
operates. It currently works around this by redirtying locked_page,
but that is a bit inefficient and cumbersome. Pass a locked_page
argument to run_delalloc_zoned so that clearing the dirty bit can
be skipped on just that page.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Handling of the done_offset to cow_file_range is a bit confusing, as
it is not updated at all when the function succeeds, and the -EAGAIN
status is used bother for the case where we need to wait for a zone
finish and the one where the allocation was partially successful.
Change the calling convention so that done_offset is always updated,
and 0 is returned if some allocation was successful (partial allocation
can still only happen for zoned devices), and waiting for a zone
finish is done internally in cow_file_range instead of the caller.
Also write a comment explaining the logic.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
compress_file_range needs to clear the dirty bit before handing off work
to the compression worker threads to prevent processes coming in through
mmap and changing the file contents while the compression is accessing
the data (See commit 4adaa611020f ("Btrfs: fix race between mmap writes
and compression").
But when compress_file_range decides to not compress the data, it falls
back to submit_uncompressed_range which uses extent_write_locked_range
to write the uncompressed data. extent_write_locked_range currently
expects all pages to be marked dirty so that it can clear the dirty
bit itself, and thus compress_file_range has to redirty the page range.
Redirtying the page range is rather inefficient and also pointless,
so instead pass a pages_dirty parameter to extent_write_locked_range
and skip the redirty game entirely.
Note that compress_file_range was even redirtying the locked_page twice
given that extent_range_clear_dirty_for_io already redirties all pages
in the range, which must include locked_page if there is one.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
compress_file_range has two code blocks to free the page array for the
compressed data. Share the code using a goto label.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
compress_file_range can fail to compress either because of resource or
alignment constraints or because the data is incompressible. In the latter
case the inode is marked so that compression isn't tried again. Currently
that check is based on the condition that the pages array has been allocated
which is rather cryptic. Use a separate label to clearly distinguish this
case.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently the logic whether to compress or not in compress_file_range is
a bit convoluted because it tries to share code for creating inline
extents for the compressible [1] path and the bail to uncompressed path.
But the latter isn't needed at all, because cow_file_range as called by
submit_uncompressed_range will already create inline extents as needed,
so there is no need to have special handling for it if we can live with
the fact that it will be called a bit later in the ->ordered_func of the
workqueue instead of right now.
[1] there is undocumented logic that creates an uncompressed inline
extent outside of the shall not compress logic if total_in is too small.
This logic isn't explained in comments or any commit log I could find,
so I've preserved it. Documentation explaining it would be appreciated
if anyone understands this code.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Reorder compress_file_range so that the main compression flow happens
straight line and not in branches. To do this ensure that pages is
always zeroed before a page allocation happens, which allows the
cleanup_and_bail_uncompressed label to clean up the page allocations
as needed.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The code in submit_compressed_extents just loops over the async_extents,
and doesn't need to be conditional on an inode being present, as there
won't be any async_extent in the list if we created and inline extent.
Merge the two functions to simplify the logic.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is no good reason to have the simple async_cow_start wrapper,
merge the argument conversion into the main compress_file_range function.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that the ->inode check isn't needed in submit_compressed_extents
any more, there is no reason to clear the field early. Always keep
the inode around until the work item is finished and remove the special
casing, and the counting of compressed extents in compress_file_range.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Instead of checking for a NULL !pages and explaining this with a cryptic
comment, just check the compression type for BTRFS_COMPRESS_NONE to make
the check self-explanatory.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Instead of a separate page_started argument that tells the callers that
btrfs_run_delalloc_range already started writeback by itself, overload
the return value with a positive 1 in additio to 0 and a negative error
code to indicate that is has already started writeback, and remove the
nr_written argument as that caller can calculate it directly based on
the range, and in fact already does so for the case where writeback
wasn't started yet.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently writepage_delalloc adds to delalloc_to_write in every loop
operation. That is not only more work than doing it once after the
loop, but can also over-increment the counter due to rounding errors
when a new loop iteration starts with an offset into a page.
Add a new page_start variable instead of recaculation that value over
and over, move the delalloc_to_write calculation out of the loop, use
the DIV_ROUND_UP helper instead of open coding it and remove the pointless
found local variable.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The return value from extent_write_locked_range is ignored, and that's
fine because the error reporting happens through the mapping and
ordered_extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The return value from submit_uncompressed_range is ignored, and that's
fine because the error reporting happens through the mapping and
ordered_extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move the printk that is supposed to help to debug failures in
submit_one_async_extent into submit_one_async_extent and make it
coniditonal on actually having an error condition instead of spamming
the log unconditionally.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
end_extent_writepage is a small helper that combines a call to
btrfs_mark_ordered_io_finished with conditional error-only calls to
btrfs_page_clear_uptodate and mapping_set_error with a somewhat
unfortunate calling convention that passes and inclusive end instead
of the len expected by the underlying functions.
Remove end_extent_writepage and open code it in the 4 callers. Out
of those two already are error-only and thus don't need the extra
conditional, and one already has the mapping_set_error, so a duplicate
call can be avoided.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_writepage_endio_finish_ordered is a small wrapper around
btrfs_mark_ordered_io_finished that just changs the argument passing
slightly, and adds a tracepoint.
Move the tracpoint to btrfs_mark_ordered_io_finished, which means
it now also covers the error handling in btrfs_cleanup_ordered_extent
and switch all callers to just call btrfs_mark_ordered_io_finished
directly.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is a lot of complexity in __process_pages_contig to deal with the
PAGE_LOCK case that can return an error unlike all the other actions.
Open code the page iteration for page locking in lock_delalloc_pages and
remove all the now unused code from __process_pages_contig.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For NOCOW files, run_delalloc_nocow can still fall back to COW
allocations when required and calls to fallback_to_cow helper for
that. For such an allocation we can have multiple ordered_extents
for existing extents that NOCOW overwrites and new allocations that
fallback_to_cow creates. If one of the new extents is an inline
extent, the writepages could would have to avoid normal page writeback
for them as indicated by the page_started return argument, which
run_delalloc_nocow can't return. Fix this by never creating inline
extents from fallback_to_cow.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The int used as bool unlock is not a very good way to describe the
behavior, and the next patch will have to add another behavior modifier.
We'll do that by two bool parameters instead of adding bit flags. Now
specifies that the pages should always be kept locked. This is the
inverse of the old unlock argument.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ switch flags to bool ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_start_transaction reserves metadata space of the PERTRANS type
before it identifies a transaction to start/join. This allows flushing
when reserving that space without a deadlock. However, it results in a
race which temporarily breaks qgroup rsv accounting.
T1 T2
start_transaction
do_stuff
start_transaction
qgroup_reserve_meta_pertrans
commit_transaction
qgroup_free_meta_all_pertrans
hit an error starting txn
goto reserve_fail
qgroup_free_meta_pertrans (already freed!)
The basic issue is that there is nothing preventing another commit from
committing before start_transaction finishes (in fact sometimes we
intentionally wait for it) so any error path that frees the reserve is
at risk of this race.
While this exact space was getting freed anyway, and it's not a huge
deal to double free it (just a warning, the free code catches this), it
can result in incorrectly freeing some other pertrans reservation in
this same reservation, which could then lead to spuriously granting
reservations we might not have the space for. Therefore, I do believe it
is worth fixing.
To fix it, use the existing prealloc->pertrans conversion mechanism.
When we first reserve the space, we reserve prealloc space and only when
we are sure we have a transaction do we convert it to pertrans. This way
any racing commits do not blow away our reservation, but we still get a
pertrans reservation that is freed when _this_ transaction gets committed.
This issue can be reproduced by running generic/269 with either qgroups
or squotas enabled via mkfs on the scratch device.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we do a write whose bio suffers an error, we will never reclaim the
qgroup reserved space for it. We allocate the space in the write_iter
codepath, then release the reservation as we allocate the ordered
extent, but we only create a delayed ref if the ordered extent finishes.
If it has an error, we simply leak the rsv. This is apparent in running
any error injecting (dmerror) fstests like btrfs/146 or btrfs/160. Such
tests fail due to dmesg on umount complaining about the leaked qgroup
data space.
When we clean up other aspects of space on failed ordered_extents, also
free the qgroup rsv.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
While performing compressed writes, if the extent reservation fails, the
async extent pages are first freed in the error check for return value
ret, and then again at out_free label.
Remove the first call to free_async_extent_pages().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Initially we preallocate btrfs_subpage structure in the main loop of
alloc_extent_buffer().
But later commit fbca46eb46ec ("btrfs: make nodesize >= PAGE_SIZE case
to reuse the non-subpage routine") has made sure we only go subpage
routine if our nodesize is smaller than PAGE_SIZE.
This means for that case, we only need to allocate the subpage structure
once anyway.
So this patch would make the preallocation out of the main loop. This
would slightly reduce the workload when we hold the page lock, and make
code a little easier to read.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
nr_alloc_stripes can't be one if we are writing to a replacement device,
as it is incremented for that case right above. Remove the duplicate
checks.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The @path in scrub_simple_mirror() is no longer utilized after commit
e02ee89baa66 ("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe
infrastructure").
Before that commit, we call find_first_extent_item() directly, which
needs a path and that path can be reused. But after that switch commit,
the extent search is done inside queue_scrub_stripe(), which will no
longer accept a path from outside.
So the @path variable can be safely removed.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ remove the stale comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Simplify code pattern of 'folio->index + folio_nr_pages(folio)' by using
the existing helper folio_next_index().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Minjie Du <duminjie@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There's a helper for obtaining size of a struct member, we can use it
instead of open coding the pointer magic.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The integrity checker feature needs to be enabled at compile time
(BTRFS_FS_CHECK_INTEGRITY) and then enabled by mount options check_int*.
Although it provides some unique features which can not be provided by
any other sanity checks like tree-checker, it does not only have high
CPU and memory overhead, but is also a maintenance burden.
For example, it's the only caller of btrfs_map_block() with
@need_raid_map = 0.
Considering most btrfs developers are not even testing this feature, I'm
here to propose deprecation of this feature.
For now only warning messages will be printed, the feature itself would
still work.
Removal time has been set to 6.7 release.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|