diff options
Diffstat (limited to 'kernel/sched/syscalls.c')
-rw-r--r-- | kernel/sched/syscalls.c | 1699 |
1 files changed, 1699 insertions, 0 deletions
diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c new file mode 100644 index 000000000000..ae1b42775ef9 --- /dev/null +++ b/kernel/sched/syscalls.c @@ -0,0 +1,1699 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kernel/sched/syscalls.c + * + * Core kernel scheduler syscalls related code + * + * Copyright (C) 1991-2002 Linus Torvalds + * Copyright (C) 1998-2024 Ingo Molnar, Red Hat + */ +#include <linux/sched.h> +#include <linux/cpuset.h> +#include <linux/sched/debug.h> + +#include <uapi/linux/sched/types.h> + +#include "sched.h" +#include "autogroup.h" + +static inline int __normal_prio(int policy, int rt_prio, int nice) +{ + int prio; + + if (dl_policy(policy)) + prio = MAX_DL_PRIO - 1; + else if (rt_policy(policy)) + prio = MAX_RT_PRIO - 1 - rt_prio; + else + prio = NICE_TO_PRIO(nice); + + return prio; +} + +/* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ +static inline int normal_prio(struct task_struct *p) +{ + return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(struct task_struct *p) +{ + p->normal_prio = normal_prio(p); + /* + * If we are RT tasks or we were boosted to RT priority, + * keep the priority unchanged. Otherwise, update priority + * to the normal priority: + */ + if (!rt_prio(p->prio)) + return p->normal_prio; + return p->prio; +} + +void set_user_nice(struct task_struct *p, long nice) +{ + bool queued, running; + struct rq *rq; + int old_prio; + + if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) + return; + /* + * We have to be careful, if called from sys_setpriority(), + * the task might be in the middle of scheduling on another CPU. + */ + CLASS(task_rq_lock, rq_guard)(p); + rq = rq_guard.rq; + + update_rq_clock(rq); + + /* + * The RT priorities are set via sched_setscheduler(), but we still + * allow the 'normal' nice value to be set - but as expected + * it won't have any effect on scheduling until the task is + * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: + */ + if (task_has_dl_policy(p) || task_has_rt_policy(p)) { + p->static_prio = NICE_TO_PRIO(nice); + return; + } + + queued = task_on_rq_queued(p); + running = task_current(rq, p); + if (queued) + dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); + if (running) + put_prev_task(rq, p); + + p->static_prio = NICE_TO_PRIO(nice); + set_load_weight(p, true); + old_prio = p->prio; + p->prio = effective_prio(p); + + if (queued) + enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); + if (running) + set_next_task(rq, p); + + /* + * If the task increased its priority or is running and + * lowered its priority, then reschedule its CPU: + */ + p->sched_class->prio_changed(rq, p, old_prio); +} +EXPORT_SYMBOL(set_user_nice); + +/* + * is_nice_reduction - check if nice value is an actual reduction + * + * Similar to can_nice() but does not perform a capability check. + * + * @p: task + * @nice: nice value + */ +static bool is_nice_reduction(const struct task_struct *p, const int nice) +{ + /* Convert nice value [19,-20] to rlimit style value [1,40]: */ + int nice_rlim = nice_to_rlimit(nice); + + return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); +} + +/* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ +int can_nice(const struct task_struct *p, const int nice) +{ + return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); +} + +#ifdef __ARCH_WANT_SYS_NICE + +/* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ +SYSCALL_DEFINE1(nice, int, increment) +{ + long nice, retval; + + /* + * Setpriority might change our priority at the same moment. + * We don't have to worry. Conceptually one call occurs first + * and we have a single winner. + */ + increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); + nice = task_nice(current) + increment; + + nice = clamp_val(nice, MIN_NICE, MAX_NICE); + if (increment < 0 && !can_nice(current, nice)) + return -EPERM; + + retval = security_task_setnice(current, nice); + if (retval) + return retval; + + set_user_nice(current, nice); + return 0; +} + +#endif + +/** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * Return: The priority value as seen by users in /proc. + * + * sched policy return value kernel prio user prio/nice + * + * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] + * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] + * deadline -101 -1 0 + */ +int task_prio(const struct task_struct *p) +{ + return p->prio - MAX_RT_PRIO; +} + +/** + * idle_cpu - is a given CPU idle currently? + * @cpu: the processor in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int idle_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (rq->curr != rq->idle) + return 0; + + if (rq->nr_running) + return 0; + +#ifdef CONFIG_SMP + if (rq->ttwu_pending) + return 0; +#endif + + return 1; +} + +/** + * available_idle_cpu - is a given CPU idle for enqueuing work. + * @cpu: the CPU in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int available_idle_cpu(int cpu) +{ + if (!idle_cpu(cpu)) + return 0; + + if (vcpu_is_preempted(cpu)) + return 0; + + return 1; +} + +/** + * idle_task - return the idle task for a given CPU. + * @cpu: the processor in question. + * + * Return: The idle task for the CPU @cpu. + */ +struct task_struct *idle_task(int cpu) +{ + return cpu_rq(cpu)->idle; +} + +#ifdef CONFIG_SCHED_CORE +int sched_core_idle_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (sched_core_enabled(rq) && rq->curr == rq->idle) + return 1; + + return idle_cpu(cpu); +} + +#endif + +#ifdef CONFIG_SMP +/* + * This function computes an effective utilization for the given CPU, to be + * used for frequency selection given the linear relation: f = u * f_max. + * + * The scheduler tracks the following metrics: + * + * cpu_util_{cfs,rt,dl,irq}() + * cpu_bw_dl() + * + * Where the cfs,rt and dl util numbers are tracked with the same metric and + * synchronized windows and are thus directly comparable. + * + * The cfs,rt,dl utilization are the running times measured with rq->clock_task + * which excludes things like IRQ and steal-time. These latter are then accrued + * in the IRQ utilization. + * + * The DL bandwidth number OTOH is not a measured metric but a value computed + * based on the task model parameters and gives the minimal utilization + * required to meet deadlines. + */ +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + unsigned long *min, + unsigned long *max) +{ + unsigned long util, irq, scale; + struct rq *rq = cpu_rq(cpu); + + scale = arch_scale_cpu_capacity(cpu); + + /* + * Early check to see if IRQ/steal time saturates the CPU, can be + * because of inaccuracies in how we track these -- see + * update_irq_load_avg(). + */ + irq = cpu_util_irq(rq); + if (unlikely(irq >= scale)) { + if (min) + *min = scale; + if (max) + *max = scale; + return scale; + } + + if (min) { + /* + * The minimum utilization returns the highest level between: + * - the computed DL bandwidth needed with the IRQ pressure which + * steals time to the deadline task. + * - The minimum performance requirement for CFS and/or RT. + */ + *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); + + /* + * When an RT task is runnable and uclamp is not used, we must + * ensure that the task will run at maximum compute capacity. + */ + if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) + *min = max(*min, scale); + } + + /* + * Because the time spend on RT/DL tasks is visible as 'lost' time to + * CFS tasks and we use the same metric to track the effective + * utilization (PELT windows are synchronized) we can directly add them + * to obtain the CPU's actual utilization. + */ + util = util_cfs + cpu_util_rt(rq); + util += cpu_util_dl(rq); + + /* + * The maximum hint is a soft bandwidth requirement, which can be lower + * than the actual utilization because of uclamp_max requirements. + */ + if (max) + *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); + + if (util >= scale) + return scale; + + /* + * There is still idle time; further improve the number by using the + * IRQ metric. Because IRQ/steal time is hidden from the task clock we + * need to scale the task numbers: + * + * max - irq + * U' = irq + --------- * U + * max + */ + util = scale_irq_capacity(util, irq, scale); + util += irq; + + return min(scale, util); +} + +unsigned long sched_cpu_util(int cpu) +{ + return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); +} +#endif /* CONFIG_SMP */ + +/** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + * + * The task of @pid, if found. %NULL otherwise. + */ +static struct task_struct *find_process_by_pid(pid_t pid) +{ + return pid ? find_task_by_vpid(pid) : current; +} + +static struct task_struct *find_get_task(pid_t pid) +{ + struct task_struct *p; + guard(rcu)(); + + p = find_process_by_pid(pid); + if (likely(p)) + get_task_struct(p); + + return p; +} + +DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), + find_get_task(pid), pid_t pid) + +/* + * sched_setparam() passes in -1 for its policy, to let the functions + * it calls know not to change it. + */ +#define SETPARAM_POLICY -1 + +static void __setscheduler_params(struct task_struct *p, + const struct sched_attr *attr) +{ + int policy = attr->sched_policy; + + if (policy == SETPARAM_POLICY) + policy = p->policy; + + p->policy = policy; + + if (dl_policy(policy)) + __setparam_dl(p, attr); + else if (fair_policy(policy)) + p->static_prio = NICE_TO_PRIO(attr->sched_nice); + + /* + * __sched_setscheduler() ensures attr->sched_priority == 0 when + * !rt_policy. Always setting this ensures that things like + * getparam()/getattr() don't report silly values for !rt tasks. + */ + p->rt_priority = attr->sched_priority; + p->normal_prio = normal_prio(p); + set_load_weight(p, true); +} + +/* + * Check the target process has a UID that matches the current process's: + */ +static bool check_same_owner(struct task_struct *p) +{ + const struct cred *cred = current_cred(), *pcred; + guard(rcu)(); + + pcred = __task_cred(p); + return (uid_eq(cred->euid, pcred->euid) || + uid_eq(cred->euid, pcred->uid)); +} + +#ifdef CONFIG_UCLAMP_TASK + +static int uclamp_validate(struct task_struct *p, + const struct sched_attr *attr) +{ + int util_min = p->uclamp_req[UCLAMP_MIN].value; + int util_max = p->uclamp_req[UCLAMP_MAX].value; + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { + util_min = attr->sched_util_min; + + if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) + return -EINVAL; + } + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { + util_max = attr->sched_util_max; + + if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) + return -EINVAL; + } + + if (util_min != -1 && util_max != -1 && util_min > util_max) + return -EINVAL; + + /* + * We have valid uclamp attributes; make sure uclamp is enabled. + * + * We need to do that here, because enabling static branches is a + * blocking operation which obviously cannot be done while holding + * scheduler locks. + */ + static_branch_enable(&sched_uclamp_used); + + return 0; +} + +static bool uclamp_reset(const struct sched_attr *attr, + enum uclamp_id clamp_id, + struct uclamp_se *uc_se) +{ + /* Reset on sched class change for a non user-defined clamp value. */ + if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && + !uc_se->user_defined) + return true; + + /* Reset on sched_util_{min,max} == -1. */ + if (clamp_id == UCLAMP_MIN && + attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && + attr->sched_util_min == -1) { + return true; + } + + if (clamp_id == UCLAMP_MAX && + attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && + attr->sched_util_max == -1) { + return true; + } + + return false; +} + +static void __setscheduler_uclamp(struct task_struct *p, + const struct sched_attr *attr) +{ + enum uclamp_id clamp_id; + + for_each_clamp_id(clamp_id) { + struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; + unsigned int value; + + if (!uclamp_reset(attr, clamp_id, uc_se)) + continue; + + /* + * RT by default have a 100% boost value that could be modified + * at runtime. + */ + if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) + value = sysctl_sched_uclamp_util_min_rt_default; + else + value = uclamp_none(clamp_id); + + uclamp_se_set(uc_se, value, false); + + } + + if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) + return; + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && + attr->sched_util_min != -1) { + uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], + attr->sched_util_min, true); + } + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && + attr->sched_util_max != -1) { + uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], + attr->sched_util_max, true); + } +} + +#else /* !CONFIG_UCLAMP_TASK: */ + +static inline int uclamp_validate(struct task_struct *p, + const struct sched_attr *attr) +{ + return -EOPNOTSUPP; +} +static void __setscheduler_uclamp(struct task_struct *p, + const struct sched_attr *attr) { } +#endif + +/* + * Allow unprivileged RT tasks to decrease priority. + * Only issue a capable test if needed and only once to avoid an audit + * event on permitted non-privileged operations: + */ +static int user_check_sched_setscheduler(struct task_struct *p, + const struct sched_attr *attr, + int policy, int reset_on_fork) +{ + if (fair_policy(policy)) { + if (attr->sched_nice < task_nice(p) && + !is_nice_reduction(p, attr->sched_nice)) + goto req_priv; + } + + if (rt_policy(policy)) { + unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); + + /* Can't set/change the rt policy: */ + if (policy != p->policy && !rlim_rtprio) + goto req_priv; + + /* Can't increase priority: */ + if (attr->sched_priority > p->rt_priority && + attr->sched_priority > rlim_rtprio) + goto req_priv; + } + + /* + * Can't set/change SCHED_DEADLINE policy at all for now + * (safest behavior); in the future we would like to allow + * unprivileged DL tasks to increase their relative deadline + * or reduce their runtime (both ways reducing utilization) + */ + if (dl_policy(policy)) + goto req_priv; + + /* + * Treat SCHED_IDLE as nice 20. Only allow a switch to + * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. + */ + if (task_has_idle_policy(p) && !idle_policy(policy)) { + if (!is_nice_reduction(p, task_nice(p))) + goto req_priv; + } + + /* Can't change other user's priorities: */ + if (!check_same_owner(p)) + goto req_priv; + + /* Normal users shall not reset the sched_reset_on_fork flag: */ + if (p->sched_reset_on_fork && !reset_on_fork) + goto req_priv; + + return 0; + +req_priv: + if (!capable(CAP_SYS_NICE)) + return -EPERM; + + return 0; +} + +int __sched_setscheduler(struct task_struct *p, + const struct sched_attr *attr, + bool user, bool pi) +{ + int oldpolicy = -1, policy = attr->sched_policy; + int retval, oldprio, newprio, queued, running; + const struct sched_class *prev_class; + struct balance_callback *head; + struct rq_flags rf; + int reset_on_fork; + int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; + struct rq *rq; + bool cpuset_locked = false; + + /* The pi code expects interrupts enabled */ + BUG_ON(pi && in_interrupt()); +recheck: + /* Double check policy once rq lock held: */ + if (policy < 0) { + reset_on_fork = p->sched_reset_on_fork; + policy = oldpolicy = p->policy; + } else { + reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); + + if (!valid_policy(policy)) + return -EINVAL; + } + + if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) + return -EINVAL; + + /* + * Valid priorities for SCHED_FIFO and SCHED_RR are + * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, + * SCHED_BATCH and SCHED_IDLE is 0. + */ + if (attr->sched_priority > MAX_RT_PRIO-1) + return -EINVAL; + if ((dl_policy(policy) && !__checkparam_dl(attr)) || + (rt_policy(policy) != (attr->sched_priority != 0))) + return -EINVAL; + + if (user) { + retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); + if (retval) + return retval; + + if (attr->sched_flags & SCHED_FLAG_SUGOV) + return -EINVAL; + + retval = security_task_setscheduler(p); + if (retval) + return retval; + } + + /* Update task specific "requested" clamps */ + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { + retval = uclamp_validate(p, attr); + if (retval) + return retval; + } + + /* + * SCHED_DEADLINE bandwidth accounting relies on stable cpusets + * information. + */ + if (dl_policy(policy) || dl_policy(p->policy)) { + cpuset_locked = true; + cpuset_lock(); + } + + /* + * Make sure no PI-waiters arrive (or leave) while we are + * changing the priority of the task: + * + * To be able to change p->policy safely, the appropriate + * runqueue lock must be held. + */ + rq = task_rq_lock(p, &rf); + update_rq_clock(rq); + + /* + * Changing the policy of the stop threads its a very bad idea: + */ + if (p == rq->stop) { + retval = -EINVAL; + goto unlock; + } + + /* + * If not changing anything there's no need to proceed further, + * but store a possible modification of reset_on_fork. + */ + if (unlikely(policy == p->policy)) { + if (fair_policy(policy) && attr->sched_nice != task_nice(p)) + goto change; + if (rt_policy(policy) && attr->sched_priority != p->rt_priority) + goto change; + if (dl_policy(policy) && dl_param_changed(p, attr)) + goto change; + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) + goto change; + + p->sched_reset_on_fork = reset_on_fork; + retval = 0; + goto unlock; + } +change: + + if (user) { +#ifdef CONFIG_RT_GROUP_SCHED + /* + * Do not allow real-time tasks into groups that have no runtime + * assigned. + */ + if (rt_bandwidth_enabled() && rt_policy(policy) && + task_group(p)->rt_bandwidth.rt_runtime == 0 && + !task_group_is_autogroup(task_group(p))) { + retval = -EPERM; + goto unlock; + } +#endif +#ifdef CONFIG_SMP + if (dl_bandwidth_enabled() && dl_policy(policy) && + !(attr->sched_flags & SCHED_FLAG_SUGOV)) { + cpumask_t *span = rq->rd->span; + + /* + * Don't allow tasks with an affinity mask smaller than + * the entire root_domain to become SCHED_DEADLINE. We + * will also fail if there's no bandwidth available. + */ + if (!cpumask_subset(span, p->cpus_ptr) || + rq->rd->dl_bw.bw == 0) { + retval = -EPERM; + goto unlock; + } + } +#endif + } + + /* Re-check policy now with rq lock held: */ + if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { + policy = oldpolicy = -1; + task_rq_unlock(rq, p, &rf); + if (cpuset_locked) + cpuset_unlock(); + goto recheck; + } + + /* + * If setscheduling to SCHED_DEADLINE (or changing the parameters + * of a SCHED_DEADLINE task) we need to check if enough bandwidth + * is available. + */ + if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { + retval = -EBUSY; + goto unlock; + } + + p->sched_reset_on_fork = reset_on_fork; + oldprio = p->prio; + + newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); + if (pi) { + /* + * Take priority boosted tasks into account. If the new + * effective priority is unchanged, we just store the new + * normal parameters and do not touch the scheduler class and + * the runqueue. This will be done when the task deboost + * itself. + */ + newprio = rt_effective_prio(p, newprio); + if (newprio == oldprio) + queue_flags &= ~DEQUEUE_MOVE; + } + + queued = task_on_rq_queued(p); + running = task_current(rq, p); + if (queued) + dequeue_task(rq, p, queue_flags); + if (running) + put_prev_task(rq, p); + + prev_class = p->sched_class; + + if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { + __setscheduler_params(p, attr); + __setscheduler_prio(p, newprio); + } + __setscheduler_uclamp(p, attr); + + if (queued) { + /* + * We enqueue to tail when the priority of a task is + * increased (user space view). + */ + if (oldprio < p->prio) + queue_flags |= ENQUEUE_HEAD; + + enqueue_task(rq, p, queue_flags); + } + if (running) + set_next_task(rq, p); + + check_class_changed(rq, p, prev_class, oldprio); + + /* Avoid rq from going away on us: */ + preempt_disable(); + head = splice_balance_callbacks(rq); + task_rq_unlock(rq, p, &rf); + + if (pi) { + if (cpuset_locked) + cpuset_unlock(); + rt_mutex_adjust_pi(p); + } + + /* Run balance callbacks after we've adjusted the PI chain: */ + balance_callbacks(rq, head); + preempt_enable(); + + return 0; + +unlock: + task_rq_unlock(rq, p, &rf); + if (cpuset_locked) + cpuset_unlock(); + return retval; +} + +static int _sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param, bool check) +{ + struct sched_attr attr = { + .sched_policy = policy, + .sched_priority = param->sched_priority, + .sched_nice = PRIO_TO_NICE(p->static_prio), + }; + + /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ + if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { + attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + policy &= ~SCHED_RESET_ON_FORK; + attr.sched_policy = policy; + } + + return __sched_setscheduler(p, &attr, check, true); +} +/** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Use sched_set_fifo(), read its comment. + * + * Return: 0 on success. An error code otherwise. + * + * NOTE that the task may be already dead. + */ +int sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param) +{ + return _sched_setscheduler(p, policy, param, true); +} + +int sched_setattr(struct task_struct *p, const struct sched_attr *attr) +{ + return __sched_setscheduler(p, attr, true, true); +} + +int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) +{ + return __sched_setscheduler(p, attr, false, true); +} +EXPORT_SYMBOL_GPL(sched_setattr_nocheck); + +/** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission. For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + * + * Return: 0 on success. An error code otherwise. + */ +int sched_setscheduler_nocheck(struct task_struct *p, int policy, + const struct sched_param *param) +{ + return _sched_setscheduler(p, policy, param, false); +} + +/* + * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally + * incapable of resource management, which is the one thing an OS really should + * be doing. + * + * This is of course the reason it is limited to privileged users only. + * + * Worse still; it is fundamentally impossible to compose static priority + * workloads. You cannot take two correctly working static prio workloads + * and smash them together and still expect them to work. + * + * For this reason 'all' FIFO tasks the kernel creates are basically at: + * + * MAX_RT_PRIO / 2 + * + * The administrator _MUST_ configure the system, the kernel simply doesn't + * know enough information to make a sensible choice. + */ +void sched_set_fifo(struct task_struct *p) +{ + struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; + WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo); + +/* + * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. + */ +void sched_set_fifo_low(struct task_struct *p) +{ + struct sched_param sp = { .sched_priority = 1 }; + WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo_low); + +void sched_set_normal(struct task_struct *p, int nice) +{ + struct sched_attr attr = { + .sched_policy = SCHED_NORMAL, + .sched_nice = nice, + }; + WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_normal); + +static int +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +{ + struct sched_param lparam; + + if (!param || pid < 0) + return -EINVAL; + if (copy_from_user(&lparam, param, sizeof(struct sched_param))) + return -EFAULT; + + CLASS(find_get_task, p)(pid); + if (!p) + return -ESRCH; + + return sched_setscheduler(p, policy, &lparam); +} + +/* + * Mimics kernel/events/core.c perf_copy_attr(). + */ +static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) +{ + u32 size; + int ret; + + /* Zero the full structure, so that a short copy will be nice: */ + memset(attr, 0, sizeof(*attr)); + + ret = get_user(size, &uattr->size); + if (ret) + return ret; + + /* ABI compatibility quirk: */ + if (!size) + size = SCHED_ATTR_SIZE_VER0; + if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) + goto err_size; + + ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); + if (ret) { + if (ret == -E2BIG) + goto err_size; + return ret; + } + + if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && + size < SCHED_ATTR_SIZE_VER1) + return -EINVAL; + + /* + * XXX: Do we want to be lenient like existing syscalls; or do we want + * to be strict and return an error on out-of-bounds values? + */ + attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); + + return 0; + +err_size: + put_user(sizeof(*attr), &uattr->size); + return -E2BIG; +} + +static void get_params(struct task_struct *p, struct sched_attr *attr) +{ + if (task_has_dl_policy(p)) + __getparam_dl(p, attr); + else if (task_has_rt_policy(p)) + attr->sched_priority = p->rt_priority; + else + attr->sched_nice = task_nice(p); +} + +/** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) +{ + if (policy < 0) + return -EINVAL; + + return do_sched_setscheduler(pid, policy, param); +} + +/** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) +{ + return do_sched_setscheduler(pid, SETPARAM_POLICY, param); +} + +/** + * sys_sched_setattr - same as above, but with extended sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @flags: for future extension. + */ +SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, + unsigned int, flags) +{ + struct sched_attr attr; + int retval; + + if (!uattr || pid < 0 || flags) + return -EINVAL; + + retval = sched_copy_attr(uattr, &attr); + if (retval) + return retval; + + if ((int)attr.sched_policy < 0) + return -EINVAL; + if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) + attr.sched_policy = SETPARAM_POLICY; + + CLASS(find_get_task, p)(pid); + if (!p) + return -ESRCH; + + if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) + get_params(p, &attr); + + return sched_setattr(p, &attr); +} + +/** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + * + * Return: On success, the policy of the thread. Otherwise, a negative error + * code. + */ +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) +{ + struct task_struct *p; + int retval; + + if (pid < 0) + return -EINVAL; + + guard(rcu)(); + p = find_process_by_pid(pid); + if (!p) + return -ESRCH; + + retval = security_task_getscheduler(p); + if (!retval) { + retval = p->policy; + if (p->sched_reset_on_fork) + retval |= SCHED_RESET_ON_FORK; + } + return retval; +} + +/** + * sys_sched_getparam - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + * + * Return: On success, 0 and the RT priority is in @param. Otherwise, an error + * code. + */ +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) +{ + struct sched_param lp = { .sched_priority = 0 }; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + + scoped_guard (rcu) { + p = find_process_by_pid(pid); + if (!p) + return -ESRCH; + + retval = security_task_getscheduler(p); + if (retval) + return retval; + + if (task_has_rt_policy(p)) + lp.sched_priority = p->rt_priority; + } + + /* + * This one might sleep, we cannot do it with a spinlock held ... + */ + return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; +} + +/* + * Copy the kernel size attribute structure (which might be larger + * than what user-space knows about) to user-space. + * + * Note that all cases are valid: user-space buffer can be larger or + * smaller than the kernel-space buffer. The usual case is that both + * have the same size. + */ +static int +sched_attr_copy_to_user(struct sched_attr __user *uattr, + struct sched_attr *kattr, + unsigned int usize) +{ + unsigned int ksize = sizeof(*kattr); + + if (!access_ok(uattr, usize)) + return -EFAULT; + + /* + * sched_getattr() ABI forwards and backwards compatibility: + * + * If usize == ksize then we just copy everything to user-space and all is good. + * + * If usize < ksize then we only copy as much as user-space has space for, + * this keeps ABI compatibility as well. We skip the rest. + * + * If usize > ksize then user-space is using a newer version of the ABI, + * which part the kernel doesn't know about. Just ignore it - tooling can + * detect the kernel's knowledge of attributes from the attr->size value + * which is set to ksize in this case. + */ + kattr->size = min(usize, ksize); + + if (copy_to_user(uattr, kattr, kattr->size)) + return -EFAULT; + + return 0; +} + +/** + * sys_sched_getattr - similar to sched_getparam, but with sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @usize: sizeof(attr) for fwd/bwd comp. + * @flags: for future extension. + */ +SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, + unsigned int, usize, unsigned int, flags) +{ + struct sched_attr kattr = { }; + struct task_struct *p; + int retval; + + if (!uattr || pid < 0 || usize > PAGE_SIZE || + usize < SCHED_ATTR_SIZE_VER0 || flags) + return -EINVAL; + + scoped_guard (rcu) { + p = find_process_by_pid(pid); + if (!p) + return -ESRCH; + + retval = security_task_getscheduler(p); + if (retval) + return retval; + + kattr.sched_policy = p->policy; + if (p->sched_reset_on_fork) + kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + get_params(p, &kattr); + kattr.sched_flags &= SCHED_FLAG_ALL; + +#ifdef CONFIG_UCLAMP_TASK + /* + * This could race with another potential updater, but this is fine + * because it'll correctly read the old or the new value. We don't need + * to guarantee who wins the race as long as it doesn't return garbage. + */ + kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; + kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; +#endif + } + + return sched_attr_copy_to_user(uattr, &kattr, usize); +} + +#ifdef CONFIG_SMP +int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) +{ + /* + * If the task isn't a deadline task or admission control is + * disabled then we don't care about affinity changes. + */ + if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) + return 0; + + /* + * Since bandwidth control happens on root_domain basis, + * if admission test is enabled, we only admit -deadline + * tasks allowed to run on all the CPUs in the task's + * root_domain. + */ + guard(rcu)(); + if (!cpumask_subset(task_rq(p)->rd->span, mask)) + return -EBUSY; + + return 0; +} +#endif /* CONFIG_SMP */ + +int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) +{ + int retval; + cpumask_var_t cpus_allowed, new_mask; + + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) + return -ENOMEM; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_free_cpus_allowed; + } + + cpuset_cpus_allowed(p, cpus_allowed); + cpumask_and(new_mask, ctx->new_mask, cpus_allowed); + + ctx->new_mask = new_mask; + ctx->flags |= SCA_CHECK; + + retval = dl_task_check_affinity(p, new_mask); + if (retval) + goto out_free_new_mask; + + retval = __set_cpus_allowed_ptr(p, ctx); + if (retval) + goto out_free_new_mask; + + cpuset_cpus_allowed(p, cpus_allowed); + if (!cpumask_subset(new_mask, cpus_allowed)) { + /* + * We must have raced with a concurrent cpuset update. + * Just reset the cpumask to the cpuset's cpus_allowed. + */ + cpumask_copy(new_mask, cpus_allowed); + + /* + * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() + * will restore the previous user_cpus_ptr value. + * + * In the unlikely event a previous user_cpus_ptr exists, + * we need to further restrict the mask to what is allowed + * by that old user_cpus_ptr. + */ + if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { + bool empty = !cpumask_and(new_mask, new_mask, + ctx->user_mask); + + if (WARN_ON_ONCE(empty)) + cpumask_copy(new_mask, cpus_allowed); + } + __set_cpus_allowed_ptr(p, ctx); + retval = -EINVAL; + } + +out_free_new_mask: + free_cpumask_var(new_mask); +out_free_cpus_allowed: + free_cpumask_var(cpus_allowed); + return retval; +} + +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) +{ + struct affinity_context ac; + struct cpumask *user_mask; + int retval; + + CLASS(find_get_task, p)(pid); + if (!p) + return -ESRCH; + + if (p->flags & PF_NO_SETAFFINITY) + return -EINVAL; + + if (!check_same_owner(p)) { + guard(rcu)(); + if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) + return -EPERM; + } + + retval = security_task_setscheduler(p); + if (retval) + return retval; + + /* + * With non-SMP configs, user_cpus_ptr/user_mask isn't used and + * alloc_user_cpus_ptr() returns NULL. + */ + user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); + if (user_mask) { + cpumask_copy(user_mask, in_mask); + } else if (IS_ENABLED(CONFIG_SMP)) { + return -ENOMEM; + } + + ac = (struct affinity_context){ + .new_mask = in_mask, + .user_mask = user_mask, + .flags = SCA_USER, + }; + + retval = __sched_setaffinity(p, &ac); + kfree(ac.user_mask); + + return retval; +} + +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, + struct cpumask *new_mask) +{ + if (len < cpumask_size()) + cpumask_clear(new_mask); + else if (len > cpumask_size()) + len = cpumask_size(); + + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; +} + +/** + * sys_sched_setaffinity - set the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new CPU mask + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + cpumask_var_t new_mask; + int retval; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) + return -ENOMEM; + + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); + if (retval == 0) + retval = sched_setaffinity(pid, new_mask); + free_cpumask_var(new_mask); + return retval; +} + +long sched_getaffinity(pid_t pid, struct cpumask *mask) +{ + struct task_struct *p; + int retval; + + guard(rcu)(); + p = find_process_by_pid(pid); + if (!p) + return -ESRCH; + + retval = security_task_getscheduler(p); + if (retval) + return retval; + + guard(raw_spinlock_irqsave)(&p->pi_lock); + cpumask_and(mask, &p->cpus_mask, cpu_active_mask); + + return 0; +} + +/** + * sys_sched_getaffinity - get the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current CPU mask + * + * Return: size of CPU mask copied to user_mask_ptr on success. An + * error code otherwise. + */ +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + int ret; + cpumask_var_t mask; + + if ((len * BITS_PER_BYTE) < nr_cpu_ids) + return -EINVAL; + if (len & (sizeof(unsigned long)-1)) + return -EINVAL; + + if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) + return -ENOMEM; + + ret = sched_getaffinity(pid, mask); + if (ret == 0) { + unsigned int retlen = min(len, cpumask_size()); + + if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) + ret = -EFAULT; + else + ret = retlen; + } + free_cpumask_var(mask); + + return ret; +} + +static void do_sched_yield(void) +{ + struct rq_flags rf; + struct rq *rq; + + rq = this_rq_lock_irq(&rf); + + schedstat_inc(rq->yld_count); + current->sched_class->yield_task(rq); + + preempt_disable(); + rq_unlock_irq(rq, &rf); + sched_preempt_enable_no_resched(); + + schedule(); +} + +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + * + * Return: 0. + */ +SYSCALL_DEFINE0(sched_yield) +{ + do_sched_yield(); + return 0; +} + +/** + * yield - yield the current processor to other threads. + * + * Do not ever use this function, there's a 99% chance you're doing it wrong. + * + * The scheduler is at all times free to pick the calling task as the most + * eligible task to run, if removing the yield() call from your code breaks + * it, it's already broken. + * + * Typical broken usage is: + * + * while (!event) + * yield(); + * + * where one assumes that yield() will let 'the other' process run that will + * make event true. If the current task is a SCHED_FIFO task that will never + * happen. Never use yield() as a progress guarantee!! + * + * If you want to use yield() to wait for something, use wait_event(). + * If you want to use yield() to be 'nice' for others, use cond_resched(). + * If you still want to use yield(), do not! + */ +void __sched yield(void) +{ + set_current_state(TASK_RUNNING); + do_sched_yield(); +} +EXPORT_SYMBOL(yield); + +/** + * yield_to - yield the current processor to another thread in + * your thread group, or accelerate that thread toward the + * processor it's on. + * @p: target task + * @preempt: whether task preemption is allowed or not + * + * It's the caller's job to ensure that the target task struct + * can't go away on us before we can do any checks. + * + * Return: + * true (>0) if we indeed boosted the target task. + * false (0) if we failed to boost the target. + * -ESRCH if there's no task to yield to. + */ +int __sched yield_to(struct task_struct *p, bool preempt) +{ + struct task_struct *curr = current; + struct rq *rq, *p_rq; + int yielded = 0; + + scoped_guard (irqsave) { + rq = this_rq(); + +again: + p_rq = task_rq(p); + /* + * If we're the only runnable task on the rq and target rq also + * has only one task, there's absolutely no point in yielding. + */ + if (rq->nr_running == 1 && p_rq->nr_running == 1) + return -ESRCH; + + guard(double_rq_lock)(rq, p_rq); + if (task_rq(p) != p_rq) + goto again; + + if (!curr->sched_class->yield_to_task) + return 0; + + if (curr->sched_class != p->sched_class) + return 0; + + if (task_on_cpu(p_rq, p) || !task_is_running(p)) + return 0; + + yielded = curr->sched_class->yield_to_task(rq, p); + if (yielded) { + schedstat_inc(rq->yld_count); + /* + * Make p's CPU reschedule; pick_next_entity + * takes care of fairness. + */ + if (preempt && rq != p_rq) + resched_curr(p_rq); + } + } + + if (yielded) + schedule(); + + return yielded; +} +EXPORT_SYMBOL_GPL(yield_to); + +/** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the maximum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = MAX_RT_PRIO-1; + break; + case SCHED_DEADLINE: + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + break; + } + return ret; +} + +/** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the minimum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = 1; + break; + case SCHED_DEADLINE: + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + } + return ret; +} + +static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) +{ + unsigned int time_slice = 0; + int retval; + + if (pid < 0) + return -EINVAL; + + scoped_guard (rcu) { + struct task_struct *p = find_process_by_pid(pid); + if (!p) + return -ESRCH; + + retval = security_task_getscheduler(p); + if (retval) + return retval; + + scoped_guard (task_rq_lock, p) { + struct rq *rq = scope.rq; + if (p->sched_class->get_rr_interval) + time_slice = p->sched_class->get_rr_interval(rq, p); + } + } + + jiffies_to_timespec64(time_slice, t); + return 0; +} + +/** + * sys_sched_rr_get_interval - return the default time-slice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the time-slice value. + * + * this syscall writes the default time-slice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + * + * Return: On success, 0 and the time-slice is in @interval. Otherwise, + * an error code. + */ +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, + struct __kernel_timespec __user *, interval) +{ + struct timespec64 t; + int retval = sched_rr_get_interval(pid, &t); + + if (retval == 0) + retval = put_timespec64(&t, interval); + + return retval; +} + +#ifdef CONFIG_COMPAT_32BIT_TIME +SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, + struct old_timespec32 __user *, interval) +{ + struct timespec64 t; + int retval = sched_rr_get_interval(pid, &t); + + if (retval == 0) + retval = put_old_timespec32(&t, interval); + return retval; +} +#endif |