diff options
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/Makefile | 6 | ||||
-rw-r--r-- | kernel/sched/clock.c | 128 | ||||
-rw-r--r-- | kernel/sched/completion.c | 2 | ||||
-rw-r--r-- | kernel/sched/core.c | 772 | ||||
-rw-r--r-- | kernel/sched/cputime.c | 16 | ||||
-rw-r--r-- | kernel/sched/deadline.c | 894 | ||||
-rw-r--r-- | kernel/sched/debug.c | 17 | ||||
-rw-r--r-- | kernel/sched/fair.c | 451 | ||||
-rw-r--r-- | kernel/sched/features.h | 2 | ||||
-rw-r--r-- | kernel/sched/idle.c | 1 | ||||
-rw-r--r-- | kernel/sched/loadavg.c | 51 | ||||
-rw-r--r-- | kernel/sched/rt.c | 323 | ||||
-rw-r--r-- | kernel/sched/sched.h | 113 | ||||
-rw-r--r-- | kernel/sched/topology.c | 430 | ||||
-rw-r--r-- | kernel/sched/wait.c | 441 | ||||
-rw-r--r-- | kernel/sched/wait_bit.c | 286 |
16 files changed, 2380 insertions, 1553 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 89ab6758667b..53f0164ed362 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -16,9 +16,9 @@ CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif obj-y += core.o loadavg.o clock.o cputime.o -obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o -obj-y += wait.o swait.o completion.o idle.o -obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o +obj-y += idle_task.o fair.o rt.o deadline.o +obj-y += wait.o wait_bit.o swait.o completion.o idle.o +obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o obj-$(CONFIG_SCHEDSTATS) += stats.o obj-$(CONFIG_SCHED_DEBUG) += debug.o diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c index 00a45c45beca..ca0f8fc945c6 100644 --- a/kernel/sched/clock.c +++ b/kernel/sched/clock.c @@ -64,6 +64,7 @@ #include <linux/workqueue.h> #include <linux/compiler.h> #include <linux/tick.h> +#include <linux/init.h> /* * Scheduler clock - returns current time in nanosec units. @@ -124,14 +125,27 @@ int sched_clock_stable(void) return static_branch_likely(&__sched_clock_stable); } +static void __scd_stamp(struct sched_clock_data *scd) +{ + scd->tick_gtod = ktime_get_ns(); + scd->tick_raw = sched_clock(); +} + static void __set_sched_clock_stable(void) { - struct sched_clock_data *scd = this_scd(); + struct sched_clock_data *scd; /* + * Since we're still unstable and the tick is already running, we have + * to disable IRQs in order to get a consistent scd->tick* reading. + */ + local_irq_disable(); + scd = this_scd(); + /* * Attempt to make the (initial) unstable->stable transition continuous. */ __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); + local_irq_enable(); printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", scd->tick_gtod, __gtod_offset, @@ -141,8 +155,38 @@ static void __set_sched_clock_stable(void) tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); } +/* + * If we ever get here, we're screwed, because we found out -- typically after + * the fact -- that TSC wasn't good. This means all our clocksources (including + * ktime) could have reported wrong values. + * + * What we do here is an attempt to fix up and continue sort of where we left + * off in a coherent manner. + * + * The only way to fully avoid random clock jumps is to boot with: + * "tsc=unstable". + */ static void __sched_clock_work(struct work_struct *work) { + struct sched_clock_data *scd; + int cpu; + + /* take a current timestamp and set 'now' */ + preempt_disable(); + scd = this_scd(); + __scd_stamp(scd); + scd->clock = scd->tick_gtod + __gtod_offset; + preempt_enable(); + + /* clone to all CPUs */ + for_each_possible_cpu(cpu) + per_cpu(sched_clock_data, cpu) = *scd; + + printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); + printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", + scd->tick_gtod, __gtod_offset, + scd->tick_raw, __sched_clock_offset); + static_branch_disable(&__sched_clock_stable); } @@ -150,27 +194,11 @@ static DECLARE_WORK(sched_clock_work, __sched_clock_work); static void __clear_sched_clock_stable(void) { - struct sched_clock_data *scd = this_scd(); - - /* - * Attempt to make the stable->unstable transition continuous. - * - * Trouble is, this is typically called from the TSC watchdog - * timer, which is late per definition. This means the tick - * values can already be screwy. - * - * Still do what we can. - */ - __gtod_offset = (scd->tick_raw + __sched_clock_offset) - (scd->tick_gtod); - - printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", - scd->tick_gtod, __gtod_offset, - scd->tick_raw, __sched_clock_offset); + if (!sched_clock_stable()) + return; tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); - - if (sched_clock_stable()) - schedule_work(&sched_clock_work); + schedule_work(&sched_clock_work); } void clear_sched_clock_stable(void) @@ -183,7 +211,11 @@ void clear_sched_clock_stable(void) __clear_sched_clock_stable(); } -void sched_clock_init_late(void) +/* + * We run this as late_initcall() such that it runs after all built-in drivers, + * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. + */ +static int __init sched_clock_init_late(void) { sched_clock_running = 2; /* @@ -197,7 +229,10 @@ void sched_clock_init_late(void) if (__sched_clock_stable_early) __set_sched_clock_stable(); + + return 0; } +late_initcall(sched_clock_init_late); /* * min, max except they take wrapping into account @@ -347,21 +382,38 @@ void sched_clock_tick(void) { struct sched_clock_data *scd; + if (sched_clock_stable()) + return; + + if (unlikely(!sched_clock_running)) + return; + WARN_ON_ONCE(!irqs_disabled()); + scd = this_scd(); + __scd_stamp(scd); + sched_clock_local(scd); +} + +void sched_clock_tick_stable(void) +{ + u64 gtod, clock; + + if (!sched_clock_stable()) + return; + /* - * Update these values even if sched_clock_stable(), because it can - * become unstable at any point in time at which point we need some - * values to fall back on. + * Called under watchdog_lock. * - * XXX arguably we can skip this if we expose tsc_clocksource_reliable + * The watchdog just found this TSC to (still) be stable, so now is a + * good moment to update our __gtod_offset. Because once we find the + * TSC to be unstable, any computation will be computing crap. */ - scd = this_scd(); - scd->tick_raw = sched_clock(); - scd->tick_gtod = ktime_get_ns(); - - if (!sched_clock_stable() && likely(sched_clock_running)) - sched_clock_local(scd); + local_irq_disable(); + gtod = ktime_get_ns(); + clock = sched_clock(); + __gtod_offset = (clock + __sched_clock_offset) - gtod; + local_irq_enable(); } /* @@ -374,15 +426,21 @@ void sched_clock_idle_sleep_event(void) EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); /* - * We just idled delta nanoseconds (called with irqs disabled): + * We just idled; resync with ktime. */ -void sched_clock_idle_wakeup_event(u64 delta_ns) +void sched_clock_idle_wakeup_event(void) { - if (timekeeping_suspended) + unsigned long flags; + + if (sched_clock_stable()) + return; + + if (unlikely(timekeeping_suspended)) return; + local_irq_save(flags); sched_clock_tick(); - touch_softlockup_watchdog_sched(); + local_irq_restore(flags); } EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); diff --git a/kernel/sched/completion.c b/kernel/sched/completion.c index 53f9558fa925..13fc5ae9bf2f 100644 --- a/kernel/sched/completion.c +++ b/kernel/sched/completion.c @@ -66,7 +66,7 @@ do_wait_for_common(struct completion *x, if (!x->done) { DECLARE_WAITQUEUE(wait, current); - __add_wait_queue_tail_exclusive(&x->wait, &wait); + __add_wait_queue_entry_tail_exclusive(&x->wait, &wait); do { if (signal_pending_state(state, current)) { timeout = -ERESTARTSYS; diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 5b60f3a8343f..17c667b427b4 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -10,6 +10,7 @@ #include <uapi/linux/sched/types.h> #include <linux/sched/loadavg.h> #include <linux/sched/hotplug.h> +#include <linux/wait_bit.h> #include <linux/cpuset.h> #include <linux/delayacct.h> #include <linux/init_task.h> @@ -788,36 +789,6 @@ void deactivate_task(struct rq *rq, struct task_struct *p, int flags) dequeue_task(rq, p, flags); } -void sched_set_stop_task(int cpu, struct task_struct *stop) -{ - struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; - struct task_struct *old_stop = cpu_rq(cpu)->stop; - - if (stop) { - /* - * Make it appear like a SCHED_FIFO task, its something - * userspace knows about and won't get confused about. - * - * Also, it will make PI more or less work without too - * much confusion -- but then, stop work should not - * rely on PI working anyway. - */ - sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); - - stop->sched_class = &stop_sched_class; - } - - cpu_rq(cpu)->stop = stop; - - if (old_stop) { - /* - * Reset it back to a normal scheduling class so that - * it can die in pieces. - */ - old_stop->sched_class = &rt_sched_class; - } -} - /* * __normal_prio - return the priority that is based on the static prio */ @@ -1588,6 +1559,36 @@ static void update_avg(u64 *avg, u64 sample) *avg += diff >> 3; } +void sched_set_stop_task(int cpu, struct task_struct *stop) +{ + struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; + struct task_struct *old_stop = cpu_rq(cpu)->stop; + + if (stop) { + /* + * Make it appear like a SCHED_FIFO task, its something + * userspace knows about and won't get confused about. + * + * Also, it will make PI more or less work without too + * much confusion -- but then, stop work should not + * rely on PI working anyway. + */ + sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); + + stop->sched_class = &stop_sched_class; + } + + cpu_rq(cpu)->stop = stop; + + if (old_stop) { + /* + * Reset it back to a normal scheduling class so that + * it can die in pieces. + */ + old_stop->sched_class = &rt_sched_class; + } +} + #else static inline int __set_cpus_allowed_ptr(struct task_struct *p, @@ -1731,7 +1732,7 @@ void sched_ttwu_pending(void) { struct rq *rq = this_rq(); struct llist_node *llist = llist_del_all(&rq->wake_list); - struct task_struct *p; + struct task_struct *p, *t; struct rq_flags rf; if (!llist) @@ -1740,17 +1741,8 @@ void sched_ttwu_pending(void) rq_lock_irqsave(rq, &rf); update_rq_clock(rq); - while (llist) { - int wake_flags = 0; - - p = llist_entry(llist, struct task_struct, wake_entry); - llist = llist_next(llist); - - if (p->sched_remote_wakeup) - wake_flags = WF_MIGRATED; - - ttwu_do_activate(rq, p, wake_flags, &rf); - } + llist_for_each_entry_safe(p, t, llist, wake_entry) + ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); rq_unlock_irqrestore(rq, &rf); } @@ -2148,23 +2140,6 @@ int wake_up_state(struct task_struct *p, unsigned int state) } /* - * This function clears the sched_dl_entity static params. - */ -void __dl_clear_params(struct task_struct *p) -{ - struct sched_dl_entity *dl_se = &p->dl; - - dl_se->dl_runtime = 0; - dl_se->dl_deadline = 0; - dl_se->dl_period = 0; - dl_se->flags = 0; - dl_se->dl_bw = 0; - - dl_se->dl_throttled = 0; - dl_se->dl_yielded = 0; -} - -/* * Perform scheduler related setup for a newly forked process p. * p is forked by current. * @@ -2193,6 +2168,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) RB_CLEAR_NODE(&p->dl.rb_node); init_dl_task_timer(&p->dl); + init_dl_inactive_task_timer(&p->dl); __dl_clear_params(p); INIT_LIST_HEAD(&p->rt.run_list); @@ -2430,7 +2406,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) unsigned long to_ratio(u64 period, u64 runtime) { if (runtime == RUNTIME_INF) - return 1ULL << 20; + return BW_UNIT; /* * Doing this here saves a lot of checks in all @@ -2440,93 +2416,9 @@ unsigned long to_ratio(u64 period, u64 runtime) if (period == 0) return 0; - return div64_u64(runtime << 20, period); + return div64_u64(runtime << BW_SHIFT, period); } -#ifdef CONFIG_SMP -inline struct dl_bw *dl_bw_of(int i) -{ - RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), - "sched RCU must be held"); - return &cpu_rq(i)->rd->dl_bw; -} - -static inline int dl_bw_cpus(int i) -{ - struct root_domain *rd = cpu_rq(i)->rd; - int cpus = 0; - - RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), - "sched RCU must be held"); - for_each_cpu_and(i, rd->span, cpu_active_mask) - cpus++; - - return cpus; -} -#else -inline struct dl_bw *dl_bw_of(int i) -{ - return &cpu_rq(i)->dl.dl_bw; -} - -static inline int dl_bw_cpus(int i) -{ - return 1; -} -#endif - -/* - * We must be sure that accepting a new task (or allowing changing the - * parameters of an existing one) is consistent with the bandwidth - * constraints. If yes, this function also accordingly updates the currently - * allocated bandwidth to reflect the new situation. - * - * This function is called while holding p's rq->lock. - * - * XXX we should delay bw change until the task's 0-lag point, see - * __setparam_dl(). - */ -static int dl_overflow(struct task_struct *p, int policy, - const struct sched_attr *attr) -{ - - struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); - u64 period = attr->sched_period ?: attr->sched_deadline; - u64 runtime = attr->sched_runtime; - u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; - int cpus, err = -1; - - /* !deadline task may carry old deadline bandwidth */ - if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) - return 0; - - /* - * Either if a task, enters, leave, or stays -deadline but changes - * its parameters, we may need to update accordingly the total - * allocated bandwidth of the container. - */ - raw_spin_lock(&dl_b->lock); - cpus = dl_bw_cpus(task_cpu(p)); - if (dl_policy(policy) && !task_has_dl_policy(p) && - !__dl_overflow(dl_b, cpus, 0, new_bw)) { - __dl_add(dl_b, new_bw); - err = 0; - } else if (dl_policy(policy) && task_has_dl_policy(p) && - !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { - __dl_clear(dl_b, p->dl.dl_bw); - __dl_add(dl_b, new_bw); - err = 0; - } else if (!dl_policy(policy) && task_has_dl_policy(p)) { - __dl_clear(dl_b, p->dl.dl_bw); - err = 0; - } - raw_spin_unlock(&dl_b->lock); - - return err; -} - -extern void init_dl_bw(struct dl_bw *dl_b); - /* * wake_up_new_task - wake up a newly created task for the first time. * @@ -3687,7 +3579,7 @@ asmlinkage __visible void __sched preempt_schedule_irq(void) exception_exit(prev_state); } -int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, +int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, void *key) { return try_to_wake_up(curr->private, mode, wake_flags); @@ -4009,46 +3901,6 @@ static struct task_struct *find_process_by_pid(pid_t pid) } /* - * This function initializes the sched_dl_entity of a newly becoming - * SCHED_DEADLINE task. - * - * Only the static values are considered here, the actual runtime and the - * absolute deadline will be properly calculated when the task is enqueued - * for the first time with its new policy. - */ -static void -__setparam_dl(struct task_struct *p, const struct sched_attr *attr) -{ - struct sched_dl_entity *dl_se = &p->dl; - - dl_se->dl_runtime = attr->sched_runtime; - dl_se->dl_deadline = attr->sched_deadline; - dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; - dl_se->flags = attr->sched_flags; - dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); - - /* - * Changing the parameters of a task is 'tricky' and we're not doing - * the correct thing -- also see task_dead_dl() and switched_from_dl(). - * - * What we SHOULD do is delay the bandwidth release until the 0-lag - * point. This would include retaining the task_struct until that time - * and change dl_overflow() to not immediately decrement the current - * amount. - * - * Instead we retain the current runtime/deadline and let the new - * parameters take effect after the current reservation period lapses. - * This is safe (albeit pessimistic) because the 0-lag point is always - * before the current scheduling deadline. - * - * We can still have temporary overloads because we do not delay the - * change in bandwidth until that time; so admission control is - * not on the safe side. It does however guarantee tasks will never - * consume more than promised. - */ -} - -/* * sched_setparam() passes in -1 for its policy, to let the functions * it calls know not to change it. */ @@ -4101,59 +3953,6 @@ static void __setscheduler(struct rq *rq, struct task_struct *p, p->sched_class = &fair_sched_class; } -static void -__getparam_dl(struct task_struct *p, struct sched_attr *attr) -{ - struct sched_dl_entity *dl_se = &p->dl; - - attr->sched_priority = p->rt_priority; - attr->sched_runtime = dl_se->dl_runtime; - attr->sched_deadline = dl_se->dl_deadline; - attr->sched_period = dl_se->dl_period; - attr->sched_flags = dl_se->flags; -} - -/* - * This function validates the new parameters of a -deadline task. - * We ask for the deadline not being zero, and greater or equal - * than the runtime, as well as the period of being zero or - * greater than deadline. Furthermore, we have to be sure that - * user parameters are above the internal resolution of 1us (we - * check sched_runtime only since it is always the smaller one) and - * below 2^63 ns (we have to check both sched_deadline and - * sched_period, as the latter can be zero). - */ -static bool -__checkparam_dl(const struct sched_attr *attr) -{ - /* deadline != 0 */ - if (attr->sched_deadline == 0) - return false; - - /* - * Since we truncate DL_SCALE bits, make sure we're at least - * that big. - */ - if (attr->sched_runtime < (1ULL << DL_SCALE)) - return false; - - /* - * Since we use the MSB for wrap-around and sign issues, make - * sure it's not set (mind that period can be equal to zero). - */ - if (attr->sched_deadline & (1ULL << 63) || - attr->sched_period & (1ULL << 63)) - return false; - - /* runtime <= deadline <= period (if period != 0) */ - if ((attr->sched_period != 0 && - attr->sched_period < attr->sched_deadline) || - attr->sched_deadline < attr->sched_runtime) - return false; - - return true; -} - /* * Check the target process has a UID that matches the current process's: */ @@ -4170,19 +3969,6 @@ static bool check_same_owner(struct task_struct *p) return match; } -static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) -{ - struct sched_dl_entity *dl_se = &p->dl; - - if (dl_se->dl_runtime != attr->sched_runtime || - dl_se->dl_deadline != attr->sched_deadline || - dl_se->dl_period != attr->sched_period || - dl_se->flags != attr->sched_flags) - return true; - - return false; -} - static int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi) @@ -4197,8 +3983,8 @@ static int __sched_setscheduler(struct task_struct *p, int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; struct rq *rq; - /* May grab non-irq protected spin_locks: */ - BUG_ON(in_interrupt()); + /* The pi code expects interrupts enabled */ + BUG_ON(pi && in_interrupt()); recheck: /* Double check policy once rq lock held: */ if (policy < 0) { @@ -4211,7 +3997,8 @@ recheck: return -EINVAL; } - if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) + if (attr->sched_flags & + ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM)) return -EINVAL; /* @@ -4362,7 +4149,7 @@ change: * of a SCHED_DEADLINE task) we need to check if enough bandwidth * is available. */ - if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { + if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { task_rq_unlock(rq, p, &rf); return -EBUSY; } @@ -5463,26 +5250,17 @@ void init_idle(struct task_struct *idle, int cpu) #endif } +#ifdef CONFIG_SMP + int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial) { - int ret = 1, trial_cpus; - struct dl_bw *cur_dl_b; - unsigned long flags; + int ret = 1; if (!cpumask_weight(cur)) return ret; - rcu_read_lock_sched(); - cur_dl_b = dl_bw_of(cpumask_any(cur)); - trial_cpus = cpumask_weight(trial); - - raw_spin_lock_irqsave(&cur_dl_b->lock, flags); - if (cur_dl_b->bw != -1 && - cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) - ret = 0; - raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); - rcu_read_unlock_sched(); + ret = dl_cpuset_cpumask_can_shrink(cur, trial); return ret; } @@ -5506,43 +5284,14 @@ int task_can_attach(struct task_struct *p, goto out; } -#ifdef CONFIG_SMP if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, - cs_cpus_allowed)) { - unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, - cs_cpus_allowed); - struct dl_bw *dl_b; - bool overflow; - int cpus; - unsigned long flags; - - rcu_read_lock_sched(); - dl_b = dl_bw_of(dest_cpu); - raw_spin_lock_irqsave(&dl_b->lock, flags); - cpus = dl_bw_cpus(dest_cpu); - overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); - if (overflow) - ret = -EBUSY; - else { - /* - * We reserve space for this task in the destination - * root_domain, as we can't fail after this point. - * We will free resources in the source root_domain - * later on (see set_cpus_allowed_dl()). - */ - __dl_add(dl_b, p->dl.dl_bw); - } - raw_spin_unlock_irqrestore(&dl_b->lock, flags); - rcu_read_unlock_sched(); + cs_cpus_allowed)) + ret = dl_task_can_attach(p, cs_cpus_allowed); - } -#endif out: return ret; } -#ifdef CONFIG_SMP - bool sched_smp_initialized __read_mostly; #ifdef CONFIG_NUMA_BALANCING @@ -5805,23 +5554,8 @@ static void cpuset_cpu_active(void) static int cpuset_cpu_inactive(unsigned int cpu) { - unsigned long flags; - struct dl_bw *dl_b; - bool overflow; - int cpus; - if (!cpuhp_tasks_frozen) { - rcu_read_lock_sched(); - dl_b = dl_bw_of(cpu); - - raw_spin_lock_irqsave(&dl_b->lock, flags); - cpus = dl_bw_cpus(cpu); - overflow = __dl_overflow(dl_b, cpus, 0, 0); - raw_spin_unlock_irqrestore(&dl_b->lock, flags); - - rcu_read_unlock_sched(); - - if (overflow) + if (dl_cpu_busy(cpu)) return -EBUSY; cpuset_update_active_cpus(); } else { @@ -5952,7 +5686,6 @@ void __init sched_init_smp(void) cpumask_var_t non_isolated_cpus; alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); - alloc_cpumask_var(&fallback_doms, GFP_KERNEL); sched_init_numa(); @@ -5962,7 +5695,7 @@ void __init sched_init_smp(void) * happen. */ mutex_lock(&sched_domains_mutex); - init_sched_domains(cpu_active_mask); + sched_init_domains(cpu_active_mask); cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); if (cpumask_empty(non_isolated_cpus)) cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); @@ -5978,7 +5711,6 @@ void __init sched_init_smp(void) init_sched_dl_class(); sched_init_smt(); - sched_clock_init_late(); sched_smp_initialized = true; } @@ -5994,7 +5726,6 @@ early_initcall(migration_init); void __init sched_init_smp(void) { sched_init_granularity(); - sched_clock_init_late(); } #endif /* CONFIG_SMP */ @@ -6020,28 +5751,13 @@ static struct kmem_cache *task_group_cache __read_mostly; DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); -#define WAIT_TABLE_BITS 8 -#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) -static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; - -wait_queue_head_t *bit_waitqueue(void *word, int bit) -{ - const int shift = BITS_PER_LONG == 32 ? 5 : 6; - unsigned long val = (unsigned long)word << shift | bit; - - return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); -} -EXPORT_SYMBOL(bit_waitqueue); - void __init sched_init(void) { int i, j; unsigned long alloc_size = 0, ptr; sched_clock_init(); - - for (i = 0; i < WAIT_TABLE_SIZE; i++) - init_waitqueue_head(bit_wait_table + i); + wait_bit_init(); #ifdef CONFIG_FAIR_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); @@ -6193,7 +5909,6 @@ void __init sched_init(void) calc_load_update = jiffies + LOAD_FREQ; #ifdef CONFIG_SMP - zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); /* May be allocated at isolcpus cmdline parse time */ if (cpu_isolated_map == NULL) zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); @@ -6245,8 +5960,10 @@ void ___might_sleep(const char *file, int line, int preempt_offset) if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && !is_idle_task(current)) || - system_state != SYSTEM_RUNNING || oops_in_progress) + system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || + oops_in_progress) return; + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) return; prev_jiffy = jiffies; @@ -6501,385 +6218,6 @@ void sched_move_task(struct task_struct *tsk) task_rq_unlock(rq, tsk, &rf); } -#endif /* CONFIG_CGROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -/* - * Ensure that the real time constraints are schedulable. - */ -static DEFINE_MUTEX(rt_constraints_mutex); - -/* Must be called with tasklist_lock held */ -static inline int tg_has_rt_tasks(struct task_group *tg) -{ - struct task_struct *g, *p; - - /* - * Autogroups do not have RT tasks; see autogroup_create(). - */ - if (task_group_is_autogroup(tg)) - return 0; - - for_each_process_thread(g, p) { - if (rt_task(p) && task_group(p) == tg) - return 1; - } - - return 0; -} - -struct rt_schedulable_data { - struct task_group *tg; - u64 rt_period; - u64 rt_runtime; -}; - -static int tg_rt_schedulable(struct task_group *tg, void *data) -{ - struct rt_schedulable_data *d = data; - struct task_group *child; - unsigned long total, sum = 0; - u64 period, runtime; - - period = ktime_to_ns(tg->rt_bandwidth.rt_period); - runtime = tg->rt_bandwidth.rt_runtime; - - if (tg == d->tg) { - period = d->rt_period; - runtime = d->rt_runtime; - } - - /* - * Cannot have more runtime than the period. - */ - if (runtime > period && runtime != RUNTIME_INF) - return -EINVAL; - - /* - * Ensure we don't starve existing RT tasks. - */ - if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) - return -EBUSY; - - total = to_ratio(period, runtime); - - /* - * Nobody can have more than the global setting allows. - */ - if (total > to_ratio(global_rt_period(), global_rt_runtime())) - return -EINVAL; - - /* - * The sum of our children's runtime should not exceed our own. - */ - list_for_each_entry_rcu(child, &tg->children, siblings) { - period = ktime_to_ns(child->rt_bandwidth.rt_period); - runtime = child->rt_bandwidth.rt_runtime; - - if (child == d->tg) { - period = d->rt_period; - runtime = d->rt_runtime; - } - - sum += to_ratio(period, runtime); - } - - if (sum > total) - return -EINVAL; - - return 0; -} - -static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) -{ - int ret; - - struct rt_schedulable_data data = { - .tg = tg, - .rt_period = period, - .rt_runtime = runtime, - }; - - rcu_read_lock(); - ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); - rcu_read_unlock(); - - return ret; -} - -static int tg_set_rt_bandwidth(struct task_group *tg, - u64 rt_period, u64 rt_runtime) -{ - int i, err = 0; - - /* - * Disallowing the root group RT runtime is BAD, it would disallow the - * kernel creating (and or operating) RT threads. - */ - if (tg == &root_task_group && rt_runtime == 0) - return -EINVAL; - - /* No period doesn't make any sense. */ - if (rt_period == 0) - return -EINVAL; - - mutex_lock(&rt_constraints_mutex); - read_lock(&tasklist_lock); - err = __rt_schedulable(tg, rt_period, rt_runtime); - if (err) - goto unlock; - - raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); - tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); - tg->rt_bandwidth.rt_runtime = rt_runtime; - - for_each_possible_cpu(i) { - struct rt_rq *rt_rq = tg->rt_rq[i]; - - raw_spin_lock(&rt_rq->rt_runtime_lock); - rt_rq->rt_runtime = rt_runtime; - raw_spin_unlock(&rt_rq->rt_runtime_lock); - } - raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); -unlock: - read_unlock(&tasklist_lock); - mutex_unlock(&rt_constraints_mutex); - - return err; -} - -static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) -{ - u64 rt_runtime, rt_period; - - rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); - rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; - if (rt_runtime_us < 0) - rt_runtime = RUNTIME_INF; - - return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); -} - -static long sched_group_rt_runtime(struct task_group *tg) -{ - u64 rt_runtime_us; - - if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) - return -1; - - rt_runtime_us = tg->rt_bandwidth.rt_runtime; - do_div(rt_runtime_us, NSEC_PER_USEC); - return rt_runtime_us; -} - -static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) -{ - u64 rt_runtime, rt_period; - - rt_period = rt_period_us * NSEC_PER_USEC; - rt_runtime = tg->rt_bandwidth.rt_runtime; - - return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); -} - -static long sched_group_rt_period(struct task_group *tg) -{ - u64 rt_period_us; - - rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); - do_div(rt_period_us, NSEC_PER_USEC); - return rt_period_us; -} -#endif /* CONFIG_RT_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static int sched_rt_global_constraints(void) -{ - int ret = 0; - - mutex_lock(&rt_constraints_mutex); - read_lock(&tasklist_lock); - ret = __rt_schedulable(NULL, 0, 0); - read_unlock(&tasklist_lock); - mutex_unlock(&rt_constraints_mutex); - - return ret; -} - -static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) -{ - /* Don't accept realtime tasks when there is no way for them to run */ - if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) - return 0; - - return 1; -} - -#else /* !CONFIG_RT_GROUP_SCHED */ -static int sched_rt_global_constraints(void) -{ - unsigned long flags; - int i; - - raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); - for_each_possible_cpu(i) { - struct rt_rq *rt_rq = &cpu_rq(i)->rt; - - raw_spin_lock(&rt_rq->rt_runtime_lock); - rt_rq->rt_runtime = global_rt_runtime(); - raw_spin_unlock(&rt_rq->rt_runtime_lock); - } - raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); - - return 0; -} -#endif /* CONFIG_RT_GROUP_SCHED */ - -static int sched_dl_global_validate(void) -{ - u64 runtime = global_rt_runtime(); - u64 period = global_rt_period(); - u64 new_bw = to_ratio(period, runtime); - struct dl_bw *dl_b; - int cpu, ret = 0; - unsigned long flags; - - /* - * Here we want to check the bandwidth not being set to some - * value smaller than the currently allocated bandwidth in - * any of the root_domains. - * - * FIXME: Cycling on all the CPUs is overdoing, but simpler than - * cycling on root_domains... Discussion on different/better - * solutions is welcome! - */ - for_each_possible_cpu(cpu) { - rcu_read_lock_sched(); - dl_b = dl_bw_of(cpu); - - raw_spin_lock_irqsave(&dl_b->lock, flags); - if (new_bw < dl_b->total_bw) - ret = -EBUSY; - raw_spin_unlock_irqrestore(&dl_b->lock, flags); - - rcu_read_unlock_sched(); - - if (ret) - break; - } - - return ret; -} - -static void sched_dl_do_global(void) -{ - u64 new_bw = -1; - struct dl_bw *dl_b; - int cpu; - unsigned long flags; - - def_dl_bandwidth.dl_period = global_rt_period(); - def_dl_bandwidth.dl_runtime = global_rt_runtime(); - - if (global_rt_runtime() != RUNTIME_INF) - new_bw = to_ratio(global_rt_period(), global_rt_runtime()); - - /* - * FIXME: As above... - */ - for_each_possible_cpu(cpu) { - rcu_read_lock_sched(); - dl_b = dl_bw_of(cpu); - - raw_spin_lock_irqsave(&dl_b->lock, flags); - dl_b->bw = new_bw; - raw_spin_unlock_irqrestore(&dl_b->lock, flags); - - rcu_read_unlock_sched(); - } -} - -static int sched_rt_global_validate(void) -{ - if (sysctl_sched_rt_period <= 0) - return -EINVAL; - - if ((sysctl_sched_rt_runtime != RUNTIME_INF) && - (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) - return -EINVAL; - - return 0; -} - -static void sched_rt_do_global(void) -{ - def_rt_bandwidth.rt_runtime = global_rt_runtime(); - def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); -} - -int sched_rt_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - int old_period, old_runtime; - static DEFINE_MUTEX(mutex); - int ret; - - mutex_lock(&mutex); - old_period = sysctl_sched_rt_period; - old_runtime = sysctl_sched_rt_runtime; - - ret = proc_dointvec(table, write, buffer, lenp, ppos); - - if (!ret && write) { - ret = sched_rt_global_validate(); - if (ret) - goto undo; - - ret = sched_dl_global_validate(); - if (ret) - goto undo; - - ret = sched_rt_global_constraints(); - if (ret) - goto undo; - - sched_rt_do_global(); - sched_dl_do_global(); - } - if (0) { -undo: - sysctl_sched_rt_period = old_period; - sysctl_sched_rt_runtime = old_runtime; - } - mutex_unlock(&mutex); - - return ret; -} - -int sched_rr_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - int ret; - static DEFINE_MUTEX(mutex); - - mutex_lock(&mutex); - ret = proc_dointvec(table, write, buffer, lenp, ppos); - /* - * Make sure that internally we keep jiffies. - * Also, writing zero resets the timeslice to default: - */ - if (!ret && write) { - sched_rr_timeslice = - sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : - msecs_to_jiffies(sysctl_sched_rr_timeslice); - } - mutex_unlock(&mutex); - return ret; -} - -#ifdef CONFIG_CGROUP_SCHED static inline struct task_group *css_tg(struct cgroup_subsys_state *css) { diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c index aea3135c5d90..67c70e287647 100644 --- a/kernel/sched/cputime.c +++ b/kernel/sched/cputime.c @@ -615,19 +615,13 @@ static void cputime_adjust(struct task_cputime *curr, * userspace. Once a task gets some ticks, the monotonicy code at * 'update' will ensure things converge to the observed ratio. */ - if (stime == 0) { - utime = rtime; - goto update; + if (stime != 0) { + if (utime == 0) + stime = rtime; + else + stime = scale_stime(stime, rtime, stime + utime); } - if (utime == 0) { - stime = rtime; - goto update; - } - - stime = scale_stime(stime, rtime, stime + utime); - -update: /* * Make sure stime doesn't go backwards; this preserves monotonicity * for utime because rtime is monotonic. diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c index a2ce59015642..a84299f44b5d 100644 --- a/kernel/sched/deadline.c +++ b/kernel/sched/deadline.c @@ -17,6 +17,7 @@ #include "sched.h" #include <linux/slab.h> +#include <uapi/linux/sched/types.h> struct dl_bandwidth def_dl_bandwidth; @@ -43,6 +44,254 @@ static inline int on_dl_rq(struct sched_dl_entity *dl_se) return !RB_EMPTY_NODE(&dl_se->rb_node); } +#ifdef CONFIG_SMP +static inline struct dl_bw *dl_bw_of(int i) +{ + RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), + "sched RCU must be held"); + return &cpu_rq(i)->rd->dl_bw; +} + +static inline int dl_bw_cpus(int i) +{ + struct root_domain *rd = cpu_rq(i)->rd; + int cpus = 0; + + RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), + "sched RCU must be held"); + for_each_cpu_and(i, rd->span, cpu_active_mask) + cpus++; + + return cpus; +} +#else +static inline struct dl_bw *dl_bw_of(int i) +{ + return &cpu_rq(i)->dl.dl_bw; +} + +static inline int dl_bw_cpus(int i) +{ + return 1; +} +#endif + +static inline +void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) +{ + u64 old = dl_rq->running_bw; + + lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); + dl_rq->running_bw += dl_bw; + SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ + SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); +} + +static inline +void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) +{ + u64 old = dl_rq->running_bw; + + lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); + dl_rq->running_bw -= dl_bw; + SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ + if (dl_rq->running_bw > old) + dl_rq->running_bw = 0; +} + +static inline +void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) +{ + u64 old = dl_rq->this_bw; + + lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); + dl_rq->this_bw += dl_bw; + SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ +} + +static inline +void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) +{ + u64 old = dl_rq->this_bw; + + lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); + dl_rq->this_bw -= dl_bw; + SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ + if (dl_rq->this_bw > old) + dl_rq->this_bw = 0; + SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); +} + +void dl_change_utilization(struct task_struct *p, u64 new_bw) +{ + struct rq *rq; + + if (task_on_rq_queued(p)) + return; + + rq = task_rq(p); + if (p->dl.dl_non_contending) { + sub_running_bw(p->dl.dl_bw, &rq->dl); + p->dl.dl_non_contending = 0; + /* + * If the timer handler is currently running and the + * timer cannot be cancelled, inactive_task_timer() + * will see that dl_not_contending is not set, and + * will not touch the rq's active utilization, + * so we are still safe. + */ + if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) + put_task_struct(p); + } + sub_rq_bw(p->dl.dl_bw, &rq->dl); + add_rq_bw(new_bw, &rq->dl); +} + +/* + * The utilization of a task cannot be immediately removed from + * the rq active utilization (running_bw) when the task blocks. + * Instead, we have to wait for the so called "0-lag time". + * + * If a task blocks before the "0-lag time", a timer (the inactive + * timer) is armed, and running_bw is decreased when the timer + * fires. + * + * If the task wakes up again before the inactive timer fires, + * the timer is cancelled, whereas if the task wakes up after the + * inactive timer fired (and running_bw has been decreased) the + * task's utilization has to be added to running_bw again. + * A flag in the deadline scheduling entity (dl_non_contending) + * is used to avoid race conditions between the inactive timer handler + * and task wakeups. + * + * The following diagram shows how running_bw is updated. A task is + * "ACTIVE" when its utilization contributes to running_bw; an + * "ACTIVE contending" task is in the TASK_RUNNING state, while an + * "ACTIVE non contending" task is a blocked task for which the "0-lag time" + * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" + * time already passed, which does not contribute to running_bw anymore. + * +------------------+ + * wakeup | ACTIVE | + * +------------------>+ contending | + * | add_running_bw | | + * | +----+------+------+ + * | | ^ + * | dequeue | | + * +--------+-------+ | | + * | | t >= 0-lag | | wakeup + * | INACTIVE |<---------------+ | + * | | sub_running_bw | | + * +--------+-------+ | | + * ^ | | + * | t < 0-lag | | + * | | | + * | V | + * | +----+------+------+ + * | sub_running_bw | ACTIVE | + * +-------------------+ | + * inactive timer | non contending | + * fired +------------------+ + * + * The task_non_contending() function is invoked when a task + * blocks, and checks if the 0-lag time already passed or + * not (in the first case, it directly updates running_bw; + * in the second case, it arms the inactive timer). + * + * The task_contending() function is invoked when a task wakes + * up, and checks if the task is still in the "ACTIVE non contending" + * state or not (in the second case, it updates running_bw). + */ +static void task_non_contending(struct task_struct *p) +{ + struct sched_dl_entity *dl_se = &p->dl; + struct hrtimer *timer = &dl_se->inactive_timer; + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq); + s64 zerolag_time; + + /* + * If this is a non-deadline task that has been boosted, + * do nothing + */ + if (dl_se->dl_runtime == 0) + return; + + WARN_ON(hrtimer_active(&dl_se->inactive_timer)); + WARN_ON(dl_se->dl_non_contending); + + zerolag_time = dl_se->deadline - + div64_long((dl_se->runtime * dl_se->dl_period), + dl_se->dl_runtime); + + /* + * Using relative times instead of the absolute "0-lag time" + * allows to simplify the code + */ + zerolag_time -= rq_clock(rq); + + /* + * If the "0-lag time" already passed, decrease the active + * utilization now, instead of starting a timer + */ + if (zerolag_time < 0) { + if (dl_task(p)) + sub_running_bw(dl_se->dl_bw, dl_rq); + if (!dl_task(p) || p->state == TASK_DEAD) { + struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + + if (p->state == TASK_DEAD) + sub_rq_bw(p->dl.dl_bw, &rq->dl); + raw_spin_lock(&dl_b->lock); + __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); + __dl_clear_params(p); + raw_spin_unlock(&dl_b->lock); + } + + return; + } + + dl_se->dl_non_contending = 1; + get_task_struct(p); + hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); +} + +static void task_contending(struct sched_dl_entity *dl_se, int flags) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + + /* + * If this is a non-deadline task that has been boosted, + * do nothing + */ + if (dl_se->dl_runtime == 0) + return; + + if (flags & ENQUEUE_MIGRATED) + add_rq_bw(dl_se->dl_bw, dl_rq); + + if (dl_se->dl_non_contending) { + dl_se->dl_non_contending = 0; + /* + * If the timer handler is currently running and the + * timer cannot be cancelled, inactive_task_timer() + * will see that dl_not_contending is not set, and + * will not touch the rq's active utilization, + * so we are still safe. + */ + if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) + put_task_struct(dl_task_of(dl_se)); + } else { + /* + * Since "dl_non_contending" is not set, the + * task's utilization has already been removed from + * active utilization (either when the task blocked, + * when the "inactive timer" fired). + * So, add it back. + */ + add_running_bw(dl_se->dl_bw, dl_rq); + } +} + static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) { struct sched_dl_entity *dl_se = &p->dl; @@ -83,6 +332,10 @@ void init_dl_rq(struct dl_rq *dl_rq) #else init_dl_bw(&dl_rq->dl_bw); #endif + + dl_rq->running_bw = 0; + dl_rq->this_bw = 0; + init_dl_rq_bw_ratio(dl_rq); } #ifdef CONFIG_SMP @@ -484,13 +737,84 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, } /* - * When a -deadline entity is queued back on the runqueue, its runtime and - * deadline might need updating. + * Revised wakeup rule [1]: For self-suspending tasks, rather then + * re-initializing task's runtime and deadline, the revised wakeup + * rule adjusts the task's runtime to avoid the task to overrun its + * density. + * + * Reasoning: a task may overrun the density if: + * runtime / (deadline - t) > dl_runtime / dl_deadline + * + * Therefore, runtime can be adjusted to: + * runtime = (dl_runtime / dl_deadline) * (deadline - t) + * + * In such way that runtime will be equal to the maximum density + * the task can use without breaking any rule. + * + * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant + * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. + */ +static void +update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) +{ + u64 laxity = dl_se->deadline - rq_clock(rq); + + /* + * If the task has deadline < period, and the deadline is in the past, + * it should already be throttled before this check. + * + * See update_dl_entity() comments for further details. + */ + WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); + + dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; +} + +/* + * Regarding the deadline, a task with implicit deadline has a relative + * deadline == relative period. A task with constrained deadline has a + * relative deadline <= relative period. + * + * We support constrained deadline tasks. However, there are some restrictions + * applied only for tasks which do not have an implicit deadline. See + * update_dl_entity() to know more about such restrictions. + * + * The dl_is_implicit() returns true if the task has an implicit deadline. + */ +static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) +{ + return dl_se->dl_deadline == dl_se->dl_period; +} + +/* + * When a deadline entity is placed in the runqueue, its runtime and deadline + * might need to be updated. This is done by a CBS wake up rule. There are two + * different rules: 1) the original CBS; and 2) the Revisited CBS. + * + * When the task is starting a new period, the Original CBS is used. In this + * case, the runtime is replenished and a new absolute deadline is set. + * + * When a task is queued before the begin of the next period, using the + * remaining runtime and deadline could make the entity to overflow, see + * dl_entity_overflow() to find more about runtime overflow. When such case + * is detected, the runtime and deadline need to be updated. + * + * If the task has an implicit deadline, i.e., deadline == period, the Original + * CBS is applied. the runtime is replenished and a new absolute deadline is + * set, as in the previous cases. + * + * However, the Original CBS does not work properly for tasks with + * deadline < period, which are said to have a constrained deadline. By + * applying the Original CBS, a constrained deadline task would be able to run + * runtime/deadline in a period. With deadline < period, the task would + * overrun the runtime/period allowed bandwidth, breaking the admission test. * - * The policy here is that we update the deadline of the entity only if: - * - the current deadline is in the past, - * - using the remaining runtime with the current deadline would make - * the entity exceed its bandwidth. + * In order to prevent this misbehave, the Revisited CBS is used for + * constrained deadline tasks when a runtime overflow is detected. In the + * Revisited CBS, rather than replenishing & setting a new absolute deadline, + * the remaining runtime of the task is reduced to avoid runtime overflow. + * Please refer to the comments update_dl_revised_wakeup() function to find + * more about the Revised CBS rule. */ static void update_dl_entity(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se) @@ -500,6 +824,14 @@ static void update_dl_entity(struct sched_dl_entity *dl_se, if (dl_time_before(dl_se->deadline, rq_clock(rq)) || dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { + + if (unlikely(!dl_is_implicit(dl_se) && + !dl_time_before(dl_se->deadline, rq_clock(rq)) && + !dl_se->dl_boosted)){ + update_dl_revised_wakeup(dl_se, rq); + return; + } + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->runtime = pi_se->dl_runtime; } @@ -593,10 +925,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) * The task might have changed its scheduling policy to something * different than SCHED_DEADLINE (through switched_from_dl()). */ - if (!dl_task(p)) { - __dl_clear_params(p); + if (!dl_task(p)) goto unlock; - } /* * The task might have been boosted by someone else and might be in the @@ -723,6 +1053,8 @@ static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) return; dl_se->dl_throttled = 1; + if (dl_se->runtime > 0) + dl_se->runtime = 0; } } @@ -735,6 +1067,47 @@ int dl_runtime_exceeded(struct sched_dl_entity *dl_se) extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); /* + * This function implements the GRUB accounting rule: + * according to the GRUB reclaiming algorithm, the runtime is + * not decreased as "dq = -dt", but as + * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", + * where u is the utilization of the task, Umax is the maximum reclaimable + * utilization, Uinact is the (per-runqueue) inactive utilization, computed + * as the difference between the "total runqueue utilization" and the + * runqueue active utilization, and Uextra is the (per runqueue) extra + * reclaimable utilization. + * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations + * multiplied by 2^BW_SHIFT, the result has to be shifted right by + * BW_SHIFT. + * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, + * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. + * Since delta is a 64 bit variable, to have an overflow its value + * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. + * So, overflow is not an issue here. + */ +u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) +{ + u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ + u64 u_act; + u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; + + /* + * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, + * we compare u_inact + rq->dl.extra_bw with + * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because + * u_inact + rq->dl.extra_bw can be larger than + * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative + * leading to wrong results) + */ + if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) + u_act = u_act_min; + else + u_act = BW_UNIT - u_inact - rq->dl.extra_bw; + + return (delta * u_act) >> BW_SHIFT; +} + +/* * Update the current task's runtime statistics (provided it is still * a -deadline task and has not been removed from the dl_rq). */ @@ -776,6 +1149,8 @@ static void update_curr_dl(struct rq *rq) sched_rt_avg_update(rq, delta_exec); + if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) + delta_exec = grub_reclaim(delta_exec, rq, &curr->dl); dl_se->runtime -= delta_exec; throttle: @@ -815,6 +1190,56 @@ throttle: } } +static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) +{ + struct sched_dl_entity *dl_se = container_of(timer, + struct sched_dl_entity, + inactive_timer); + struct task_struct *p = dl_task_of(dl_se); + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + + if (!dl_task(p) || p->state == TASK_DEAD) { + struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + + if (p->state == TASK_DEAD && dl_se->dl_non_contending) { + sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); + sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); + dl_se->dl_non_contending = 0; + } + + raw_spin_lock(&dl_b->lock); + __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); + raw_spin_unlock(&dl_b->lock); + __dl_clear_params(p); + + goto unlock; + } + if (dl_se->dl_non_contending == 0) + goto unlock; + + sched_clock_tick(); + update_rq_clock(rq); + + sub_running_bw(dl_se->dl_bw, &rq->dl); + dl_se->dl_non_contending = 0; +unlock: + task_rq_unlock(rq, p, &rf); + put_task_struct(p); + + return HRTIMER_NORESTART; +} + +void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) +{ + struct hrtimer *timer = &dl_se->inactive_timer; + + hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + timer->function = inactive_task_timer; +} + #ifdef CONFIG_SMP static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) @@ -946,10 +1371,12 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, * parameters of the task might need updating. Otherwise, * we want a replenishment of its runtime. */ - if (flags & ENQUEUE_WAKEUP) + if (flags & ENQUEUE_WAKEUP) { + task_contending(dl_se, flags); update_dl_entity(dl_se, pi_se); - else if (flags & ENQUEUE_REPLENISH) + } else if (flags & ENQUEUE_REPLENISH) { replenish_dl_entity(dl_se, pi_se); + } __enqueue_dl_entity(dl_se); } @@ -959,11 +1386,6 @@ static void dequeue_dl_entity(struct sched_dl_entity *dl_se) __dequeue_dl_entity(dl_se); } -static inline bool dl_is_constrained(struct sched_dl_entity *dl_se) -{ - return dl_se->dl_deadline < dl_se->dl_period; -} - static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) { struct task_struct *pi_task = rt_mutex_get_top_task(p); @@ -995,17 +1417,32 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) * If that is the case, the task will be throttled and * the replenishment timer will be set to the next period. */ - if (!p->dl.dl_throttled && dl_is_constrained(&p->dl)) + if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) dl_check_constrained_dl(&p->dl); + if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { + add_rq_bw(p->dl.dl_bw, &rq->dl); + add_running_bw(p->dl.dl_bw, &rq->dl); + } + /* - * If p is throttled, we do nothing. In fact, if it exhausted + * If p is throttled, we do not enqueue it. In fact, if it exhausted * its budget it needs a replenishment and, since it now is on * its rq, the bandwidth timer callback (which clearly has not * run yet) will take care of this. + * However, the active utilization does not depend on the fact + * that the task is on the runqueue or not (but depends on the + * task's state - in GRUB parlance, "inactive" vs "active contending"). + * In other words, even if a task is throttled its utilization must + * be counted in the active utilization; hence, we need to call + * add_running_bw(). */ - if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) + if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { + if (flags & ENQUEUE_WAKEUP) + task_contending(&p->dl, flags); + return; + } enqueue_dl_entity(&p->dl, pi_se, flags); @@ -1023,6 +1460,23 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { update_curr_dl(rq); __dequeue_task_dl(rq, p, flags); + + if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { + sub_running_bw(p->dl.dl_bw, &rq->dl); + sub_rq_bw(p->dl.dl_bw, &rq->dl); + } + + /* + * This check allows to start the inactive timer (or to immediately + * decrease the active utilization, if needed) in two cases: + * when the task blocks and when it is terminating + * (p->state == TASK_DEAD). We can handle the two cases in the same + * way, because from GRUB's point of view the same thing is happening + * (the task moves from "active contending" to "active non contending" + * or "inactive") + */ + if (flags & DEQUEUE_SLEEP) + task_non_contending(p); } /* @@ -1100,6 +1554,37 @@ out: return cpu; } +static void migrate_task_rq_dl(struct task_struct *p) +{ + struct rq *rq; + + if (p->state != TASK_WAKING) + return; + + rq = task_rq(p); + /* + * Since p->state == TASK_WAKING, set_task_cpu() has been called + * from try_to_wake_up(). Hence, p->pi_lock is locked, but + * rq->lock is not... So, lock it + */ + raw_spin_lock(&rq->lock); + if (p->dl.dl_non_contending) { + sub_running_bw(p->dl.dl_bw, &rq->dl); + p->dl.dl_non_contending = 0; + /* + * If the timer handler is currently running and the + * timer cannot be cancelled, inactive_task_timer() + * will see that dl_not_contending is not set, and + * will not touch the rq's active utilization, + * so we are still safe. + */ + if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) + put_task_struct(p); + } + sub_rq_bw(p->dl.dl_bw, &rq->dl); + raw_spin_unlock(&rq->lock); +} + static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) { /* @@ -1255,19 +1740,6 @@ static void task_fork_dl(struct task_struct *p) */ } -static void task_dead_dl(struct task_struct *p) -{ - struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); - - /* - * Since we are TASK_DEAD we won't slip out of the domain! - */ - raw_spin_lock_irq(&dl_b->lock); - /* XXX we should retain the bw until 0-lag */ - dl_b->total_bw -= p->dl.dl_bw; - raw_spin_unlock_irq(&dl_b->lock); -} - static void set_curr_task_dl(struct rq *rq) { struct task_struct *p = rq->curr; @@ -1533,7 +2005,7 @@ retry: * then possible that next_task has migrated. */ task = pick_next_pushable_dl_task(rq); - if (task_cpu(next_task) == rq->cpu && task == next_task) { + if (task == next_task) { /* * The task is still there. We don't try * again, some other cpu will pull it when ready. @@ -1551,7 +2023,11 @@ retry: } deactivate_task(rq, next_task, 0); + sub_running_bw(next_task->dl.dl_bw, &rq->dl); + sub_rq_bw(next_task->dl.dl_bw, &rq->dl); set_task_cpu(next_task, later_rq->cpu); + add_rq_bw(next_task->dl.dl_bw, &later_rq->dl); + add_running_bw(next_task->dl.dl_bw, &later_rq->dl); activate_task(later_rq, next_task, 0); ret = 1; @@ -1639,7 +2115,11 @@ static void pull_dl_task(struct rq *this_rq) resched = true; deactivate_task(src_rq, p, 0); + sub_running_bw(p->dl.dl_bw, &src_rq->dl); + sub_rq_bw(p->dl.dl_bw, &src_rq->dl); set_task_cpu(p, this_cpu); + add_rq_bw(p->dl.dl_bw, &this_rq->dl); + add_running_bw(p->dl.dl_bw, &this_rq->dl); activate_task(this_rq, p, 0); dmin = p->dl.deadline; @@ -1695,7 +2175,7 @@ static void set_cpus_allowed_dl(struct task_struct *p, * until we complete the update. */ raw_spin_lock(&src_dl_b->lock); - __dl_clear(src_dl_b, p->dl.dl_bw); + __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); raw_spin_unlock(&src_dl_b->lock); } @@ -1737,13 +2217,26 @@ void __init init_sched_dl_class(void) static void switched_from_dl(struct rq *rq, struct task_struct *p) { /* - * Start the deadline timer; if we switch back to dl before this we'll - * continue consuming our current CBS slice. If we stay outside of - * SCHED_DEADLINE until the deadline passes, the timer will reset the - * task. + * task_non_contending() can start the "inactive timer" (if the 0-lag + * time is in the future). If the task switches back to dl before + * the "inactive timer" fires, it can continue to consume its current + * runtime using its current deadline. If it stays outside of + * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() + * will reset the task parameters. */ - if (!start_dl_timer(p)) - __dl_clear_params(p); + if (task_on_rq_queued(p) && p->dl.dl_runtime) + task_non_contending(p); + + if (!task_on_rq_queued(p)) + sub_rq_bw(p->dl.dl_bw, &rq->dl); + + /* + * We cannot use inactive_task_timer() to invoke sub_running_bw() + * at the 0-lag time, because the task could have been migrated + * while SCHED_OTHER in the meanwhile. + */ + if (p->dl.dl_non_contending) + p->dl.dl_non_contending = 0; /* * Since this might be the only -deadline task on the rq, @@ -1762,11 +2255,15 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p) */ static void switched_to_dl(struct rq *rq, struct task_struct *p) { + if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) + put_task_struct(p); /* If p is not queued we will update its parameters at next wakeup. */ - if (!task_on_rq_queued(p)) - return; + if (!task_on_rq_queued(p)) { + add_rq_bw(p->dl.dl_bw, &rq->dl); + return; + } /* * If p is boosted we already updated its params in * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH), @@ -1836,6 +2333,7 @@ const struct sched_class dl_sched_class = { #ifdef CONFIG_SMP .select_task_rq = select_task_rq_dl, + .migrate_task_rq = migrate_task_rq_dl, .set_cpus_allowed = set_cpus_allowed_dl, .rq_online = rq_online_dl, .rq_offline = rq_offline_dl, @@ -1845,7 +2343,6 @@ const struct sched_class dl_sched_class = { .set_curr_task = set_curr_task_dl, .task_tick = task_tick_dl, .task_fork = task_fork_dl, - .task_dead = task_dead_dl, .prio_changed = prio_changed_dl, .switched_from = switched_from_dl, @@ -1854,6 +2351,317 @@ const struct sched_class dl_sched_class = { .update_curr = update_curr_dl, }; +int sched_dl_global_validate(void) +{ + u64 runtime = global_rt_runtime(); + u64 period = global_rt_period(); + u64 new_bw = to_ratio(period, runtime); + struct dl_bw *dl_b; + int cpu, ret = 0; + unsigned long flags; + + /* + * Here we want to check the bandwidth not being set to some + * value smaller than the currently allocated bandwidth in + * any of the root_domains. + * + * FIXME: Cycling on all the CPUs is overdoing, but simpler than + * cycling on root_domains... Discussion on different/better + * solutions is welcome! + */ + for_each_possible_cpu(cpu) { + rcu_read_lock_sched(); + dl_b = dl_bw_of(cpu); + + raw_spin_lock_irqsave(&dl_b->lock, flags); + if (new_bw < dl_b->total_bw) + ret = -EBUSY; + raw_spin_unlock_irqrestore(&dl_b->lock, flags); + + rcu_read_unlock_sched(); + + if (ret) + break; + } + + return ret; +} + +void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) +{ + if (global_rt_runtime() == RUNTIME_INF) { + dl_rq->bw_ratio = 1 << RATIO_SHIFT; + dl_rq->extra_bw = 1 << BW_SHIFT; + } else { + dl_rq->bw_ratio = to_ratio(global_rt_runtime(), + global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); + dl_rq->extra_bw = to_ratio(global_rt_period(), + global_rt_runtime()); + } +} + +void sched_dl_do_global(void) +{ + u64 new_bw = -1; + struct dl_bw *dl_b; + int cpu; + unsigned long flags; + + def_dl_bandwidth.dl_period = global_rt_period(); + def_dl_bandwidth.dl_runtime = global_rt_runtime(); + + if (global_rt_runtime() != RUNTIME_INF) + new_bw = to_ratio(global_rt_period(), global_rt_runtime()); + + /* + * FIXME: As above... + */ + for_each_possible_cpu(cpu) { + rcu_read_lock_sched(); + dl_b = dl_bw_of(cpu); + + raw_spin_lock_irqsave(&dl_b->lock, flags); + dl_b->bw = new_bw; + raw_spin_unlock_irqrestore(&dl_b->lock, flags); + + rcu_read_unlock_sched(); + init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); + } +} + +/* + * We must be sure that accepting a new task (or allowing changing the + * parameters of an existing one) is consistent with the bandwidth + * constraints. If yes, this function also accordingly updates the currently + * allocated bandwidth to reflect the new situation. + * + * This function is called while holding p's rq->lock. + */ +int sched_dl_overflow(struct task_struct *p, int policy, + const struct sched_attr *attr) +{ + struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + u64 period = attr->sched_period ?: attr->sched_deadline; + u64 runtime = attr->sched_runtime; + u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; + int cpus, err = -1; + + /* !deadline task may carry old deadline bandwidth */ + if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) + return 0; + + /* + * Either if a task, enters, leave, or stays -deadline but changes + * its parameters, we may need to update accordingly the total + * allocated bandwidth of the container. + */ + raw_spin_lock(&dl_b->lock); + cpus = dl_bw_cpus(task_cpu(p)); + if (dl_policy(policy) && !task_has_dl_policy(p) && + !__dl_overflow(dl_b, cpus, 0, new_bw)) { + if (hrtimer_active(&p->dl.inactive_timer)) + __dl_clear(dl_b, p->dl.dl_bw, cpus); + __dl_add(dl_b, new_bw, cpus); + err = 0; + } else if (dl_policy(policy) && task_has_dl_policy(p) && + !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { + /* + * XXX this is slightly incorrect: when the task + * utilization decreases, we should delay the total + * utilization change until the task's 0-lag point. + * But this would require to set the task's "inactive + * timer" when the task is not inactive. + */ + __dl_clear(dl_b, p->dl.dl_bw, cpus); + __dl_add(dl_b, new_bw, cpus); + dl_change_utilization(p, new_bw); + err = 0; + } else if (!dl_policy(policy) && task_has_dl_policy(p)) { + /* + * Do not decrease the total deadline utilization here, + * switched_from_dl() will take care to do it at the correct + * (0-lag) time. + */ + err = 0; + } + raw_spin_unlock(&dl_b->lock); + + return err; +} + +/* + * This function initializes the sched_dl_entity of a newly becoming + * SCHED_DEADLINE task. + * + * Only the static values are considered here, the actual runtime and the + * absolute deadline will be properly calculated when the task is enqueued + * for the first time with its new policy. + */ +void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) +{ + struct sched_dl_entity *dl_se = &p->dl; + + dl_se->dl_runtime = attr->sched_runtime; + dl_se->dl_deadline = attr->sched_deadline; + dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; + dl_se->flags = attr->sched_flags; + dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); + dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); +} + +void __getparam_dl(struct task_struct *p, struct sched_attr *attr) +{ + struct sched_dl_entity *dl_se = &p->dl; + + attr->sched_priority = p->rt_priority; + attr->sched_runtime = dl_se->dl_runtime; + attr->sched_deadline = dl_se->dl_deadline; + attr->sched_period = dl_se->dl_period; + attr->sched_flags = dl_se->flags; +} + +/* + * This function validates the new parameters of a -deadline task. + * We ask for the deadline not being zero, and greater or equal + * than the runtime, as well as the period of being zero or + * greater than deadline. Furthermore, we have to be sure that + * user parameters are above the internal resolution of 1us (we + * check sched_runtime only since it is always the smaller one) and + * below 2^63 ns (we have to check both sched_deadline and + * sched_period, as the latter can be zero). + */ +bool __checkparam_dl(const struct sched_attr *attr) +{ + /* deadline != 0 */ + if (attr->sched_deadline == 0) + return false; + + /* + * Since we truncate DL_SCALE bits, make sure we're at least + * that big. + */ + if (attr->sched_runtime < (1ULL << DL_SCALE)) + return false; + + /* + * Since we use the MSB for wrap-around and sign issues, make + * sure it's not set (mind that period can be equal to zero). + */ + if (attr->sched_deadline & (1ULL << 63) || + attr->sched_period & (1ULL << 63)) + return false; + + /* runtime <= deadline <= period (if period != 0) */ + if ((attr->sched_period != 0 && + attr->sched_period < attr->sched_deadline) || + attr->sched_deadline < attr->sched_runtime) + return false; + + return true; +} + +/* + * This function clears the sched_dl_entity static params. + */ +void __dl_clear_params(struct task_struct *p) +{ + struct sched_dl_entity *dl_se = &p->dl; + + dl_se->dl_runtime = 0; + dl_se->dl_deadline = 0; + dl_se->dl_period = 0; + dl_se->flags = 0; + dl_se->dl_bw = 0; + dl_se->dl_density = 0; + + dl_se->dl_throttled = 0; + dl_se->dl_yielded = 0; + dl_se->dl_non_contending = 0; +} + +bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) +{ + struct sched_dl_entity *dl_se = &p->dl; + + if (dl_se->dl_runtime != attr->sched_runtime || + dl_se->dl_deadline != attr->sched_deadline || + dl_se->dl_period != attr->sched_period || + dl_se->flags != attr->sched_flags) + return true; + + return false; +} + +#ifdef CONFIG_SMP +int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) +{ + unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, + cs_cpus_allowed); + struct dl_bw *dl_b; + bool overflow; + int cpus, ret; + unsigned long flags; + + rcu_read_lock_sched(); + dl_b = dl_bw_of(dest_cpu); + raw_spin_lock_irqsave(&dl_b->lock, flags); + cpus = dl_bw_cpus(dest_cpu); + overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); + if (overflow) + ret = -EBUSY; + else { + /* + * We reserve space for this task in the destination + * root_domain, as we can't fail after this point. + * We will free resources in the source root_domain + * later on (see set_cpus_allowed_dl()). + */ + __dl_add(dl_b, p->dl.dl_bw, cpus); + ret = 0; + } + raw_spin_unlock_irqrestore(&dl_b->lock, flags); + rcu_read_unlock_sched(); + return ret; +} + +int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, + const struct cpumask *trial) +{ + int ret = 1, trial_cpus; + struct dl_bw *cur_dl_b; + unsigned long flags; + + rcu_read_lock_sched(); + cur_dl_b = dl_bw_of(cpumask_any(cur)); + trial_cpus = cpumask_weight(trial); + + raw_spin_lock_irqsave(&cur_dl_b->lock, flags); + if (cur_dl_b->bw != -1 && + cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) + ret = 0; + raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); + rcu_read_unlock_sched(); + return ret; +} + +bool dl_cpu_busy(unsigned int cpu) +{ + unsigned long flags; + struct dl_bw *dl_b; + bool overflow; + int cpus; + + rcu_read_lock_sched(); + dl_b = dl_bw_of(cpu); + raw_spin_lock_irqsave(&dl_b->lock, flags); + cpus = dl_bw_cpus(cpu); + overflow = __dl_overflow(dl_b, cpus, 0, 0); + raw_spin_unlock_irqrestore(&dl_b->lock, flags); + rcu_read_unlock_sched(); + return overflow; +} +#endif + #ifdef CONFIG_SCHED_DEBUG extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 38f019324f1a..4fa66de52bd6 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -552,15 +552,21 @@ void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) +#define PU(x) \ + SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) - P(rt_nr_running); + PU(rt_nr_running); +#ifdef CONFIG_SMP + PU(rt_nr_migratory); +#endif P(rt_throttled); PN(rt_time); PN(rt_runtime); #undef PN +#undef PU #undef P } @@ -569,14 +575,21 @@ void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) struct dl_bw *dl_bw; SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); - SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); + +#define PU(x) \ + SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) + + PU(dl_nr_running); #ifdef CONFIG_SMP + PU(dl_nr_migratory); dl_bw = &cpu_rq(cpu)->rd->dl_bw; #else dl_bw = &dl_rq->dl_bw; #endif SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); + +#undef PU } extern __read_mostly int sched_clock_running; diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index c77e4b1d51c0..008c514dc241 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -369,8 +369,9 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) } /* Iterate thr' all leaf cfs_rq's on a runqueue */ -#define for_each_leaf_cfs_rq(rq, cfs_rq) \ - list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) +#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ + list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ + leaf_cfs_rq_list) /* Do the two (enqueued) entities belong to the same group ? */ static inline struct cfs_rq * @@ -463,8 +464,8 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) { } -#define for_each_leaf_cfs_rq(rq, cfs_rq) \ - for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) +#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ + for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) static inline struct sched_entity *parent_entity(struct sched_entity *se) { @@ -1381,7 +1382,6 @@ static unsigned long weighted_cpuload(const int cpu); static unsigned long source_load(int cpu, int type); static unsigned long target_load(int cpu, int type); static unsigned long capacity_of(int cpu); -static long effective_load(struct task_group *tg, int cpu, long wl, long wg); /* Cached statistics for all CPUs within a node */ struct numa_stats { @@ -2469,7 +2469,8 @@ void task_numa_work(struct callback_head *work) return; - down_read(&mm->mmap_sem); + if (!down_read_trylock(&mm->mmap_sem)) + return; vma = find_vma(mm, start); if (!vma) { reset_ptenuma_scan(p); @@ -2584,6 +2585,60 @@ void task_tick_numa(struct rq *rq, struct task_struct *curr) } } } + +/* + * Can a task be moved from prev_cpu to this_cpu without causing a load + * imbalance that would trigger the load balancer? + */ +static inline bool numa_wake_affine(struct sched_domain *sd, + struct task_struct *p, int this_cpu, + int prev_cpu, int sync) +{ + struct numa_stats prev_load, this_load; + s64 this_eff_load, prev_eff_load; + + update_numa_stats(&prev_load, cpu_to_node(prev_cpu)); + update_numa_stats(&this_load, cpu_to_node(this_cpu)); + + /* + * If sync wakeup then subtract the (maximum possible) + * effect of the currently running task from the load + * of the current CPU: + */ + if (sync) { + unsigned long current_load = task_h_load(current); + + if (this_load.load > current_load) + this_load.load -= current_load; + else + this_load.load = 0; + } + + /* + * In low-load situations, where this_cpu's node is idle due to the + * sync cause above having dropped this_load.load to 0, move the task. + * Moving to an idle socket will not create a bad imbalance. + * + * Otherwise check if the nodes are near enough in load to allow this + * task to be woken on this_cpu's node. + */ + if (this_load.load > 0) { + unsigned long task_load = task_h_load(p); + + this_eff_load = 100; + this_eff_load *= prev_load.compute_capacity; + + prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; + prev_eff_load *= this_load.compute_capacity; + + this_eff_load *= this_load.load + task_load; + prev_eff_load *= prev_load.load - task_load; + + return this_eff_load <= prev_eff_load; + } + + return true; +} #else static void task_tick_numa(struct rq *rq, struct task_struct *curr) { @@ -2596,6 +2651,15 @@ static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) { } + +#ifdef CONFIG_SMP +static inline bool numa_wake_affine(struct sched_domain *sd, + struct task_struct *p, int this_cpu, + int prev_cpu, int sync) +{ + return true; +} +#endif /* !SMP */ #endif /* CONFIG_NUMA_BALANCING */ static void @@ -2916,12 +2980,12 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa, /* * Step 2: update *_avg. */ - sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); + sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); if (cfs_rq) { cfs_rq->runnable_load_avg = - div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); + div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); } - sa->util_avg = sa->util_sum / LOAD_AVG_MAX; + sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib); return 1; } @@ -2982,8 +3046,7 @@ __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) * differential update where we store the last value we propagated. This in * turn allows skipping updates if the differential is 'small'. * - * Updating tg's load_avg is necessary before update_cfs_share() (which is - * done) and effective_load() (which is not done because it is too costly). + * Updating tg's load_avg is necessary before update_cfs_share(). */ static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) { @@ -4642,24 +4705,43 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) hrtimer_cancel(&cfs_b->slack_timer); } +/* + * Both these cpu hotplug callbacks race against unregister_fair_sched_group() + * + * The race is harmless, since modifying bandwidth settings of unhooked group + * bits doesn't do much. + */ + +/* cpu online calback */ static void __maybe_unused update_runtime_enabled(struct rq *rq) { - struct cfs_rq *cfs_rq; + struct task_group *tg; - for_each_leaf_cfs_rq(rq, cfs_rq) { - struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; + lockdep_assert_held(&rq->lock); + + rcu_read_lock(); + list_for_each_entry_rcu(tg, &task_groups, list) { + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; raw_spin_lock(&cfs_b->lock); cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; raw_spin_unlock(&cfs_b->lock); } + rcu_read_unlock(); } +/* cpu offline callback */ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) { - struct cfs_rq *cfs_rq; + struct task_group *tg; + + lockdep_assert_held(&rq->lock); + + rcu_read_lock(); + list_for_each_entry_rcu(tg, &task_groups, list) { + struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; - for_each_leaf_cfs_rq(rq, cfs_rq) { if (!cfs_rq->runtime_enabled) continue; @@ -4677,6 +4759,7 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) if (cfs_rq_throttled(cfs_rq)) unthrottle_cfs_rq(cfs_rq); } + rcu_read_unlock(); } #else /* CONFIG_CFS_BANDWIDTH */ @@ -5215,126 +5298,6 @@ static unsigned long cpu_avg_load_per_task(int cpu) return 0; } -#ifdef CONFIG_FAIR_GROUP_SCHED -/* - * effective_load() calculates the load change as seen from the root_task_group - * - * Adding load to a group doesn't make a group heavier, but can cause movement - * of group shares between cpus. Assuming the shares were perfectly aligned one - * can calculate the shift in shares. - * - * Calculate the effective load difference if @wl is added (subtracted) to @tg - * on this @cpu and results in a total addition (subtraction) of @wg to the - * total group weight. - * - * Given a runqueue weight distribution (rw_i) we can compute a shares - * distribution (s_i) using: - * - * s_i = rw_i / \Sum rw_j (1) - * - * Suppose we have 4 CPUs and our @tg is a direct child of the root group and - * has 7 equal weight tasks, distributed as below (rw_i), with the resulting - * shares distribution (s_i): - * - * rw_i = { 2, 4, 1, 0 } - * s_i = { 2/7, 4/7, 1/7, 0 } - * - * As per wake_affine() we're interested in the load of two CPUs (the CPU the - * task used to run on and the CPU the waker is running on), we need to - * compute the effect of waking a task on either CPU and, in case of a sync - * wakeup, compute the effect of the current task going to sleep. - * - * So for a change of @wl to the local @cpu with an overall group weight change - * of @wl we can compute the new shares distribution (s'_i) using: - * - * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) - * - * Suppose we're interested in CPUs 0 and 1, and want to compute the load - * differences in waking a task to CPU 0. The additional task changes the - * weight and shares distributions like: - * - * rw'_i = { 3, 4, 1, 0 } - * s'_i = { 3/8, 4/8, 1/8, 0 } - * - * We can then compute the difference in effective weight by using: - * - * dw_i = S * (s'_i - s_i) (3) - * - * Where 'S' is the group weight as seen by its parent. - * - * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) - * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - - * 4/7) times the weight of the group. - */ -static long effective_load(struct task_group *tg, int cpu, long wl, long wg) -{ - struct sched_entity *se = tg->se[cpu]; - - if (!tg->parent) /* the trivial, non-cgroup case */ - return wl; - - for_each_sched_entity(se) { - struct cfs_rq *cfs_rq = se->my_q; - long W, w = cfs_rq_load_avg(cfs_rq); - - tg = cfs_rq->tg; - - /* - * W = @wg + \Sum rw_j - */ - W = wg + atomic_long_read(&tg->load_avg); - - /* Ensure \Sum rw_j >= rw_i */ - W -= cfs_rq->tg_load_avg_contrib; - W += w; - - /* - * w = rw_i + @wl - */ - w += wl; - - /* - * wl = S * s'_i; see (2) - */ - if (W > 0 && w < W) - wl = (w * (long)scale_load_down(tg->shares)) / W; - else - wl = scale_load_down(tg->shares); - - /* - * Per the above, wl is the new se->load.weight value; since - * those are clipped to [MIN_SHARES, ...) do so now. See - * calc_cfs_shares(). - */ - if (wl < MIN_SHARES) - wl = MIN_SHARES; - - /* - * wl = dw_i = S * (s'_i - s_i); see (3) - */ - wl -= se->avg.load_avg; - - /* - * Recursively apply this logic to all parent groups to compute - * the final effective load change on the root group. Since - * only the @tg group gets extra weight, all parent groups can - * only redistribute existing shares. @wl is the shift in shares - * resulting from this level per the above. - */ - wg = 0; - } - - return wl; -} -#else - -static long effective_load(struct task_group *tg, int cpu, long wl, long wg) -{ - return wl; -} - -#endif - static void record_wakee(struct task_struct *p) { /* @@ -5385,67 +5348,25 @@ static int wake_wide(struct task_struct *p) static int wake_affine(struct sched_domain *sd, struct task_struct *p, int prev_cpu, int sync) { - s64 this_load, load; - s64 this_eff_load, prev_eff_load; - int idx, this_cpu; - struct task_group *tg; - unsigned long weight; - int balanced; - - idx = sd->wake_idx; - this_cpu = smp_processor_id(); - load = source_load(prev_cpu, idx); - this_load = target_load(this_cpu, idx); - - /* - * If sync wakeup then subtract the (maximum possible) - * effect of the currently running task from the load - * of the current CPU: - */ - if (sync) { - tg = task_group(current); - weight = current->se.avg.load_avg; - - this_load += effective_load(tg, this_cpu, -weight, -weight); - load += effective_load(tg, prev_cpu, 0, -weight); - } - - tg = task_group(p); - weight = p->se.avg.load_avg; + int this_cpu = smp_processor_id(); + bool affine = false; /* - * In low-load situations, where prev_cpu is idle and this_cpu is idle - * due to the sync cause above having dropped this_load to 0, we'll - * always have an imbalance, but there's really nothing you can do - * about that, so that's good too. - * - * Otherwise check if either cpus are near enough in load to allow this - * task to be woken on this_cpu. + * Common case: CPUs are in the same socket, and select_idle_sibling() + * will do its thing regardless of what we return: */ - this_eff_load = 100; - this_eff_load *= capacity_of(prev_cpu); - - prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; - prev_eff_load *= capacity_of(this_cpu); - - if (this_load > 0) { - this_eff_load *= this_load + - effective_load(tg, this_cpu, weight, weight); - - prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); - } - - balanced = this_eff_load <= prev_eff_load; + if (cpus_share_cache(prev_cpu, this_cpu)) + affine = true; + else + affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync); schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); + if (affine) { + schedstat_inc(sd->ttwu_move_affine); + schedstat_inc(p->se.statistics.nr_wakeups_affine); + } - if (!balanced) - return 0; - - schedstat_inc(sd->ttwu_move_affine); - schedstat_inc(p->se.statistics.nr_wakeups_affine); - - return 1; + return affine; } static inline int task_util(struct task_struct *p); @@ -5484,12 +5405,12 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int i; /* Skip over this group if it has no CPUs allowed */ - if (!cpumask_intersects(sched_group_cpus(group), + if (!cpumask_intersects(sched_group_span(group), &p->cpus_allowed)) continue; local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); + sched_group_span(group)); /* * Tally up the load of all CPUs in the group and find @@ -5499,7 +5420,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, runnable_load = 0; max_spare_cap = 0; - for_each_cpu(i, sched_group_cpus(group)) { + for_each_cpu(i, sched_group_span(group)) { /* Bias balancing toward cpus of our domain */ if (local_group) load = source_load(i, load_idx); @@ -5602,10 +5523,10 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) /* Check if we have any choice: */ if (group->group_weight == 1) - return cpumask_first(sched_group_cpus(group)); + return cpumask_first(sched_group_span(group)); /* Traverse only the allowed CPUs */ - for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { + for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { if (idle_cpu(i)) { struct rq *rq = cpu_rq(i); struct cpuidle_state *idle = idle_get_state(rq); @@ -5640,43 +5561,6 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; } -/* - * Implement a for_each_cpu() variant that starts the scan at a given cpu - * (@start), and wraps around. - * - * This is used to scan for idle CPUs; such that not all CPUs looking for an - * idle CPU find the same CPU. The down-side is that tasks tend to cycle - * through the LLC domain. - * - * Especially tbench is found sensitive to this. - */ - -static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped) -{ - int next; - -again: - next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1); - - if (*wrapped) { - if (next >= start) - return nr_cpumask_bits; - } else { - if (next >= nr_cpumask_bits) { - *wrapped = 1; - n = -1; - goto again; - } - } - - return next; -} - -#define for_each_cpu_wrap(cpu, mask, start, wrap) \ - for ((wrap) = 0, (cpu) = (start)-1; \ - (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \ - (cpu) < nr_cpumask_bits; ) - #ifdef CONFIG_SCHED_SMT static inline void set_idle_cores(int cpu, int val) @@ -5736,7 +5620,7 @@ unlock: static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) { struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); - int core, cpu, wrap; + int core, cpu; if (!static_branch_likely(&sched_smt_present)) return -1; @@ -5746,7 +5630,7 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); - for_each_cpu_wrap(core, cpus, target, wrap) { + for_each_cpu_wrap(core, cpus, target) { bool idle = true; for_each_cpu(cpu, cpu_smt_mask(core)) { @@ -5809,27 +5693,38 @@ static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) { struct sched_domain *this_sd; - u64 avg_cost, avg_idle = this_rq()->avg_idle; + u64 avg_cost, avg_idle; u64 time, cost; s64 delta; - int cpu, wrap; + int cpu, nr = INT_MAX; this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); if (!this_sd) return -1; - avg_cost = this_sd->avg_scan_cost; - /* * Due to large variance we need a large fuzz factor; hackbench in * particularly is sensitive here. */ - if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost) + avg_idle = this_rq()->avg_idle / 512; + avg_cost = this_sd->avg_scan_cost + 1; + + if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) return -1; + if (sched_feat(SIS_PROP)) { + u64 span_avg = sd->span_weight * avg_idle; + if (span_avg > 4*avg_cost) + nr = div_u64(span_avg, avg_cost); + else + nr = 4; + } + time = local_clock(); - for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) { + for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { + if (!--nr) + return -1; if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) continue; if (idle_cpu(cpu)) @@ -6011,11 +5906,15 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f if (affine_sd) { sd = NULL; /* Prefer wake_affine over balance flags */ - if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync)) + if (cpu == prev_cpu) + goto pick_cpu; + + if (wake_affine(affine_sd, p, prev_cpu, sync)) new_cpu = cpu; } if (!sd) { + pick_cpu: if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); @@ -6168,8 +6067,11 @@ static void set_last_buddy(struct sched_entity *se) if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) return; - for_each_sched_entity(se) + for_each_sched_entity(se) { + if (SCHED_WARN_ON(!se->on_rq)) + return; cfs_rq_of(se)->last = se; + } } static void set_next_buddy(struct sched_entity *se) @@ -6177,8 +6079,11 @@ static void set_next_buddy(struct sched_entity *se) if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) return; - for_each_sched_entity(se) + for_each_sched_entity(se) { + if (SCHED_WARN_ON(!se->on_rq)) + return; cfs_rq_of(se)->next = se; + } } static void set_skip_buddy(struct sched_entity *se) @@ -6686,6 +6591,10 @@ static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) if (dst_nid == p->numa_preferred_nid) return 0; + /* Leaving a core idle is often worse than degrading locality. */ + if (env->idle != CPU_NOT_IDLE) + return -1; + if (numa_group) { src_faults = group_faults(p, src_nid); dst_faults = group_faults(p, dst_nid); @@ -6970,10 +6879,28 @@ static void attach_tasks(struct lb_env *env) } #ifdef CONFIG_FAIR_GROUP_SCHED + +static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) +{ + if (cfs_rq->load.weight) + return false; + + if (cfs_rq->avg.load_sum) + return false; + + if (cfs_rq->avg.util_sum) + return false; + + if (cfs_rq->runnable_load_sum) + return false; + + return true; +} + static void update_blocked_averages(int cpu) { struct rq *rq = cpu_rq(cpu); - struct cfs_rq *cfs_rq; + struct cfs_rq *cfs_rq, *pos; struct rq_flags rf; rq_lock_irqsave(rq, &rf); @@ -6983,7 +6910,7 @@ static void update_blocked_averages(int cpu) * Iterates the task_group tree in a bottom up fashion, see * list_add_leaf_cfs_rq() for details. */ - for_each_leaf_cfs_rq(rq, cfs_rq) { + for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { struct sched_entity *se; /* throttled entities do not contribute to load */ @@ -6997,6 +6924,13 @@ static void update_blocked_averages(int cpu) se = cfs_rq->tg->se[cpu]; if (se && !skip_blocked_update(se)) update_load_avg(se, 0); + + /* + * There can be a lot of idle CPU cgroups. Don't let fully + * decayed cfs_rqs linger on the list. + */ + if (cfs_rq_is_decayed(cfs_rq)) + list_del_leaf_cfs_rq(cfs_rq); } rq_unlock_irqrestore(rq, &rf); } @@ -7229,7 +7163,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu) * span the current group. */ - for_each_cpu(cpu, sched_group_cpus(sdg)) { + for_each_cpu(cpu, sched_group_span(sdg)) { struct sched_group_capacity *sgc; struct rq *rq = cpu_rq(cpu); @@ -7408,7 +7342,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, memset(sgs, 0, sizeof(*sgs)); - for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { + for_each_cpu_and(i, sched_group_span(group), env->cpus) { struct rq *rq = cpu_rq(i); /* Bias balancing toward cpus of our domain */ @@ -7572,7 +7506,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd struct sg_lb_stats *sgs = &tmp_sgs; int local_group; - local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); + local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); if (local_group) { sds->local = sg; sgs = local; @@ -7927,7 +7861,7 @@ static struct rq *find_busiest_queue(struct lb_env *env, unsigned long busiest_load = 0, busiest_capacity = 1; int i; - for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { + for_each_cpu_and(i, sched_group_span(group), env->cpus) { unsigned long capacity, wl; enum fbq_type rt; @@ -8033,7 +7967,6 @@ static int active_load_balance_cpu_stop(void *data); static int should_we_balance(struct lb_env *env) { struct sched_group *sg = env->sd->groups; - struct cpumask *sg_cpus, *sg_mask; int cpu, balance_cpu = -1; /* @@ -8043,11 +7976,9 @@ static int should_we_balance(struct lb_env *env) if (env->idle == CPU_NEWLY_IDLE) return 1; - sg_cpus = sched_group_cpus(sg); - sg_mask = sched_group_mask(sg); /* Try to find first idle cpu */ - for_each_cpu_and(cpu, sg_cpus, env->cpus) { - if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) + for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { + if (!idle_cpu(cpu)) continue; balance_cpu = cpu; @@ -8083,7 +8014,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, .sd = sd, .dst_cpu = this_cpu, .dst_rq = this_rq, - .dst_grpmask = sched_group_cpus(sd->groups), + .dst_grpmask = sched_group_span(sd->groups), .idle = idle, .loop_break = sched_nr_migrate_break, .cpus = cpus, @@ -8659,6 +8590,10 @@ void nohz_balance_enter_idle(int cpu) if (!cpu_active(cpu)) return; + /* Spare idle load balancing on CPUs that don't want to be disturbed: */ + if (!is_housekeeping_cpu(cpu)) + return; + if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) return; @@ -9523,10 +9458,10 @@ const struct sched_class fair_sched_class = { #ifdef CONFIG_SCHED_DEBUG void print_cfs_stats(struct seq_file *m, int cpu) { - struct cfs_rq *cfs_rq; + struct cfs_rq *cfs_rq, *pos; rcu_read_lock(); - for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) + for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) print_cfs_rq(m, cpu, cfs_rq); rcu_read_unlock(); } diff --git a/kernel/sched/features.h b/kernel/sched/features.h index 11192e0cb122..d3fb15555291 100644 --- a/kernel/sched/features.h +++ b/kernel/sched/features.h @@ -55,6 +55,7 @@ SCHED_FEAT(TTWU_QUEUE, true) * When doing wakeups, attempt to limit superfluous scans of the LLC domain. */ SCHED_FEAT(SIS_AVG_CPU, false) +SCHED_FEAT(SIS_PROP, true) /* * Issue a WARN when we do multiple update_rq_clock() calls @@ -76,7 +77,6 @@ SCHED_FEAT(WARN_DOUBLE_CLOCK, false) SCHED_FEAT(RT_PUSH_IPI, true) #endif -SCHED_FEAT(FORCE_SD_OVERLAP, false) SCHED_FEAT(RT_RUNTIME_SHARE, true) SCHED_FEAT(LB_MIN, false) SCHED_FEAT(ATTACH_AGE_LOAD, true) diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c index ef63adce0c9c..6c23e30c0e5c 100644 --- a/kernel/sched/idle.c +++ b/kernel/sched/idle.c @@ -219,6 +219,7 @@ static void do_idle(void) */ __current_set_polling(); + quiet_vmstat(); tick_nohz_idle_enter(); while (!need_resched()) { diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c index f15fb2bdbc0d..f14716a3522f 100644 --- a/kernel/sched/loadavg.c +++ b/kernel/sched/loadavg.c @@ -117,7 +117,7 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) * load-average relies on per-cpu sampling from the tick, it is affected by * NO_HZ. * - * The basic idea is to fold the nr_active delta into a global idle-delta upon + * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon * entering NO_HZ state such that we can include this as an 'extra' cpu delta * when we read the global state. * @@ -126,7 +126,7 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) * - When we go NO_HZ idle during the window, we can negate our sample * contribution, causing under-accounting. * - * We avoid this by keeping two idle-delta counters and flipping them + * We avoid this by keeping two NO_HZ-delta counters and flipping them * when the window starts, thus separating old and new NO_HZ load. * * The only trick is the slight shift in index flip for read vs write. @@ -137,22 +137,22 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) * r:0 0 1 1 0 0 1 1 0 * w:0 1 1 0 0 1 1 0 0 * - * This ensures we'll fold the old idle contribution in this window while + * This ensures we'll fold the old NO_HZ contribution in this window while * accumlating the new one. * - * - When we wake up from NO_HZ idle during the window, we push up our + * - When we wake up from NO_HZ during the window, we push up our * contribution, since we effectively move our sample point to a known * busy state. * * This is solved by pushing the window forward, and thus skipping the - * sample, for this cpu (effectively using the idle-delta for this cpu which + * sample, for this cpu (effectively using the NO_HZ-delta for this cpu which * was in effect at the time the window opened). This also solves the issue - * of having to deal with a cpu having been in NOHZ idle for multiple - * LOAD_FREQ intervals. + * of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ + * intervals. * * When making the ILB scale, we should try to pull this in as well. */ -static atomic_long_t calc_load_idle[2]; +static atomic_long_t calc_load_nohz[2]; static int calc_load_idx; static inline int calc_load_write_idx(void) @@ -167,7 +167,7 @@ static inline int calc_load_write_idx(void) /* * If the folding window started, make sure we start writing in the - * next idle-delta. + * next NO_HZ-delta. */ if (!time_before(jiffies, READ_ONCE(calc_load_update))) idx++; @@ -180,24 +180,24 @@ static inline int calc_load_read_idx(void) return calc_load_idx & 1; } -void calc_load_enter_idle(void) +void calc_load_nohz_start(void) { struct rq *this_rq = this_rq(); long delta; /* - * We're going into NOHZ mode, if there's any pending delta, fold it - * into the pending idle delta. + * We're going into NO_HZ mode, if there's any pending delta, fold it + * into the pending NO_HZ delta. */ delta = calc_load_fold_active(this_rq, 0); if (delta) { int idx = calc_load_write_idx(); - atomic_long_add(delta, &calc_load_idle[idx]); + atomic_long_add(delta, &calc_load_nohz[idx]); } } -void calc_load_exit_idle(void) +void calc_load_nohz_stop(void) { struct rq *this_rq = this_rq(); @@ -217,13 +217,13 @@ void calc_load_exit_idle(void) this_rq->calc_load_update += LOAD_FREQ; } -static long calc_load_fold_idle(void) +static long calc_load_nohz_fold(void) { int idx = calc_load_read_idx(); long delta = 0; - if (atomic_long_read(&calc_load_idle[idx])) - delta = atomic_long_xchg(&calc_load_idle[idx], 0); + if (atomic_long_read(&calc_load_nohz[idx])) + delta = atomic_long_xchg(&calc_load_nohz[idx], 0); return delta; } @@ -299,9 +299,9 @@ calc_load_n(unsigned long load, unsigned long exp, /* * NO_HZ can leave us missing all per-cpu ticks calling - * calc_load_account_active(), but since an idle CPU folds its delta into - * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold - * in the pending idle delta if our idle period crossed a load cycle boundary. + * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into + * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold + * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary. * * Once we've updated the global active value, we need to apply the exponential * weights adjusted to the number of cycles missed. @@ -330,7 +330,7 @@ static void calc_global_nohz(void) } /* - * Flip the idle index... + * Flip the NO_HZ index... * * Make sure we first write the new time then flip the index, so that * calc_load_write_idx() will see the new time when it reads the new @@ -341,7 +341,7 @@ static void calc_global_nohz(void) } #else /* !CONFIG_NO_HZ_COMMON */ -static inline long calc_load_fold_idle(void) { return 0; } +static inline long calc_load_nohz_fold(void) { return 0; } static inline void calc_global_nohz(void) { } #endif /* CONFIG_NO_HZ_COMMON */ @@ -362,9 +362,9 @@ void calc_global_load(unsigned long ticks) return; /* - * Fold the 'old' idle-delta to include all NO_HZ cpus. + * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus. */ - delta = calc_load_fold_idle(); + delta = calc_load_nohz_fold(); if (delta) atomic_long_add(delta, &calc_load_tasks); @@ -378,7 +378,8 @@ void calc_global_load(unsigned long ticks) WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); /* - * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. + * In case we went to NO_HZ for multiple LOAD_FREQ intervals + * catch up in bulk. */ calc_global_nohz(); } diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c index 979b7341008a..45caf937ef90 100644 --- a/kernel/sched/rt.c +++ b/kernel/sched/rt.c @@ -840,6 +840,17 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) int enqueue = 0; struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); struct rq *rq = rq_of_rt_rq(rt_rq); + int skip; + + /* + * When span == cpu_online_mask, taking each rq->lock + * can be time-consuming. Try to avoid it when possible. + */ + raw_spin_lock(&rt_rq->rt_runtime_lock); + skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + if (skip) + continue; raw_spin_lock(&rq->lock); if (rt_rq->rt_time) { @@ -1819,7 +1830,7 @@ retry: * pushing. */ task = pick_next_pushable_task(rq); - if (task_cpu(next_task) == rq->cpu && task == next_task) { + if (task == next_task) { /* * The task hasn't migrated, and is still the next * eligible task, but we failed to find a run-queue @@ -2438,6 +2449,316 @@ const struct sched_class rt_sched_class = { .update_curr = update_curr_rt, }; +#ifdef CONFIG_RT_GROUP_SCHED +/* + * Ensure that the real time constraints are schedulable. + */ +static DEFINE_MUTEX(rt_constraints_mutex); + +/* Must be called with tasklist_lock held */ +static inline int tg_has_rt_tasks(struct task_group *tg) +{ + struct task_struct *g, *p; + + /* + * Autogroups do not have RT tasks; see autogroup_create(). + */ + if (task_group_is_autogroup(tg)) + return 0; + + for_each_process_thread(g, p) { + if (rt_task(p) && task_group(p) == tg) + return 1; + } + + return 0; +} + +struct rt_schedulable_data { + struct task_group *tg; + u64 rt_period; + u64 rt_runtime; +}; + +static int tg_rt_schedulable(struct task_group *tg, void *data) +{ + struct rt_schedulable_data *d = data; + struct task_group *child; + unsigned long total, sum = 0; + u64 period, runtime; + + period = ktime_to_ns(tg->rt_bandwidth.rt_period); + runtime = tg->rt_bandwidth.rt_runtime; + + if (tg == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + /* + * Cannot have more runtime than the period. + */ + if (runtime > period && runtime != RUNTIME_INF) + return -EINVAL; + + /* + * Ensure we don't starve existing RT tasks. + */ + if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) + return -EBUSY; + + total = to_ratio(period, runtime); + + /* + * Nobody can have more than the global setting allows. + */ + if (total > to_ratio(global_rt_period(), global_rt_runtime())) + return -EINVAL; + + /* + * The sum of our children's runtime should not exceed our own. + */ + list_for_each_entry_rcu(child, &tg->children, siblings) { + period = ktime_to_ns(child->rt_bandwidth.rt_period); + runtime = child->rt_bandwidth.rt_runtime; + + if (child == d->tg) { + period = d->rt_period; + runtime = d->rt_runtime; + } + + sum += to_ratio(period, runtime); + } + + if (sum > total) + return -EINVAL; + + return 0; +} + +static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) +{ + int ret; + + struct rt_schedulable_data data = { + .tg = tg, + .rt_period = period, + .rt_runtime = runtime, + }; + + rcu_read_lock(); + ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); + rcu_read_unlock(); + + return ret; +} + +static int tg_set_rt_bandwidth(struct task_group *tg, + u64 rt_period, u64 rt_runtime) +{ + int i, err = 0; + + /* + * Disallowing the root group RT runtime is BAD, it would disallow the + * kernel creating (and or operating) RT threads. + */ + if (tg == &root_task_group && rt_runtime == 0) + return -EINVAL; + + /* No period doesn't make any sense. */ + if (rt_period == 0) + return -EINVAL; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + err = __rt_schedulable(tg, rt_period, rt_runtime); + if (err) + goto unlock; + + raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); + tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); + tg->rt_bandwidth.rt_runtime = rt_runtime; + + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = tg->rt_rq[i]; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_runtime; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); +unlock: + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return err; +} + +int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) +{ + u64 rt_runtime, rt_period; + + rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); + rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; + if (rt_runtime_us < 0) + rt_runtime = RUNTIME_INF; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +long sched_group_rt_runtime(struct task_group *tg) +{ + u64 rt_runtime_us; + + if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) + return -1; + + rt_runtime_us = tg->rt_bandwidth.rt_runtime; + do_div(rt_runtime_us, NSEC_PER_USEC); + return rt_runtime_us; +} + +int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) +{ + u64 rt_runtime, rt_period; + + rt_period = rt_period_us * NSEC_PER_USEC; + rt_runtime = tg->rt_bandwidth.rt_runtime; + + return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); +} + +long sched_group_rt_period(struct task_group *tg) +{ + u64 rt_period_us; + + rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); + do_div(rt_period_us, NSEC_PER_USEC); + return rt_period_us; +} + +static int sched_rt_global_constraints(void) +{ + int ret = 0; + + mutex_lock(&rt_constraints_mutex); + read_lock(&tasklist_lock); + ret = __rt_schedulable(NULL, 0, 0); + read_unlock(&tasklist_lock); + mutex_unlock(&rt_constraints_mutex); + + return ret; +} + +int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) +{ + /* Don't accept realtime tasks when there is no way for them to run */ + if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) + return 0; + + return 1; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ +static int sched_rt_global_constraints(void) +{ + unsigned long flags; + int i; + + raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); + for_each_possible_cpu(i) { + struct rt_rq *rt_rq = &cpu_rq(i)->rt; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = global_rt_runtime(); + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); + + return 0; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +static int sched_rt_global_validate(void) +{ + if (sysctl_sched_rt_period <= 0) + return -EINVAL; + + if ((sysctl_sched_rt_runtime != RUNTIME_INF) && + (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) + return -EINVAL; + + return 0; +} + +static void sched_rt_do_global(void) +{ + def_rt_bandwidth.rt_runtime = global_rt_runtime(); + def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); +} + +int sched_rt_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int old_period, old_runtime; + static DEFINE_MUTEX(mutex); + int ret; + + mutex_lock(&mutex); + old_period = sysctl_sched_rt_period; + old_runtime = sysctl_sched_rt_runtime; + + ret = proc_dointvec(table, write, buffer, lenp, ppos); + + if (!ret && write) { + ret = sched_rt_global_validate(); + if (ret) + goto undo; + + ret = sched_dl_global_validate(); + if (ret) + goto undo; + + ret = sched_rt_global_constraints(); + if (ret) + goto undo; + + sched_rt_do_global(); + sched_dl_do_global(); + } + if (0) { +undo: + sysctl_sched_rt_period = old_period; + sysctl_sched_rt_runtime = old_runtime; + } + mutex_unlock(&mutex); + + return ret; +} + +int sched_rr_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + static DEFINE_MUTEX(mutex); + + mutex_lock(&mutex); + ret = proc_dointvec(table, write, buffer, lenp, ppos); + /* + * Make sure that internally we keep jiffies. + * Also, writing zero resets the timeslice to default: + */ + if (!ret && write) { + sched_rr_timeslice = + sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : + msecs_to_jiffies(sysctl_sched_rr_timeslice); + } + mutex_unlock(&mutex); + return ret; +} + #ifdef CONFIG_SCHED_DEBUG extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 6dda2aab731e..eeef1a3086d1 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -39,9 +39,9 @@ #include "cpuacct.h" #ifdef CONFIG_SCHED_DEBUG -#define SCHED_WARN_ON(x) WARN_ONCE(x, #x) +# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) #else -#define SCHED_WARN_ON(x) ((void)(x)) +# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) #endif struct rq; @@ -218,23 +218,25 @@ static inline int dl_bandwidth_enabled(void) return sysctl_sched_rt_runtime >= 0; } -extern struct dl_bw *dl_bw_of(int i); - struct dl_bw { raw_spinlock_t lock; u64 bw, total_bw; }; +static inline void __dl_update(struct dl_bw *dl_b, s64 bw); + static inline -void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) +void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus) { dl_b->total_bw -= tsk_bw; + __dl_update(dl_b, (s32)tsk_bw / cpus); } static inline -void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) +void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) { dl_b->total_bw += tsk_bw; + __dl_update(dl_b, -((s32)tsk_bw / cpus)); } static inline @@ -244,7 +246,22 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; } +void dl_change_utilization(struct task_struct *p, u64 new_bw); extern void init_dl_bw(struct dl_bw *dl_b); +extern int sched_dl_global_validate(void); +extern void sched_dl_do_global(void); +extern int sched_dl_overflow(struct task_struct *p, int policy, + const struct sched_attr *attr); +extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); +extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); +extern bool __checkparam_dl(const struct sched_attr *attr); +extern void __dl_clear_params(struct task_struct *p); +extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); +extern int dl_task_can_attach(struct task_struct *p, + const struct cpumask *cs_cpus_allowed); +extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, + const struct cpumask *trial); +extern bool dl_cpu_busy(unsigned int cpu); #ifdef CONFIG_CGROUP_SCHED @@ -366,6 +383,11 @@ extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent); +extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); +extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); +extern long sched_group_rt_runtime(struct task_group *tg); +extern long sched_group_rt_period(struct task_group *tg); +extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); extern struct task_group *sched_create_group(struct task_group *parent); extern void sched_online_group(struct task_group *tg, @@ -558,6 +580,30 @@ struct dl_rq { #else struct dl_bw dl_bw; #endif + /* + * "Active utilization" for this runqueue: increased when a + * task wakes up (becomes TASK_RUNNING) and decreased when a + * task blocks + */ + u64 running_bw; + + /* + * Utilization of the tasks "assigned" to this runqueue (including + * the tasks that are in runqueue and the tasks that executed on this + * CPU and blocked). Increased when a task moves to this runqueue, and + * decreased when the task moves away (migrates, changes scheduling + * policy, or terminates). + * This is needed to compute the "inactive utilization" for the + * runqueue (inactive utilization = this_bw - running_bw). + */ + u64 this_bw; + u64 extra_bw; + + /* + * Inverse of the fraction of CPU utilization that can be reclaimed + * by the GRUB algorithm. + */ + u64 bw_ratio; }; #ifdef CONFIG_SMP @@ -606,11 +652,9 @@ struct root_domain { extern struct root_domain def_root_domain; extern struct mutex sched_domains_mutex; -extern cpumask_var_t fallback_doms; -extern cpumask_var_t sched_domains_tmpmask; extern void init_defrootdomain(void); -extern int init_sched_domains(const struct cpumask *cpu_map); +extern int sched_init_domains(const struct cpumask *cpu_map); extern void rq_attach_root(struct rq *rq, struct root_domain *rd); #endif /* CONFIG_SMP */ @@ -1025,7 +1069,11 @@ struct sched_group_capacity { unsigned long next_update; int imbalance; /* XXX unrelated to capacity but shared group state */ - unsigned long cpumask[0]; /* iteration mask */ +#ifdef CONFIG_SCHED_DEBUG + int id; +#endif + + unsigned long cpumask[0]; /* balance mask */ }; struct sched_group { @@ -1046,16 +1094,15 @@ struct sched_group { unsigned long cpumask[0]; }; -static inline struct cpumask *sched_group_cpus(struct sched_group *sg) +static inline struct cpumask *sched_group_span(struct sched_group *sg) { return to_cpumask(sg->cpumask); } /* - * cpumask masking which cpus in the group are allowed to iterate up the domain - * tree. + * See build_balance_mask(). */ -static inline struct cpumask *sched_group_mask(struct sched_group *sg) +static inline struct cpumask *group_balance_mask(struct sched_group *sg) { return to_cpumask(sg->sgc->cpumask); } @@ -1066,7 +1113,7 @@ static inline struct cpumask *sched_group_mask(struct sched_group *sg) */ static inline unsigned int group_first_cpu(struct sched_group *group) { - return cpumask_first(sched_group_cpus(group)); + return cpumask_first(sched_group_span(group)); } extern int group_balance_cpu(struct sched_group *sg); @@ -1422,7 +1469,11 @@ static inline void set_curr_task(struct rq *rq, struct task_struct *curr) curr->sched_class->set_curr_task(rq); } +#ifdef CONFIG_SMP #define sched_class_highest (&stop_sched_class) +#else +#define sched_class_highest (&dl_sched_class) +#endif #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) @@ -1486,7 +1537,12 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime extern struct dl_bandwidth def_dl_bandwidth; extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); extern void init_dl_task_timer(struct sched_dl_entity *dl_se); +extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); +extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); +#define BW_SHIFT 20 +#define BW_UNIT (1 << BW_SHIFT) +#define RATIO_SHIFT 8 unsigned long to_ratio(u64 period, u64 runtime); extern void init_entity_runnable_average(struct sched_entity *se); @@ -1928,6 +1984,33 @@ extern void nohz_balance_exit_idle(unsigned int cpu); static inline void nohz_balance_exit_idle(unsigned int cpu) { } #endif + +#ifdef CONFIG_SMP +static inline +void __dl_update(struct dl_bw *dl_b, s64 bw) +{ + struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); + int i; + + RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), + "sched RCU must be held"); + for_each_cpu_and(i, rd->span, cpu_active_mask) { + struct rq *rq = cpu_rq(i); + + rq->dl.extra_bw += bw; + } +} +#else +static inline +void __dl_update(struct dl_bw *dl_b, s64 bw) +{ + struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); + + dl->extra_bw += bw; +} +#endif + + #ifdef CONFIG_IRQ_TIME_ACCOUNTING struct irqtime { u64 total; diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c index 1b0b4fb12837..79895aec281e 100644 --- a/kernel/sched/topology.c +++ b/kernel/sched/topology.c @@ -10,6 +10,7 @@ DEFINE_MUTEX(sched_domains_mutex); /* Protected by sched_domains_mutex: */ cpumask_var_t sched_domains_tmpmask; +cpumask_var_t sched_domains_tmpmask2; #ifdef CONFIG_SCHED_DEBUG @@ -35,7 +36,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, cpumask_clear(groupmask); - printk(KERN_DEBUG "%*s domain %d: ", level, "", level); + printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); if (!(sd->flags & SD_LOAD_BALANCE)) { printk("does not load-balance\n"); @@ -45,14 +46,14 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, return -1; } - printk(KERN_CONT "span %*pbl level %s\n", + printk(KERN_CONT "span=%*pbl level=%s\n", cpumask_pr_args(sched_domain_span(sd)), sd->name); if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { printk(KERN_ERR "ERROR: domain->span does not contain " "CPU%d\n", cpu); } - if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { + if (!cpumask_test_cpu(cpu, sched_group_span(group))) { printk(KERN_ERR "ERROR: domain->groups does not contain" " CPU%d\n", cpu); } @@ -65,29 +66,47 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, break; } - if (!cpumask_weight(sched_group_cpus(group))) { + if (!cpumask_weight(sched_group_span(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: empty group\n"); break; } if (!(sd->flags & SD_OVERLAP) && - cpumask_intersects(groupmask, sched_group_cpus(group))) { + cpumask_intersects(groupmask, sched_group_span(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: repeated CPUs\n"); break; } - cpumask_or(groupmask, groupmask, sched_group_cpus(group)); + cpumask_or(groupmask, groupmask, sched_group_span(group)); - printk(KERN_CONT " %*pbl", - cpumask_pr_args(sched_group_cpus(group))); - if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { - printk(KERN_CONT " (cpu_capacity = %lu)", - group->sgc->capacity); + printk(KERN_CONT " %d:{ span=%*pbl", + group->sgc->id, + cpumask_pr_args(sched_group_span(group))); + + if ((sd->flags & SD_OVERLAP) && + !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { + printk(KERN_CONT " mask=%*pbl", + cpumask_pr_args(group_balance_mask(group))); + } + + if (group->sgc->capacity != SCHED_CAPACITY_SCALE) + printk(KERN_CONT " cap=%lu", group->sgc->capacity); + + if (group == sd->groups && sd->child && + !cpumask_equal(sched_domain_span(sd->child), + sched_group_span(group))) { + printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); } + printk(KERN_CONT " }"); + group = group->next; + + if (group != sd->groups) + printk(KERN_CONT ","); + } while (group != sd->groups); printk(KERN_CONT "\n"); @@ -113,7 +132,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) return; } - printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); for (;;) { if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) @@ -477,46 +496,214 @@ enum s_alloc { }; /* - * Build an iteration mask that can exclude certain CPUs from the upwards - * domain traversal. + * Return the canonical balance CPU for this group, this is the first CPU + * of this group that's also in the balance mask. * - * Asymmetric node setups can result in situations where the domain tree is of - * unequal depth, make sure to skip domains that already cover the entire - * range. + * The balance mask are all those CPUs that could actually end up at this + * group. See build_balance_mask(). * - * In that case build_sched_domains() will have terminated the iteration early - * and our sibling sd spans will be empty. Domains should always include the - * CPU they're built on, so check that. + * Also see should_we_balance(). */ -static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) +int group_balance_cpu(struct sched_group *sg) { - const struct cpumask *span = sched_domain_span(sd); + return cpumask_first(group_balance_mask(sg)); +} + + +/* + * NUMA topology (first read the regular topology blurb below) + * + * Given a node-distance table, for example: + * + * node 0 1 2 3 + * 0: 10 20 30 20 + * 1: 20 10 20 30 + * 2: 30 20 10 20 + * 3: 20 30 20 10 + * + * which represents a 4 node ring topology like: + * + * 0 ----- 1 + * | | + * | | + * | | + * 3 ----- 2 + * + * We want to construct domains and groups to represent this. The way we go + * about doing this is to build the domains on 'hops'. For each NUMA level we + * construct the mask of all nodes reachable in @level hops. + * + * For the above NUMA topology that gives 3 levels: + * + * NUMA-2 0-3 0-3 0-3 0-3 + * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} + * + * NUMA-1 0-1,3 0-2 1-3 0,2-3 + * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} + * + * NUMA-0 0 1 2 3 + * + * + * As can be seen; things don't nicely line up as with the regular topology. + * When we iterate a domain in child domain chunks some nodes can be + * represented multiple times -- hence the "overlap" naming for this part of + * the topology. + * + * In order to minimize this overlap, we only build enough groups to cover the + * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. + * + * Because: + * + * - the first group of each domain is its child domain; this + * gets us the first 0-1,3 + * - the only uncovered node is 2, who's child domain is 1-3. + * + * However, because of the overlap, computing a unique CPU for each group is + * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both + * groups include the CPUs of Node-0, while those CPUs would not in fact ever + * end up at those groups (they would end up in group: 0-1,3). + * + * To correct this we have to introduce the group balance mask. This mask + * will contain those CPUs in the group that can reach this group given the + * (child) domain tree. + * + * With this we can once again compute balance_cpu and sched_group_capacity + * relations. + * + * XXX include words on how balance_cpu is unique and therefore can be + * used for sched_group_capacity links. + * + * + * Another 'interesting' topology is: + * + * node 0 1 2 3 + * 0: 10 20 20 30 + * 1: 20 10 20 20 + * 2: 20 20 10 20 + * 3: 30 20 20 10 + * + * Which looks a little like: + * + * 0 ----- 1 + * | / | + * | / | + * | / | + * 2 ----- 3 + * + * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 + * are not. + * + * This leads to a few particularly weird cases where the sched_domain's are + * not of the same number for each cpu. Consider: + * + * NUMA-2 0-3 0-3 + * groups: {0-2},{1-3} {1-3},{0-2} + * + * NUMA-1 0-2 0-3 0-3 1-3 + * + * NUMA-0 0 1 2 3 + * + */ + + +/* + * Build the balance mask; it contains only those CPUs that can arrive at this + * group and should be considered to continue balancing. + * + * We do this during the group creation pass, therefore the group information + * isn't complete yet, however since each group represents a (child) domain we + * can fully construct this using the sched_domain bits (which are already + * complete). + */ +static void +build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) +{ + const struct cpumask *sg_span = sched_group_span(sg); struct sd_data *sdd = sd->private; struct sched_domain *sibling; int i; - for_each_cpu(i, span) { + cpumask_clear(mask); + + for_each_cpu(i, sg_span) { sibling = *per_cpu_ptr(sdd->sd, i); - if (!cpumask_test_cpu(i, sched_domain_span(sibling))) + + /* + * Can happen in the asymmetric case, where these siblings are + * unused. The mask will not be empty because those CPUs that + * do have the top domain _should_ span the domain. + */ + if (!sibling->child) continue; - cpumask_set_cpu(i, sched_group_mask(sg)); + /* If we would not end up here, we can't continue from here */ + if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) + continue; + + cpumask_set_cpu(i, mask); } + + /* We must not have empty masks here */ + WARN_ON_ONCE(cpumask_empty(mask)); } /* - * Return the canonical balance CPU for this group, this is the first CPU - * of this group that's also in the iteration mask. + * XXX: This creates per-node group entries; since the load-balancer will + * immediately access remote memory to construct this group's load-balance + * statistics having the groups node local is of dubious benefit. */ -int group_balance_cpu(struct sched_group *sg) +static struct sched_group * +build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) { - return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); + struct sched_group *sg; + struct cpumask *sg_span; + + sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, cpu_to_node(cpu)); + + if (!sg) + return NULL; + + sg_span = sched_group_span(sg); + if (sd->child) + cpumask_copy(sg_span, sched_domain_span(sd->child)); + else + cpumask_copy(sg_span, sched_domain_span(sd)); + + return sg; +} + +static void init_overlap_sched_group(struct sched_domain *sd, + struct sched_group *sg) +{ + struct cpumask *mask = sched_domains_tmpmask2; + struct sd_data *sdd = sd->private; + struct cpumask *sg_span; + int cpu; + + build_balance_mask(sd, sg, mask); + cpu = cpumask_first_and(sched_group_span(sg), mask); + + sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); + if (atomic_inc_return(&sg->sgc->ref) == 1) + cpumask_copy(group_balance_mask(sg), mask); + else + WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); + + /* + * Initialize sgc->capacity such that even if we mess up the + * domains and no possible iteration will get us here, we won't + * die on a /0 trap. + */ + sg_span = sched_group_span(sg); + sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); + sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; } static int build_overlap_sched_groups(struct sched_domain *sd, int cpu) { - struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; + struct sched_group *first = NULL, *last = NULL, *sg; const struct cpumask *span = sched_domain_span(sd); struct cpumask *covered = sched_domains_tmpmask; struct sd_data *sdd = sd->private; @@ -525,7 +712,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) cpumask_clear(covered); - for_each_cpu(i, span) { + for_each_cpu_wrap(i, span, cpu) { struct cpumask *sg_span; if (cpumask_test_cpu(i, covered)) @@ -533,44 +720,27 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) sibling = *per_cpu_ptr(sdd->sd, i); - /* See the comment near build_group_mask(). */ + /* + * Asymmetric node setups can result in situations where the + * domain tree is of unequal depth, make sure to skip domains + * that already cover the entire range. + * + * In that case build_sched_domains() will have terminated the + * iteration early and our sibling sd spans will be empty. + * Domains should always include the CPU they're built on, so + * check that. + */ if (!cpumask_test_cpu(i, sched_domain_span(sibling))) continue; - sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, cpu_to_node(cpu)); - + sg = build_group_from_child_sched_domain(sibling, cpu); if (!sg) goto fail; - sg_span = sched_group_cpus(sg); - if (sibling->child) - cpumask_copy(sg_span, sched_domain_span(sibling->child)); - else - cpumask_set_cpu(i, sg_span); - + sg_span = sched_group_span(sg); cpumask_or(covered, covered, sg_span); - sg->sgc = *per_cpu_ptr(sdd->sgc, i); - if (atomic_inc_return(&sg->sgc->ref) == 1) - build_group_mask(sd, sg); - - /* - * Initialize sgc->capacity such that even if we mess up the - * domains and no possible iteration will get us here, we won't - * die on a /0 trap. - */ - sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); - sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; - - /* - * Make sure the first group of this domain contains the - * canonical balance CPU. Otherwise the sched_domain iteration - * breaks. See update_sg_lb_stats(). - */ - if ((!groups && cpumask_test_cpu(cpu, sg_span)) || - group_balance_cpu(sg) == cpu) - groups = sg; + init_overlap_sched_group(sd, sg); if (!first) first = sg; @@ -579,7 +749,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) last = sg; last->next = first; } - sd->groups = groups; + sd->groups = first; return 0; @@ -589,23 +759,106 @@ fail: return -ENOMEM; } -static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) + +/* + * Package topology (also see the load-balance blurb in fair.c) + * + * The scheduler builds a tree structure to represent a number of important + * topology features. By default (default_topology[]) these include: + * + * - Simultaneous multithreading (SMT) + * - Multi-Core Cache (MC) + * - Package (DIE) + * + * Where the last one more or less denotes everything up to a NUMA node. + * + * The tree consists of 3 primary data structures: + * + * sched_domain -> sched_group -> sched_group_capacity + * ^ ^ ^ ^ + * `-' `-' + * + * The sched_domains are per-cpu and have a two way link (parent & child) and + * denote the ever growing mask of CPUs belonging to that level of topology. + * + * Each sched_domain has a circular (double) linked list of sched_group's, each + * denoting the domains of the level below (or individual CPUs in case of the + * first domain level). The sched_group linked by a sched_domain includes the + * CPU of that sched_domain [*]. + * + * Take for instance a 2 threaded, 2 core, 2 cache cluster part: + * + * CPU 0 1 2 3 4 5 6 7 + * + * DIE [ ] + * MC [ ] [ ] + * SMT [ ] [ ] [ ] [ ] + * + * - or - + * + * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 + * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 + * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 + * + * CPU 0 1 2 3 4 5 6 7 + * + * One way to think about it is: sched_domain moves you up and down among these + * topology levels, while sched_group moves you sideways through it, at child + * domain granularity. + * + * sched_group_capacity ensures each unique sched_group has shared storage. + * + * There are two related construction problems, both require a CPU that + * uniquely identify each group (for a given domain): + * + * - The first is the balance_cpu (see should_we_balance() and the + * load-balance blub in fair.c); for each group we only want 1 CPU to + * continue balancing at a higher domain. + * + * - The second is the sched_group_capacity; we want all identical groups + * to share a single sched_group_capacity. + * + * Since these topologies are exclusive by construction. That is, its + * impossible for an SMT thread to belong to multiple cores, and cores to + * be part of multiple caches. There is a very clear and unique location + * for each CPU in the hierarchy. + * + * Therefore computing a unique CPU for each group is trivial (the iteration + * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ + * group), we can simply pick the first CPU in each group. + * + * + * [*] in other words, the first group of each domain is its child domain. + */ + +static struct sched_group *get_group(int cpu, struct sd_data *sdd) { struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); struct sched_domain *child = sd->child; + struct sched_group *sg; if (child) cpu = cpumask_first(sched_domain_span(child)); - if (sg) { - *sg = *per_cpu_ptr(sdd->sg, cpu); - (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); + sg = *per_cpu_ptr(sdd->sg, cpu); + sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); + + /* For claim_allocations: */ + atomic_inc(&sg->ref); + atomic_inc(&sg->sgc->ref); - /* For claim_allocations: */ - atomic_set(&(*sg)->sgc->ref, 1); + if (child) { + cpumask_copy(sched_group_span(sg), sched_domain_span(child)); + cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); + } else { + cpumask_set_cpu(cpu, sched_group_span(sg)); + cpumask_set_cpu(cpu, group_balance_mask(sg)); } - return cpu; + sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); + sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; + + return sg; } /* @@ -624,34 +877,20 @@ build_sched_groups(struct sched_domain *sd, int cpu) struct cpumask *covered; int i; - get_group(cpu, sdd, &sd->groups); - atomic_inc(&sd->groups->ref); - - if (cpu != cpumask_first(span)) - return 0; - lockdep_assert_held(&sched_domains_mutex); covered = sched_domains_tmpmask; cpumask_clear(covered); - for_each_cpu(i, span) { + for_each_cpu_wrap(i, span, cpu) { struct sched_group *sg; - int group, j; if (cpumask_test_cpu(i, covered)) continue; - group = get_group(i, sdd, &sg); - cpumask_setall(sched_group_mask(sg)); + sg = get_group(i, sdd); - for_each_cpu(j, span) { - if (get_group(j, sdd, NULL) != group) - continue; - - cpumask_set_cpu(j, covered); - cpumask_set_cpu(j, sched_group_cpus(sg)); - } + cpumask_or(covered, covered, sched_group_span(sg)); if (!first) first = sg; @@ -660,6 +899,7 @@ build_sched_groups(struct sched_domain *sd, int cpu) last = sg; } last->next = first; + sd->groups = first; return 0; } @@ -683,12 +923,12 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) do { int cpu, max_cpu = -1; - sg->group_weight = cpumask_weight(sched_group_cpus(sg)); + sg->group_weight = cpumask_weight(sched_group_span(sg)); if (!(sd->flags & SD_ASYM_PACKING)) goto next; - for_each_cpu(cpu, sched_group_cpus(sg)) { + for_each_cpu(cpu, sched_group_span(sg)) { if (max_cpu < 0) max_cpu = cpu; else if (sched_asym_prefer(cpu, max_cpu)) @@ -1308,6 +1548,10 @@ static int __sdt_alloc(const struct cpumask *cpu_map) if (!sgc) return -ENOMEM; +#ifdef CONFIG_SCHED_DEBUG + sgc->id = j; +#endif + *per_cpu_ptr(sdd->sgc, j) = sgc; } } @@ -1407,7 +1651,7 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att sd = build_sched_domain(tl, cpu_map, attr, sd, i); if (tl == sched_domain_topology) *per_cpu_ptr(d.sd, i) = sd; - if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) + if (tl->flags & SDTL_OVERLAP) sd->flags |= SD_OVERLAP; if (cpumask_equal(cpu_map, sched_domain_span(sd))) break; @@ -1478,7 +1722,7 @@ static struct sched_domain_attr *dattr_cur; * cpumask) fails, then fallback to a single sched domain, * as determined by the single cpumask fallback_doms. */ -cpumask_var_t fallback_doms; +static cpumask_var_t fallback_doms; /* * arch_update_cpu_topology lets virtualized architectures update the @@ -1520,10 +1764,14 @@ void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) * For now this just excludes isolated CPUs, but could be used to * exclude other special cases in the future. */ -int init_sched_domains(const struct cpumask *cpu_map) +int sched_init_domains(const struct cpumask *cpu_map) { int err; + zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); + zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); + zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); + arch_update_cpu_topology(); ndoms_cur = 1; doms_cur = alloc_sched_domains(ndoms_cur); diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c index b8c84c6dee64..17f11c6b0a9f 100644 --- a/kernel/sched/wait.c +++ b/kernel/sched/wait.c @@ -12,44 +12,44 @@ #include <linux/hash.h> #include <linux/kthread.h> -void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) +void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) { - spin_lock_init(&q->lock); - lockdep_set_class_and_name(&q->lock, key, name); - INIT_LIST_HEAD(&q->task_list); + spin_lock_init(&wq_head->lock); + lockdep_set_class_and_name(&wq_head->lock, key, name); + INIT_LIST_HEAD(&wq_head->head); } EXPORT_SYMBOL(__init_waitqueue_head); -void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { unsigned long flags; - wait->flags &= ~WQ_FLAG_EXCLUSIVE; - spin_lock_irqsave(&q->lock, flags); - __add_wait_queue(q, wait); - spin_unlock_irqrestore(&q->lock, flags); + wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&wq_head->lock, flags); + __add_wait_queue_entry_tail(wq_head, wq_entry); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(add_wait_queue); -void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) +void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { unsigned long flags; - wait->flags |= WQ_FLAG_EXCLUSIVE; - spin_lock_irqsave(&q->lock, flags); - __add_wait_queue_tail(q, wait); - spin_unlock_irqrestore(&q->lock, flags); + wq_entry->flags |= WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&wq_head->lock, flags); + __add_wait_queue_entry_tail(wq_head, wq_entry); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(add_wait_queue_exclusive); -void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { unsigned long flags; - spin_lock_irqsave(&q->lock, flags); - __remove_wait_queue(q, wait); - spin_unlock_irqrestore(&q->lock, flags); + spin_lock_irqsave(&wq_head->lock, flags); + __remove_wait_queue(wq_head, wq_entry); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(remove_wait_queue); @@ -63,12 +63,12 @@ EXPORT_SYMBOL(remove_wait_queue); * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns * zero in this (rare) case, and we handle it by continuing to scan the queue. */ -static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, +static void __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, int wake_flags, void *key) { - wait_queue_t *curr, *next; + wait_queue_entry_t *curr, *next; - list_for_each_entry_safe(curr, next, &q->task_list, task_list) { + list_for_each_entry_safe(curr, next, &wq_head->head, entry) { unsigned flags = curr->flags; if (curr->func(curr, mode, wake_flags, key) && @@ -79,7 +79,7 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, /** * __wake_up - wake up threads blocked on a waitqueue. - * @q: the waitqueue + * @wq_head: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: is directly passed to the wakeup function @@ -87,35 +87,35 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ -void __wake_up(wait_queue_head_t *q, unsigned int mode, +void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, 0, key); - spin_unlock_irqrestore(&q->lock, flags); + spin_lock_irqsave(&wq_head->lock, flags); + __wake_up_common(wq_head, mode, nr_exclusive, 0, key); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(__wake_up); /* * Same as __wake_up but called with the spinlock in wait_queue_head_t held. */ -void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) +void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) { - __wake_up_common(q, mode, nr, 0, NULL); + __wake_up_common(wq_head, mode, nr, 0, NULL); } EXPORT_SYMBOL_GPL(__wake_up_locked); -void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) +void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) { - __wake_up_common(q, mode, 1, 0, key); + __wake_up_common(wq_head, mode, 1, 0, key); } EXPORT_SYMBOL_GPL(__wake_up_locked_key); /** * __wake_up_sync_key - wake up threads blocked on a waitqueue. - * @q: the waitqueue + * @wq_head: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: opaque value to be passed to wakeup targets @@ -130,30 +130,30 @@ EXPORT_SYMBOL_GPL(__wake_up_locked_key); * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ -void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, +void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; int wake_flags = 1; /* XXX WF_SYNC */ - if (unlikely(!q)) + if (unlikely(!wq_head)) return; if (unlikely(nr_exclusive != 1)) wake_flags = 0; - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, wake_flags, key); - spin_unlock_irqrestore(&q->lock, flags); + spin_lock_irqsave(&wq_head->lock, flags); + __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL_GPL(__wake_up_sync_key); /* * __wake_up_sync - see __wake_up_sync_key() */ -void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) +void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive) { - __wake_up_sync_key(q, mode, nr_exclusive, NULL); + __wake_up_sync_key(wq_head, mode, nr_exclusive, NULL); } EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ @@ -170,48 +170,48 @@ EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ * loads to move into the critical region). */ void -prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) +prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) { unsigned long flags; - wait->flags &= ~WQ_FLAG_EXCLUSIVE; - spin_lock_irqsave(&q->lock, flags); - if (list_empty(&wait->task_list)) - __add_wait_queue(q, wait); + wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&wq_head->lock, flags); + if (list_empty(&wq_entry->entry)) + __add_wait_queue(wq_head, wq_entry); set_current_state(state); - spin_unlock_irqrestore(&q->lock, flags); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(prepare_to_wait); void -prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) +prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) { unsigned long flags; - wait->flags |= WQ_FLAG_EXCLUSIVE; - spin_lock_irqsave(&q->lock, flags); - if (list_empty(&wait->task_list)) - __add_wait_queue_tail(q, wait); + wq_entry->flags |= WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&wq_head->lock, flags); + if (list_empty(&wq_entry->entry)) + __add_wait_queue_entry_tail(wq_head, wq_entry); set_current_state(state); - spin_unlock_irqrestore(&q->lock, flags); + spin_unlock_irqrestore(&wq_head->lock, flags); } EXPORT_SYMBOL(prepare_to_wait_exclusive); -void init_wait_entry(wait_queue_t *wait, int flags) +void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) { - wait->flags = flags; - wait->private = current; - wait->func = autoremove_wake_function; - INIT_LIST_HEAD(&wait->task_list); + wq_entry->flags = flags; + wq_entry->private = current; + wq_entry->func = autoremove_wake_function; + INIT_LIST_HEAD(&wq_entry->entry); } EXPORT_SYMBOL(init_wait_entry); -long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) +long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) { unsigned long flags; long ret = 0; - spin_lock_irqsave(&q->lock, flags); + spin_lock_irqsave(&wq_head->lock, flags); if (unlikely(signal_pending_state(state, current))) { /* * Exclusive waiter must not fail if it was selected by wakeup, @@ -219,24 +219,24 @@ long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) * * The caller will recheck the condition and return success if * we were already woken up, we can not miss the event because - * wakeup locks/unlocks the same q->lock. + * wakeup locks/unlocks the same wq_head->lock. * * But we need to ensure that set-condition + wakeup after that * can't see us, it should wake up another exclusive waiter if * we fail. */ - list_del_init(&wait->task_list); + list_del_init(&wq_entry->entry); ret = -ERESTARTSYS; } else { - if (list_empty(&wait->task_list)) { - if (wait->flags & WQ_FLAG_EXCLUSIVE) - __add_wait_queue_tail(q, wait); + if (list_empty(&wq_entry->entry)) { + if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) + __add_wait_queue_entry_tail(wq_head, wq_entry); else - __add_wait_queue(q, wait); + __add_wait_queue(wq_head, wq_entry); } set_current_state(state); } - spin_unlock_irqrestore(&q->lock, flags); + spin_unlock_irqrestore(&wq_head->lock, flags); return ret; } @@ -249,10 +249,10 @@ EXPORT_SYMBOL(prepare_to_wait_event); * condition in the caller before they add the wait * entry to the wake queue. */ -int do_wait_intr(wait_queue_head_t *wq, wait_queue_t *wait) +int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) { - if (likely(list_empty(&wait->task_list))) - __add_wait_queue_tail(wq, wait); + if (likely(list_empty(&wait->entry))) + __add_wait_queue_entry_tail(wq, wait); set_current_state(TASK_INTERRUPTIBLE); if (signal_pending(current)) @@ -265,10 +265,10 @@ int do_wait_intr(wait_queue_head_t *wq, wait_queue_t *wait) } EXPORT_SYMBOL(do_wait_intr); -int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_t *wait) +int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) { - if (likely(list_empty(&wait->task_list))) - __add_wait_queue_tail(wq, wait); + if (likely(list_empty(&wait->entry))) + __add_wait_queue_entry_tail(wq, wait); set_current_state(TASK_INTERRUPTIBLE); if (signal_pending(current)) @@ -283,14 +283,14 @@ EXPORT_SYMBOL(do_wait_intr_irq); /** * finish_wait - clean up after waiting in a queue - * @q: waitqueue waited on - * @wait: wait descriptor + * @wq_head: waitqueue waited on + * @wq_entry: wait descriptor * * Sets current thread back to running state and removes * the wait descriptor from the given waitqueue if still * queued. */ -void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) +void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { unsigned long flags; @@ -308,20 +308,20 @@ void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) * have _one_ other CPU that looks at or modifies * the list). */ - if (!list_empty_careful(&wait->task_list)) { - spin_lock_irqsave(&q->lock, flags); - list_del_init(&wait->task_list); - spin_unlock_irqrestore(&q->lock, flags); + if (!list_empty_careful(&wq_entry->entry)) { + spin_lock_irqsave(&wq_head->lock, flags); + list_del_init(&wq_entry->entry); + spin_unlock_irqrestore(&wq_head->lock, flags); } } EXPORT_SYMBOL(finish_wait); -int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) +int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) { - int ret = default_wake_function(wait, mode, sync, key); + int ret = default_wake_function(wq_entry, mode, sync, key); if (ret) - list_del_init(&wait->task_list); + list_del_init(&wq_entry->entry); return ret; } EXPORT_SYMBOL(autoremove_wake_function); @@ -334,24 +334,24 @@ static inline bool is_kthread_should_stop(void) /* * DEFINE_WAIT_FUNC(wait, woken_wake_func); * - * add_wait_queue(&wq, &wait); + * add_wait_queue(&wq_head, &wait); * for (;;) { * if (condition) * break; * * p->state = mode; condition = true; * smp_mb(); // A smp_wmb(); // C - * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN; + * if (!wq_entry->flags & WQ_FLAG_WOKEN) wq_entry->flags |= WQ_FLAG_WOKEN; * schedule() try_to_wake_up(); * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~ - * wait->flags &= ~WQ_FLAG_WOKEN; condition = true; + * wq_entry->flags &= ~WQ_FLAG_WOKEN; condition = true; * smp_mb() // B smp_wmb(); // C - * wait->flags |= WQ_FLAG_WOKEN; + * wq_entry->flags |= WQ_FLAG_WOKEN; * } - * remove_wait_queue(&wq, &wait); + * remove_wait_queue(&wq_head, &wait); * */ -long wait_woken(wait_queue_t *wait, unsigned mode, long timeout) +long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) { set_current_state(mode); /* A */ /* @@ -359,7 +359,7 @@ long wait_woken(wait_queue_t *wait, unsigned mode, long timeout) * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must * also observe all state before the wakeup. */ - if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) + if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) timeout = schedule_timeout(timeout); __set_current_state(TASK_RUNNING); @@ -369,13 +369,13 @@ long wait_woken(wait_queue_t *wait, unsigned mode, long timeout) * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss * an event. */ - smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */ + smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ return timeout; } EXPORT_SYMBOL(wait_woken); -int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) +int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) { /* * Although this function is called under waitqueue lock, LOCK @@ -385,267 +385,8 @@ int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) * and is paired with smp_store_mb() in wait_woken(). */ smp_wmb(); /* C */ - wait->flags |= WQ_FLAG_WOKEN; + wq_entry->flags |= WQ_FLAG_WOKEN; - return default_wake_function(wait, mode, sync, key); + return default_wake_function(wq_entry, mode, sync, key); } EXPORT_SYMBOL(woken_wake_function); - -int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) -{ - struct wait_bit_key *key = arg; - struct wait_bit_queue *wait_bit - = container_of(wait, struct wait_bit_queue, wait); - - if (wait_bit->key.flags != key->flags || - wait_bit->key.bit_nr != key->bit_nr || - test_bit(key->bit_nr, key->flags)) - return 0; - else - return autoremove_wake_function(wait, mode, sync, key); -} -EXPORT_SYMBOL(wake_bit_function); - -/* - * To allow interruptible waiting and asynchronous (i.e. nonblocking) - * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are - * permitted return codes. Nonzero return codes halt waiting and return. - */ -int __sched -__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, - wait_bit_action_f *action, unsigned mode) -{ - int ret = 0; - - do { - prepare_to_wait(wq, &q->wait, mode); - if (test_bit(q->key.bit_nr, q->key.flags)) - ret = (*action)(&q->key, mode); - } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); - finish_wait(wq, &q->wait); - return ret; -} -EXPORT_SYMBOL(__wait_on_bit); - -int __sched out_of_line_wait_on_bit(void *word, int bit, - wait_bit_action_f *action, unsigned mode) -{ - wait_queue_head_t *wq = bit_waitqueue(word, bit); - DEFINE_WAIT_BIT(wait, word, bit); - - return __wait_on_bit(wq, &wait, action, mode); -} -EXPORT_SYMBOL(out_of_line_wait_on_bit); - -int __sched out_of_line_wait_on_bit_timeout( - void *word, int bit, wait_bit_action_f *action, - unsigned mode, unsigned long timeout) -{ - wait_queue_head_t *wq = bit_waitqueue(word, bit); - DEFINE_WAIT_BIT(wait, word, bit); - - wait.key.timeout = jiffies + timeout; - return __wait_on_bit(wq, &wait, action, mode); -} -EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); - -int __sched -__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, - wait_bit_action_f *action, unsigned mode) -{ - int ret = 0; - - for (;;) { - prepare_to_wait_exclusive(wq, &q->wait, mode); - if (test_bit(q->key.bit_nr, q->key.flags)) { - ret = action(&q->key, mode); - /* - * See the comment in prepare_to_wait_event(). - * finish_wait() does not necessarily takes wq->lock, - * but test_and_set_bit() implies mb() which pairs with - * smp_mb__after_atomic() before wake_up_page(). - */ - if (ret) - finish_wait(wq, &q->wait); - } - if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) { - if (!ret) - finish_wait(wq, &q->wait); - return 0; - } else if (ret) { - return ret; - } - } -} -EXPORT_SYMBOL(__wait_on_bit_lock); - -int __sched out_of_line_wait_on_bit_lock(void *word, int bit, - wait_bit_action_f *action, unsigned mode) -{ - wait_queue_head_t *wq = bit_waitqueue(word, bit); - DEFINE_WAIT_BIT(wait, word, bit); - - return __wait_on_bit_lock(wq, &wait, action, mode); -} -EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); - -void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) -{ - struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); - if (waitqueue_active(wq)) - __wake_up(wq, TASK_NORMAL, 1, &key); -} -EXPORT_SYMBOL(__wake_up_bit); - -/** - * wake_up_bit - wake up a waiter on a bit - * @word: the word being waited on, a kernel virtual address - * @bit: the bit of the word being waited on - * - * There is a standard hashed waitqueue table for generic use. This - * is the part of the hashtable's accessor API that wakes up waiters - * on a bit. For instance, if one were to have waiters on a bitflag, - * one would call wake_up_bit() after clearing the bit. - * - * In order for this to function properly, as it uses waitqueue_active() - * internally, some kind of memory barrier must be done prior to calling - * this. Typically, this will be smp_mb__after_atomic(), but in some - * cases where bitflags are manipulated non-atomically under a lock, one - * may need to use a less regular barrier, such fs/inode.c's smp_mb(), - * because spin_unlock() does not guarantee a memory barrier. - */ -void wake_up_bit(void *word, int bit) -{ - __wake_up_bit(bit_waitqueue(word, bit), word, bit); -} -EXPORT_SYMBOL(wake_up_bit); - -/* - * Manipulate the atomic_t address to produce a better bit waitqueue table hash - * index (we're keying off bit -1, but that would produce a horrible hash - * value). - */ -static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) -{ - if (BITS_PER_LONG == 64) { - unsigned long q = (unsigned long)p; - return bit_waitqueue((void *)(q & ~1), q & 1); - } - return bit_waitqueue(p, 0); -} - -static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, - void *arg) -{ - struct wait_bit_key *key = arg; - struct wait_bit_queue *wait_bit - = container_of(wait, struct wait_bit_queue, wait); - atomic_t *val = key->flags; - - if (wait_bit->key.flags != key->flags || - wait_bit->key.bit_nr != key->bit_nr || - atomic_read(val) != 0) - return 0; - return autoremove_wake_function(wait, mode, sync, key); -} - -/* - * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, - * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero - * return codes halt waiting and return. - */ -static __sched -int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, - int (*action)(atomic_t *), unsigned mode) -{ - atomic_t *val; - int ret = 0; - - do { - prepare_to_wait(wq, &q->wait, mode); - val = q->key.flags; - if (atomic_read(val) == 0) - break; - ret = (*action)(val); - } while (!ret && atomic_read(val) != 0); - finish_wait(wq, &q->wait); - return ret; -} - -#define DEFINE_WAIT_ATOMIC_T(name, p) \ - struct wait_bit_queue name = { \ - .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ - .wait = { \ - .private = current, \ - .func = wake_atomic_t_function, \ - .task_list = \ - LIST_HEAD_INIT((name).wait.task_list), \ - }, \ - } - -__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), - unsigned mode) -{ - wait_queue_head_t *wq = atomic_t_waitqueue(p); - DEFINE_WAIT_ATOMIC_T(wait, p); - - return __wait_on_atomic_t(wq, &wait, action, mode); -} -EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); - -/** - * wake_up_atomic_t - Wake up a waiter on a atomic_t - * @p: The atomic_t being waited on, a kernel virtual address - * - * Wake up anyone waiting for the atomic_t to go to zero. - * - * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t - * check is done by the waiter's wake function, not the by the waker itself). - */ -void wake_up_atomic_t(atomic_t *p) -{ - __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); -} -EXPORT_SYMBOL(wake_up_atomic_t); - -__sched int bit_wait(struct wait_bit_key *word, int mode) -{ - schedule(); - if (signal_pending_state(mode, current)) - return -EINTR; - return 0; -} -EXPORT_SYMBOL(bit_wait); - -__sched int bit_wait_io(struct wait_bit_key *word, int mode) -{ - io_schedule(); - if (signal_pending_state(mode, current)) - return -EINTR; - return 0; -} -EXPORT_SYMBOL(bit_wait_io); - -__sched int bit_wait_timeout(struct wait_bit_key *word, int mode) -{ - unsigned long now = READ_ONCE(jiffies); - if (time_after_eq(now, word->timeout)) - return -EAGAIN; - schedule_timeout(word->timeout - now); - if (signal_pending_state(mode, current)) - return -EINTR; - return 0; -} -EXPORT_SYMBOL_GPL(bit_wait_timeout); - -__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) -{ - unsigned long now = READ_ONCE(jiffies); - if (time_after_eq(now, word->timeout)) - return -EAGAIN; - io_schedule_timeout(word->timeout - now); - if (signal_pending_state(mode, current)) - return -EINTR; - return 0; -} -EXPORT_SYMBOL_GPL(bit_wait_io_timeout); diff --git a/kernel/sched/wait_bit.c b/kernel/sched/wait_bit.c new file mode 100644 index 000000000000..f8159698aa4d --- /dev/null +++ b/kernel/sched/wait_bit.c @@ -0,0 +1,286 @@ +/* + * The implementation of the wait_bit*() and related waiting APIs: + */ +#include <linux/wait_bit.h> +#include <linux/sched/signal.h> +#include <linux/sched/debug.h> +#include <linux/hash.h> + +#define WAIT_TABLE_BITS 8 +#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) + +static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; + +wait_queue_head_t *bit_waitqueue(void *word, int bit) +{ + const int shift = BITS_PER_LONG == 32 ? 5 : 6; + unsigned long val = (unsigned long)word << shift | bit; + + return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); +} +EXPORT_SYMBOL(bit_waitqueue); + +int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg) +{ + struct wait_bit_key *key = arg; + struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); + + if (wait_bit->key.flags != key->flags || + wait_bit->key.bit_nr != key->bit_nr || + test_bit(key->bit_nr, key->flags)) + return 0; + else + return autoremove_wake_function(wq_entry, mode, sync, key); +} +EXPORT_SYMBOL(wake_bit_function); + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) + * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are + * permitted return codes. Nonzero return codes halt waiting and return. + */ +int __sched +__wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, + wait_bit_action_f *action, unsigned mode) +{ + int ret = 0; + + do { + prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); + if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) + ret = (*action)(&wbq_entry->key, mode); + } while (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret); + finish_wait(wq_head, &wbq_entry->wq_entry); + return ret; +} +EXPORT_SYMBOL(__wait_on_bit); + +int __sched out_of_line_wait_on_bit(void *word, int bit, + wait_bit_action_f *action, unsigned mode) +{ + struct wait_queue_head *wq_head = bit_waitqueue(word, bit); + DEFINE_WAIT_BIT(wq_entry, word, bit); + + return __wait_on_bit(wq_head, &wq_entry, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit); + +int __sched out_of_line_wait_on_bit_timeout( + void *word, int bit, wait_bit_action_f *action, + unsigned mode, unsigned long timeout) +{ + struct wait_queue_head *wq_head = bit_waitqueue(word, bit); + DEFINE_WAIT_BIT(wq_entry, word, bit); + + wq_entry.key.timeout = jiffies + timeout; + return __wait_on_bit(wq_head, &wq_entry, action, mode); +} +EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); + +int __sched +__wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, + wait_bit_action_f *action, unsigned mode) +{ + int ret = 0; + + for (;;) { + prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode); + if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { + ret = action(&wbq_entry->key, mode); + /* + * See the comment in prepare_to_wait_event(). + * finish_wait() does not necessarily takes wwq_head->lock, + * but test_and_set_bit() implies mb() which pairs with + * smp_mb__after_atomic() before wake_up_page(). + */ + if (ret) + finish_wait(wq_head, &wbq_entry->wq_entry); + } + if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { + if (!ret) + finish_wait(wq_head, &wbq_entry->wq_entry); + return 0; + } else if (ret) { + return ret; + } + } +} +EXPORT_SYMBOL(__wait_on_bit_lock); + +int __sched out_of_line_wait_on_bit_lock(void *word, int bit, + wait_bit_action_f *action, unsigned mode) +{ + struct wait_queue_head *wq_head = bit_waitqueue(word, bit); + DEFINE_WAIT_BIT(wq_entry, word, bit); + + return __wait_on_bit_lock(wq_head, &wq_entry, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); + +void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit) +{ + struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); + if (waitqueue_active(wq_head)) + __wake_up(wq_head, TASK_NORMAL, 1, &key); +} +EXPORT_SYMBOL(__wake_up_bit); + +/** + * wake_up_bit - wake up a waiter on a bit + * @word: the word being waited on, a kernel virtual address + * @bit: the bit of the word being waited on + * + * There is a standard hashed waitqueue table for generic use. This + * is the part of the hashtable's accessor API that wakes up waiters + * on a bit. For instance, if one were to have waiters on a bitflag, + * one would call wake_up_bit() after clearing the bit. + * + * In order for this to function properly, as it uses waitqueue_active() + * internally, some kind of memory barrier must be done prior to calling + * this. Typically, this will be smp_mb__after_atomic(), but in some + * cases where bitflags are manipulated non-atomically under a lock, one + * may need to use a less regular barrier, such fs/inode.c's smp_mb(), + * because spin_unlock() does not guarantee a memory barrier. + */ +void wake_up_bit(void *word, int bit) +{ + __wake_up_bit(bit_waitqueue(word, bit), word, bit); +} +EXPORT_SYMBOL(wake_up_bit); + +/* + * Manipulate the atomic_t address to produce a better bit waitqueue table hash + * index (we're keying off bit -1, but that would produce a horrible hash + * value). + */ +static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) +{ + if (BITS_PER_LONG == 64) { + unsigned long q = (unsigned long)p; + return bit_waitqueue((void *)(q & ~1), q & 1); + } + return bit_waitqueue(p, 0); +} + +static int wake_atomic_t_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, + void *arg) +{ + struct wait_bit_key *key = arg; + struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); + atomic_t *val = key->flags; + + if (wait_bit->key.flags != key->flags || + wait_bit->key.bit_nr != key->bit_nr || + atomic_read(val) != 0) + return 0; + return autoremove_wake_function(wq_entry, mode, sync, key); +} + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, + * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero + * return codes halt waiting and return. + */ +static __sched +int __wait_on_atomic_t(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, + int (*action)(atomic_t *), unsigned mode) +{ + atomic_t *val; + int ret = 0; + + do { + prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); + val = wbq_entry->key.flags; + if (atomic_read(val) == 0) + break; + ret = (*action)(val); + } while (!ret && atomic_read(val) != 0); + finish_wait(wq_head, &wbq_entry->wq_entry); + return ret; +} + +#define DEFINE_WAIT_ATOMIC_T(name, p) \ + struct wait_bit_queue_entry name = { \ + .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ + .wq_entry = { \ + .private = current, \ + .func = wake_atomic_t_function, \ + .entry = \ + LIST_HEAD_INIT((name).wq_entry.entry), \ + }, \ + } + +__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), + unsigned mode) +{ + struct wait_queue_head *wq_head = atomic_t_waitqueue(p); + DEFINE_WAIT_ATOMIC_T(wq_entry, p); + + return __wait_on_atomic_t(wq_head, &wq_entry, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); + +/** + * wake_up_atomic_t - Wake up a waiter on a atomic_t + * @p: The atomic_t being waited on, a kernel virtual address + * + * Wake up anyone waiting for the atomic_t to go to zero. + * + * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t + * check is done by the waiter's wake function, not the by the waker itself). + */ +void wake_up_atomic_t(atomic_t *p) +{ + __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); +} +EXPORT_SYMBOL(wake_up_atomic_t); + +__sched int bit_wait(struct wait_bit_key *word, int mode) +{ + schedule(); + if (signal_pending_state(mode, current)) + return -EINTR; + return 0; +} +EXPORT_SYMBOL(bit_wait); + +__sched int bit_wait_io(struct wait_bit_key *word, int mode) +{ + io_schedule(); + if (signal_pending_state(mode, current)) + return -EINTR; + return 0; +} +EXPORT_SYMBOL(bit_wait_io); + +__sched int bit_wait_timeout(struct wait_bit_key *word, int mode) +{ + unsigned long now = READ_ONCE(jiffies); + if (time_after_eq(now, word->timeout)) + return -EAGAIN; + schedule_timeout(word->timeout - now); + if (signal_pending_state(mode, current)) + return -EINTR; + return 0; +} +EXPORT_SYMBOL_GPL(bit_wait_timeout); + +__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) +{ + unsigned long now = READ_ONCE(jiffies); + if (time_after_eq(now, word->timeout)) + return -EAGAIN; + io_schedule_timeout(word->timeout - now); + if (signal_pending_state(mode, current)) + return -EINTR; + return 0; +} +EXPORT_SYMBOL_GPL(bit_wait_io_timeout); + +void __init wait_bit_init(void) +{ + int i; + + for (i = 0; i < WAIT_TABLE_SIZE; i++) + init_waitqueue_head(bit_wait_table + i); +} |