summaryrefslogtreecommitdiff
path: root/kernel/sched/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r--kernel/sched/core.c1874
1 files changed, 56 insertions, 1818 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 35a35e36024b..ae5ef3013a55 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2,9 +2,10 @@
/*
* kernel/sched/core.c
*
- * Core kernel scheduler code and related syscalls
+ * Core kernel CPU scheduler code
*
* Copyright (C) 1991-2002 Linus Torvalds
+ * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
*/
#include <linux/highmem.h>
#include <linux/hrtimer_api.h>
@@ -706,14 +707,14 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
/*
* Since irq_time is only updated on {soft,}irq_exit, we might run into
* this case when a previous update_rq_clock() happened inside a
- * {soft,}irq region.
+ * {soft,}IRQ region.
*
* When this happens, we stop ->clock_task and only update the
* prev_irq_time stamp to account for the part that fit, so that a next
* update will consume the rest. This ensures ->clock_task is
* monotonic.
*
- * It does however cause some slight miss-attribution of {soft,}irq
+ * It does however cause some slight miss-attribution of {soft,}IRQ
* time, a more accurate solution would be to update the irq_time using
* the current rq->clock timestamp, except that would require using
* atomic ops.
@@ -825,7 +826,7 @@ static void __hrtick_start(void *arg)
/*
* Called to set the hrtick timer state.
*
- * called with rq->lock held and irqs disabled
+ * called with rq->lock held and IRQs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
@@ -849,7 +850,7 @@ void hrtick_start(struct rq *rq, u64 delay)
/*
* Called to set the hrtick timer state.
*
- * called with rq->lock held and irqs disabled
+ * called with rq->lock held and IRQs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
@@ -883,7 +884,7 @@ static inline void hrtick_rq_init(struct rq *rq)
#endif /* CONFIG_SCHED_HRTICK */
/*
- * cmpxchg based fetch_or, macro so it works for different integer types
+ * try_cmpxchg based fetch_or() macro so it works for different integer types:
*/
#define fetch_or(ptr, mask) \
({ \
@@ -1080,7 +1081,7 @@ void resched_cpu(int cpu)
*
* We don't do similar optimization for completely idle system, as
* selecting an idle CPU will add more delays to the timers than intended
- * (as that CPU's timer base may not be uptodate wrt jiffies etc).
+ * (as that CPU's timer base may not be up to date wrt jiffies etc).
*/
int get_nohz_timer_target(void)
{
@@ -1140,7 +1141,7 @@ static void wake_up_idle_cpu(int cpu)
* nohz functions that would need to follow TIF_NR_POLLING
* clearing:
*
- * - On most archs, a simple fetch_or on ti::flags with a
+ * - On most architectures, a simple fetch_or on ti::flags with a
* "0" value would be enough to know if an IPI needs to be sent.
*
* - x86 needs to perform a last need_resched() check between
@@ -1323,30 +1324,27 @@ int tg_nop(struct task_group *tg, void *data)
}
#endif
-static void set_load_weight(struct task_struct *p, bool update_load)
+void set_load_weight(struct task_struct *p, bool update_load)
{
int prio = p->static_prio - MAX_RT_PRIO;
- struct load_weight *load = &p->se.load;
+ struct load_weight lw;
- /*
- * SCHED_IDLE tasks get minimal weight:
- */
if (task_has_idle_policy(p)) {
- load->weight = scale_load(WEIGHT_IDLEPRIO);
- load->inv_weight = WMULT_IDLEPRIO;
- return;
+ lw.weight = scale_load(WEIGHT_IDLEPRIO);
+ lw.inv_weight = WMULT_IDLEPRIO;
+ } else {
+ lw.weight = scale_load(sched_prio_to_weight[prio]);
+ lw.inv_weight = sched_prio_to_wmult[prio];
}
/*
* SCHED_OTHER tasks have to update their load when changing their
* weight
*/
- if (update_load && p->sched_class == &fair_sched_class) {
- reweight_task(p, prio);
- } else {
- load->weight = scale_load(sched_prio_to_weight[prio]);
- load->inv_weight = sched_prio_to_wmult[prio];
- }
+ if (update_load && p->sched_class == &fair_sched_class)
+ reweight_task(p, &lw);
+ else
+ p->se.load = lw;
}
#ifdef CONFIG_UCLAMP_TASK
@@ -1383,7 +1381,7 @@ static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY
* This knob will not override the system default sched_util_clamp_min defined
* above.
*/
-static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
+unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
/* All clamps are required to be less or equal than these values */
static struct uclamp_se uclamp_default[UCLAMP_CNT];
@@ -1408,32 +1406,6 @@ static struct uclamp_se uclamp_default[UCLAMP_CNT];
*/
DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
-/* Integer rounded range for each bucket */
-#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
-
-#define for_each_clamp_id(clamp_id) \
- for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
-
-static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
-{
- return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
-}
-
-static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
-{
- if (clamp_id == UCLAMP_MIN)
- return 0;
- return SCHED_CAPACITY_SCALE;
-}
-
-static inline void uclamp_se_set(struct uclamp_se *uc_se,
- unsigned int value, bool user_defined)
-{
- uc_se->value = value;
- uc_se->bucket_id = uclamp_bucket_id(value);
- uc_se->user_defined = user_defined;
-}
-
static inline unsigned int
uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
@@ -1675,7 +1647,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
rq_clamp = uclamp_rq_get(rq, clamp_id);
/*
* Defensive programming: this should never happen. If it happens,
- * e.g. due to future modification, warn and fixup the expected value.
+ * e.g. due to future modification, warn and fix up the expected value.
*/
SCHED_WARN_ON(bucket->value > rq_clamp);
if (bucket->value >= rq_clamp) {
@@ -1897,107 +1869,6 @@ undo:
}
#endif
-static int uclamp_validate(struct task_struct *p,
- const struct sched_attr *attr)
-{
- int util_min = p->uclamp_req[UCLAMP_MIN].value;
- int util_max = p->uclamp_req[UCLAMP_MAX].value;
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
- util_min = attr->sched_util_min;
-
- if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
- return -EINVAL;
- }
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
- util_max = attr->sched_util_max;
-
- if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
- return -EINVAL;
- }
-
- if (util_min != -1 && util_max != -1 && util_min > util_max)
- return -EINVAL;
-
- /*
- * We have valid uclamp attributes; make sure uclamp is enabled.
- *
- * We need to do that here, because enabling static branches is a
- * blocking operation which obviously cannot be done while holding
- * scheduler locks.
- */
- static_branch_enable(&sched_uclamp_used);
-
- return 0;
-}
-
-static bool uclamp_reset(const struct sched_attr *attr,
- enum uclamp_id clamp_id,
- struct uclamp_se *uc_se)
-{
- /* Reset on sched class change for a non user-defined clamp value. */
- if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
- !uc_se->user_defined)
- return true;
-
- /* Reset on sched_util_{min,max} == -1. */
- if (clamp_id == UCLAMP_MIN &&
- attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
- attr->sched_util_min == -1) {
- return true;
- }
-
- if (clamp_id == UCLAMP_MAX &&
- attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
- attr->sched_util_max == -1) {
- return true;
- }
-
- return false;
-}
-
-static void __setscheduler_uclamp(struct task_struct *p,
- const struct sched_attr *attr)
-{
- enum uclamp_id clamp_id;
-
- for_each_clamp_id(clamp_id) {
- struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
- unsigned int value;
-
- if (!uclamp_reset(attr, clamp_id, uc_se))
- continue;
-
- /*
- * RT by default have a 100% boost value that could be modified
- * at runtime.
- */
- if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
- value = sysctl_sched_uclamp_util_min_rt_default;
- else
- value = uclamp_none(clamp_id);
-
- uclamp_se_set(uc_se, value, false);
-
- }
-
- if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
- return;
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
- attr->sched_util_min != -1) {
- uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
- attr->sched_util_min, true);
- }
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
- attr->sched_util_max != -1) {
- uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
- attr->sched_util_max, true);
- }
-}
-
static void uclamp_fork(struct task_struct *p)
{
enum uclamp_id clamp_id;
@@ -2065,13 +1936,6 @@ static void __init init_uclamp(void)
#else /* !CONFIG_UCLAMP_TASK */
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
-static inline int uclamp_validate(struct task_struct *p,
- const struct sched_attr *attr)
-{
- return -EOPNOTSUPP;
-}
-static void __setscheduler_uclamp(struct task_struct *p,
- const struct sched_attr *attr) { }
static inline void uclamp_fork(struct task_struct *p) { }
static inline void uclamp_post_fork(struct task_struct *p) { }
static inline void init_uclamp(void) { }
@@ -2101,7 +1965,7 @@ unsigned long get_wchan(struct task_struct *p)
return ip;
}
-static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
+void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (!(flags & ENQUEUE_NOCLOCK))
update_rq_clock(rq);
@@ -2118,7 +1982,7 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
sched_core_enqueue(rq, p);
}
-static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (sched_core_enabled(rq))
sched_core_dequeue(rq, p, flags);
@@ -2156,52 +2020,6 @@ void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
dequeue_task(rq, p, flags);
}
-static inline int __normal_prio(int policy, int rt_prio, int nice)
-{
- int prio;
-
- if (dl_policy(policy))
- prio = MAX_DL_PRIO - 1;
- else if (rt_policy(policy))
- prio = MAX_RT_PRIO - 1 - rt_prio;
- else
- prio = NICE_TO_PRIO(nice);
-
- return prio;
-}
-
-/*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
-static inline int normal_prio(struct task_struct *p)
-{
- return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
-}
-
-/*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
-static int effective_prio(struct task_struct *p)
-{
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
-}
-
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
@@ -2220,9 +2038,9 @@ inline int task_curr(const struct task_struct *p)
* this means any call to check_class_changed() must be followed by a call to
* balance_callback().
*/
-static inline void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio)
+void check_class_changed(struct rq *rq, struct task_struct *p,
+ const struct sched_class *prev_class,
+ int oldprio)
{
if (prev_class != p->sched_class) {
if (prev_class->switched_from)
@@ -2391,9 +2209,6 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state
static void
__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx);
-
static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{
struct affinity_context ac = {
@@ -2408,7 +2223,7 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
return;
/*
- * Violates locking rules! see comment in __do_set_cpus_allowed().
+ * Violates locking rules! See comment in __do_set_cpus_allowed().
*/
__do_set_cpus_allowed(p, &ac);
}
@@ -2575,7 +2390,7 @@ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
}
/*
- * migration_cpu_stop - this will be executed by a highprio stopper thread
+ * migration_cpu_stop - this will be executed by a high-prio stopper thread
* and performs thread migration by bumping thread off CPU then
* 'pushing' onto another runqueue.
*/
@@ -2820,16 +2635,6 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
}
-static cpumask_t *alloc_user_cpus_ptr(int node)
-{
- /*
- * See do_set_cpus_allowed() above for the rcu_head usage.
- */
- int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
-
- return kmalloc_node(size, GFP_KERNEL, node);
-}
-
int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
int node)
{
@@ -3198,8 +3003,7 @@ out:
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx)
+int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
{
struct rq_flags rf;
struct rq *rq;
@@ -3318,9 +3122,6 @@ out_free_mask:
free_cpumask_var(new_mask);
}
-static int
-__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
-
/*
* Restore the affinity of a task @p which was previously restricted by a
* call to force_compatible_cpus_allowed_ptr().
@@ -3700,12 +3501,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)
#else /* CONFIG_SMP */
-static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx)
-{
- return set_cpus_allowed_ptr(p, ctx->new_mask);
-}
-
static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
static inline bool rq_has_pinned_tasks(struct rq *rq)
@@ -3713,11 +3508,6 @@ static inline bool rq_has_pinned_tasks(struct rq *rq)
return false;
}
-static inline cpumask_t *alloc_user_cpus_ptr(int node)
-{
- return NULL;
-}
-
#endif /* !CONFIG_SMP */
static void
@@ -3900,8 +3690,8 @@ void sched_ttwu_pending(void *arg)
* it is possible for select_idle_siblings() to stack a number
* of tasks on this CPU during that window.
*
- * It is ok to clear ttwu_pending when another task pending.
- * We will receive IPI after local irq enabled and then enqueue it.
+ * It is OK to clear ttwu_pending when another task pending.
+ * We will receive IPI after local IRQ enabled and then enqueue it.
* Since now nr_running > 0, idle_cpu() will always get correct result.
*/
WRITE_ONCE(rq->ttwu_pending, 0);
@@ -5094,7 +4884,7 @@ __splice_balance_callbacks(struct rq *rq, bool split)
return head;
}
-static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
+struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
return __splice_balance_callbacks(rq, true);
}
@@ -5104,7 +4894,7 @@ static void __balance_callbacks(struct rq *rq)
do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
}
-static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
+void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
unsigned long flags;
@@ -5121,15 +4911,6 @@ static inline void __balance_callbacks(struct rq *rq)
{
}
-static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
-{
- return NULL;
-}
-
-static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
-{
-}
-
#endif
static inline void
@@ -5232,7 +5013,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,
*
* The context switch have flipped the stack from under us and restored the
* local variables which were saved when this task called schedule() in the
- * past. prev == current is still correct but we need to recalculate this_rq
+ * past. 'prev == current' is still correct but we need to recalculate this_rq
* because prev may have moved to another CPU.
*/
static struct rq *finish_task_switch(struct task_struct *prev)
@@ -5555,9 +5336,9 @@ EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity *curr = (&p->se)->cfs_rq->curr;
+ struct sched_entity *curr = p->se.cfs_rq->curr;
#else
- struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
+ struct sched_entity *curr = task_rq(p)->cfs.curr;
#endif
prefetch(curr);
prefetch(&curr->exec_start);
@@ -5578,7 +5359,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
/*
* 64-bit doesn't need locks to atomically read a 64-bit value.
* So we have a optimization chance when the task's delta_exec is 0.
- * Reading ->on_cpu is racy, but this is ok.
+ * Reading ->on_cpu is racy, but this is OK.
*
* If we race with it leaving CPU, we'll take a lock. So we're correct.
* If we race with it entering CPU, unaccounted time is 0. This is
@@ -6856,7 +6637,7 @@ void __sched schedule_idle(void)
{
/*
* As this skips calling sched_submit_work(), which the idle task does
- * regardless because that function is a nop when the task is in a
+ * regardless because that function is a NOP when the task is in a
* TASK_RUNNING state, make sure this isn't used someplace that the
* current task can be in any other state. Note, idle is always in the
* TASK_RUNNING state.
@@ -7051,9 +6832,9 @@ EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
/*
* This is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
+ * off of IRQ context.
+ * Note, that this is called and return with IRQs disabled. This will
+ * protect us against recursive calling from IRQ contexts.
*/
asmlinkage __visible void __sched preempt_schedule_irq(void)
{
@@ -7083,7 +6864,7 @@ int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flag
}
EXPORT_SYMBOL(default_wake_function);
-static void __setscheduler_prio(struct task_struct *p, int prio)
+void __setscheduler_prio(struct task_struct *p, int prio)
{
if (dl_prio(prio))
p->sched_class = &dl_sched_class;
@@ -7123,21 +6904,6 @@ void rt_mutex_post_schedule(void)
lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
}
-static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
-{
- if (pi_task)
- prio = min(prio, pi_task->prio);
-
- return prio;
-}
-
-static inline int rt_effective_prio(struct task_struct *p, int prio)
-{
- struct task_struct *pi_task = rt_mutex_get_top_task(p);
-
- return __rt_effective_prio(pi_task, prio);
-}
-
/*
* rt_mutex_setprio - set the current priority of a task
* @p: task to boost
@@ -7187,7 +6953,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
goto out_unlock;
/*
- * Idle task boosting is a nono in general. There is one
+ * Idle task boosting is a no-no in general. There is one
* exception, when PREEMPT_RT and NOHZ is active:
*
* The idle task calls get_next_timer_interrupt() and holds
@@ -7266,1325 +7032,8 @@ out_unlock:
preempt_enable();
}
-#else
-static inline int rt_effective_prio(struct task_struct *p, int prio)
-{
- return prio;
-}
-#endif
-
-void set_user_nice(struct task_struct *p, long nice)
-{
- bool queued, running;
- struct rq *rq;
- int old_prio;
-
- if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
- return;
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- CLASS(task_rq_lock, rq_guard)(p);
- rq = rq_guard.rq;
-
- update_rq_clock(rq);
-
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it won't have any effect on scheduling until the task is
- * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
- */
- if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
- p->static_prio = NICE_TO_PRIO(nice);
- return;
- }
-
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
- if (running)
- put_prev_task(rq, p);
-
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p, true);
- old_prio = p->prio;
- p->prio = effective_prio(p);
-
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
-
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- p->sched_class->prio_changed(rq, p, old_prio);
-}
-EXPORT_SYMBOL(set_user_nice);
-
-/*
- * is_nice_reduction - check if nice value is an actual reduction
- *
- * Similar to can_nice() but does not perform a capability check.
- *
- * @p: task
- * @nice: nice value
- */
-static bool is_nice_reduction(const struct task_struct *p, const int nice)
-{
- /* Convert nice value [19,-20] to rlimit style value [1,40]: */
- int nice_rlim = nice_to_rlimit(nice);
-
- return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
-}
-
-/*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
-int can_nice(const struct task_struct *p, const int nice)
-{
- return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
-}
-
-#ifdef __ARCH_WANT_SYS_NICE
-
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-SYSCALL_DEFINE1(nice, int, increment)
-{
- long nice, retval;
-
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
- nice = task_nice(current) + increment;
-
- nice = clamp_val(nice, MIN_NICE, MAX_NICE);
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
-
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
-
- set_user_nice(current, nice);
- return 0;
-}
-
-#endif
-
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * Return: The priority value as seen by users in /proc.
- *
- * sched policy return value kernel prio user prio/nice
- *
- * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
- * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
- * deadline -101 -1 0
- */
-int task_prio(const struct task_struct *p)
-{
- return p->prio - MAX_RT_PRIO;
-}
-
-/**
- * idle_cpu - is a given CPU idle currently?
- * @cpu: the processor in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
-int idle_cpu(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
-
- if (rq->curr != rq->idle)
- return 0;
-
- if (rq->nr_running)
- return 0;
-
-#ifdef CONFIG_SMP
- if (rq->ttwu_pending)
- return 0;
-#endif
-
- return 1;
-}
-
-/**
- * available_idle_cpu - is a given CPU idle for enqueuing work.
- * @cpu: the CPU in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
-int available_idle_cpu(int cpu)
-{
- if (!idle_cpu(cpu))
- return 0;
-
- if (vcpu_is_preempted(cpu))
- return 0;
-
- return 1;
-}
-
-/**
- * idle_task - return the idle task for a given CPU.
- * @cpu: the processor in question.
- *
- * Return: The idle task for the CPU @cpu.
- */
-struct task_struct *idle_task(int cpu)
-{
- return cpu_rq(cpu)->idle;
-}
-
-#ifdef CONFIG_SCHED_CORE
-int sched_core_idle_cpu(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
-
- if (sched_core_enabled(rq) && rq->curr == rq->idle)
- return 1;
-
- return idle_cpu(cpu);
-}
-
-#endif
-
-#ifdef CONFIG_SMP
-/*
- * This function computes an effective utilization for the given CPU, to be
- * used for frequency selection given the linear relation: f = u * f_max.
- *
- * The scheduler tracks the following metrics:
- *
- * cpu_util_{cfs,rt,dl,irq}()
- * cpu_bw_dl()
- *
- * Where the cfs,rt and dl util numbers are tracked with the same metric and
- * synchronized windows and are thus directly comparable.
- *
- * The cfs,rt,dl utilization are the running times measured with rq->clock_task
- * which excludes things like IRQ and steal-time. These latter are then accrued
- * in the irq utilization.
- *
- * The DL bandwidth number otoh is not a measured metric but a value computed
- * based on the task model parameters and gives the minimal utilization
- * required to meet deadlines.
- */
-unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- unsigned long *min,
- unsigned long *max)
-{
- unsigned long util, irq, scale;
- struct rq *rq = cpu_rq(cpu);
-
- scale = arch_scale_cpu_capacity(cpu);
-
- /*
- * Early check to see if IRQ/steal time saturates the CPU, can be
- * because of inaccuracies in how we track these -- see
- * update_irq_load_avg().
- */
- irq = cpu_util_irq(rq);
- if (unlikely(irq >= scale)) {
- if (min)
- *min = scale;
- if (max)
- *max = scale;
- return scale;
- }
-
- if (min) {
- /*
- * The minimum utilization returns the highest level between:
- * - the computed DL bandwidth needed with the IRQ pressure which
- * steals time to the deadline task.
- * - The minimum performance requirement for CFS and/or RT.
- */
- *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
-
- /*
- * When an RT task is runnable and uclamp is not used, we must
- * ensure that the task will run at maximum compute capacity.
- */
- if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
- *min = max(*min, scale);
- }
-
- /*
- * Because the time spend on RT/DL tasks is visible as 'lost' time to
- * CFS tasks and we use the same metric to track the effective
- * utilization (PELT windows are synchronized) we can directly add them
- * to obtain the CPU's actual utilization.
- */
- util = util_cfs + cpu_util_rt(rq);
- util += cpu_util_dl(rq);
-
- /*
- * The maximum hint is a soft bandwidth requirement, which can be lower
- * than the actual utilization because of uclamp_max requirements.
- */
- if (max)
- *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
-
- if (util >= scale)
- return scale;
-
- /*
- * There is still idle time; further improve the number by using the
- * irq metric. Because IRQ/steal time is hidden from the task clock we
- * need to scale the task numbers:
- *
- * max - irq
- * U' = irq + --------- * U
- * max
- */
- util = scale_irq_capacity(util, irq, scale);
- util += irq;
-
- return min(scale, util);
-}
-
-unsigned long sched_cpu_util(int cpu)
-{
- return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
-}
-#endif /* CONFIG_SMP */
-
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- *
- * The task of @pid, if found. %NULL otherwise.
- */
-static struct task_struct *find_process_by_pid(pid_t pid)
-{
- return pid ? find_task_by_vpid(pid) : current;
-}
-
-static struct task_struct *find_get_task(pid_t pid)
-{
- struct task_struct *p;
- guard(rcu)();
-
- p = find_process_by_pid(pid);
- if (likely(p))
- get_task_struct(p);
-
- return p;
-}
-
-DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
- find_get_task(pid), pid_t pid)
-
-/*
- * sched_setparam() passes in -1 for its policy, to let the functions
- * it calls know not to change it.
- */
-#define SETPARAM_POLICY -1
-
-static void __setscheduler_params(struct task_struct *p,
- const struct sched_attr *attr)
-{
- int policy = attr->sched_policy;
-
- if (policy == SETPARAM_POLICY)
- policy = p->policy;
-
- p->policy = policy;
-
- if (dl_policy(policy))
- __setparam_dl(p, attr);
- else if (fair_policy(policy))
- p->static_prio = NICE_TO_PRIO(attr->sched_nice);
-
- /*
- * __sched_setscheduler() ensures attr->sched_priority == 0 when
- * !rt_policy. Always setting this ensures that things like
- * getparam()/getattr() don't report silly values for !rt tasks.
- */
- p->rt_priority = attr->sched_priority;
- p->normal_prio = normal_prio(p);
- set_load_weight(p, true);
-}
-
-/*
- * Check the target process has a UID that matches the current process's:
- */
-static bool check_same_owner(struct task_struct *p)
-{
- const struct cred *cred = current_cred(), *pcred;
- guard(rcu)();
-
- pcred = __task_cred(p);
- return (uid_eq(cred->euid, pcred->euid) ||
- uid_eq(cred->euid, pcred->uid));
-}
-
-/*
- * Allow unprivileged RT tasks to decrease priority.
- * Only issue a capable test if needed and only once to avoid an audit
- * event on permitted non-privileged operations:
- */
-static int user_check_sched_setscheduler(struct task_struct *p,
- const struct sched_attr *attr,
- int policy, int reset_on_fork)
-{
- if (fair_policy(policy)) {
- if (attr->sched_nice < task_nice(p) &&
- !is_nice_reduction(p, attr->sched_nice))
- goto req_priv;
- }
-
- if (rt_policy(policy)) {
- unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
-
- /* Can't set/change the rt policy: */
- if (policy != p->policy && !rlim_rtprio)
- goto req_priv;
-
- /* Can't increase priority: */
- if (attr->sched_priority > p->rt_priority &&
- attr->sched_priority > rlim_rtprio)
- goto req_priv;
- }
-
- /*
- * Can't set/change SCHED_DEADLINE policy at all for now
- * (safest behavior); in the future we would like to allow
- * unprivileged DL tasks to increase their relative deadline
- * or reduce their runtime (both ways reducing utilization)
- */
- if (dl_policy(policy))
- goto req_priv;
-
- /*
- * Treat SCHED_IDLE as nice 20. Only allow a switch to
- * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
- */
- if (task_has_idle_policy(p) && !idle_policy(policy)) {
- if (!is_nice_reduction(p, task_nice(p)))
- goto req_priv;
- }
-
- /* Can't change other user's priorities: */
- if (!check_same_owner(p))
- goto req_priv;
-
- /* Normal users shall not reset the sched_reset_on_fork flag: */
- if (p->sched_reset_on_fork && !reset_on_fork)
- goto req_priv;
-
- return 0;
-
-req_priv:
- if (!capable(CAP_SYS_NICE))
- return -EPERM;
-
- return 0;
-}
-
-static int __sched_setscheduler(struct task_struct *p,
- const struct sched_attr *attr,
- bool user, bool pi)
-{
- int oldpolicy = -1, policy = attr->sched_policy;
- int retval, oldprio, newprio, queued, running;
- const struct sched_class *prev_class;
- struct balance_callback *head;
- struct rq_flags rf;
- int reset_on_fork;
- int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- struct rq *rq;
- bool cpuset_locked = false;
-
- /* The pi code expects interrupts enabled */
- BUG_ON(pi && in_interrupt());
-recheck:
- /* Double check policy once rq lock held: */
- if (policy < 0) {
- reset_on_fork = p->sched_reset_on_fork;
- policy = oldpolicy = p->policy;
- } else {
- reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
-
- if (!valid_policy(policy))
- return -EINVAL;
- }
-
- if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
- return -EINVAL;
-
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
- * SCHED_BATCH and SCHED_IDLE is 0.
- */
- if (attr->sched_priority > MAX_RT_PRIO-1)
- return -EINVAL;
- if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
- (rt_policy(policy) != (attr->sched_priority != 0)))
- return -EINVAL;
-
- if (user) {
- retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
- if (retval)
- return retval;
-
- if (attr->sched_flags & SCHED_FLAG_SUGOV)
- return -EINVAL;
-
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
- }
-
- /* Update task specific "requested" clamps */
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
- retval = uclamp_validate(p, attr);
- if (retval)
- return retval;
- }
-
- /*
- * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
- * information.
- */
- if (dl_policy(policy) || dl_policy(p->policy)) {
- cpuset_locked = true;
- cpuset_lock();
- }
-
- /*
- * Make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- *
- * To be able to change p->policy safely, the appropriate
- * runqueue lock must be held.
- */
- rq = task_rq_lock(p, &rf);
- update_rq_clock(rq);
-
- /*
- * Changing the policy of the stop threads its a very bad idea:
- */
- if (p == rq->stop) {
- retval = -EINVAL;
- goto unlock;
- }
-
- /*
- * If not changing anything there's no need to proceed further,
- * but store a possible modification of reset_on_fork.
- */
- if (unlikely(policy == p->policy)) {
- if (fair_policy(policy) && attr->sched_nice != task_nice(p))
- goto change;
- if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
- goto change;
- if (dl_policy(policy) && dl_param_changed(p, attr))
- goto change;
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
- goto change;
-
- p->sched_reset_on_fork = reset_on_fork;
- retval = 0;
- goto unlock;
- }
-change:
-
- if (user) {
-#ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Do not allow realtime tasks into groups that have no runtime
- * assigned.
- */
- if (rt_bandwidth_enabled() && rt_policy(policy) &&
- task_group(p)->rt_bandwidth.rt_runtime == 0 &&
- !task_group_is_autogroup(task_group(p))) {
- retval = -EPERM;
- goto unlock;
- }
-#endif
-#ifdef CONFIG_SMP
- if (dl_bandwidth_enabled() && dl_policy(policy) &&
- !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
- cpumask_t *span = rq->rd->span;
-
- /*
- * Don't allow tasks with an affinity mask smaller than
- * the entire root_domain to become SCHED_DEADLINE. We
- * will also fail if there's no bandwidth available.
- */
- if (!cpumask_subset(span, p->cpus_ptr) ||
- rq->rd->dl_bw.bw == 0) {
- retval = -EPERM;
- goto unlock;
- }
- }
-#endif
- }
-
- /* Re-check policy now with rq lock held: */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- task_rq_unlock(rq, p, &rf);
- if (cpuset_locked)
- cpuset_unlock();
- goto recheck;
- }
-
- /*
- * If setscheduling to SCHED_DEADLINE (or changing the parameters
- * of a SCHED_DEADLINE task) we need to check if enough bandwidth
- * is available.
- */
- if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
- retval = -EBUSY;
- goto unlock;
- }
-
- p->sched_reset_on_fork = reset_on_fork;
- oldprio = p->prio;
-
- newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
- if (pi) {
- /*
- * Take priority boosted tasks into account. If the new
- * effective priority is unchanged, we just store the new
- * normal parameters and do not touch the scheduler class and
- * the runqueue. This will be done when the task deboost
- * itself.
- */
- newprio = rt_effective_prio(p, newprio);
- if (newprio == oldprio)
- queue_flags &= ~DEQUEUE_MOVE;
- }
-
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flags);
- if (running)
- put_prev_task(rq, p);
-
- prev_class = p->sched_class;
-
- if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
- __setscheduler_params(p, attr);
- __setscheduler_prio(p, newprio);
- }
- __setscheduler_uclamp(p, attr);
-
- if (queued) {
- /*
- * We enqueue to tail when the priority of a task is
- * increased (user space view).
- */
- if (oldprio < p->prio)
- queue_flags |= ENQUEUE_HEAD;
-
- enqueue_task(rq, p, queue_flags);
- }
- if (running)
- set_next_task(rq, p);
-
- check_class_changed(rq, p, prev_class, oldprio);
-
- /* Avoid rq from going away on us: */
- preempt_disable();
- head = splice_balance_callbacks(rq);
- task_rq_unlock(rq, p, &rf);
-
- if (pi) {
- if (cpuset_locked)
- cpuset_unlock();
- rt_mutex_adjust_pi(p);
- }
-
- /* Run balance callbacks after we've adjusted the PI chain: */
- balance_callbacks(rq, head);
- preempt_enable();
-
- return 0;
-
-unlock:
- task_rq_unlock(rq, p, &rf);
- if (cpuset_locked)
- cpuset_unlock();
- return retval;
-}
-
-static int _sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param, bool check)
-{
- struct sched_attr attr = {
- .sched_policy = policy,
- .sched_priority = param->sched_priority,
- .sched_nice = PRIO_TO_NICE(p->static_prio),
- };
-
- /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
- if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
- attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- policy &= ~SCHED_RESET_ON_FORK;
- attr.sched_policy = policy;
- }
-
- return __sched_setscheduler(p, &attr, check, true);
-}
-/**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Use sched_set_fifo(), read its comment.
- *
- * Return: 0 on success. An error code otherwise.
- *
- * NOTE that the task may be already dead.
- */
-int sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return _sched_setscheduler(p, policy, param, true);
-}
-
-int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
-{
- return __sched_setscheduler(p, attr, true, true);
-}
-
-int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
-{
- return __sched_setscheduler(p, attr, false, true);
-}
-EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
-
-/**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission. For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- *
- * Return: 0 on success. An error code otherwise.
- */
-int sched_setscheduler_nocheck(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return _sched_setscheduler(p, policy, param, false);
-}
-
-/*
- * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
- * incapable of resource management, which is the one thing an OS really should
- * be doing.
- *
- * This is of course the reason it is limited to privileged users only.
- *
- * Worse still; it is fundamentally impossible to compose static priority
- * workloads. You cannot take two correctly working static prio workloads
- * and smash them together and still expect them to work.
- *
- * For this reason 'all' FIFO tasks the kernel creates are basically at:
- *
- * MAX_RT_PRIO / 2
- *
- * The administrator _MUST_ configure the system, the kernel simply doesn't
- * know enough information to make a sensible choice.
- */
-void sched_set_fifo(struct task_struct *p)
-{
- struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
- WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_fifo);
-
-/*
- * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
- */
-void sched_set_fifo_low(struct task_struct *p)
-{
- struct sched_param sp = { .sched_priority = 1 };
- WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_fifo_low);
-
-void sched_set_normal(struct task_struct *p, int nice)
-{
- struct sched_attr attr = {
- .sched_policy = SCHED_NORMAL,
- .sched_nice = nice,
- };
- WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_normal);
-
-static int
-do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
- struct sched_param lparam;
-
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- return sched_setscheduler(p, policy, &lparam);
-}
-
-/*
- * Mimics kernel/events/core.c perf_copy_attr().
- */
-static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
-{
- u32 size;
- int ret;
-
- /* Zero the full structure, so that a short copy will be nice: */
- memset(attr, 0, sizeof(*attr));
-
- ret = get_user(size, &uattr->size);
- if (ret)
- return ret;
-
- /* ABI compatibility quirk: */
- if (!size)
- size = SCHED_ATTR_SIZE_VER0;
- if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
- goto err_size;
-
- ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
- if (ret) {
- if (ret == -E2BIG)
- goto err_size;
- return ret;
- }
-
- if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
- size < SCHED_ATTR_SIZE_VER1)
- return -EINVAL;
-
- /*
- * XXX: Do we want to be lenient like existing syscalls; or do we want
- * to be strict and return an error on out-of-bounds values?
- */
- attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
-
- return 0;
-
-err_size:
- put_user(sizeof(*attr), &uattr->size);
- return -E2BIG;
-}
-
-static void get_params(struct task_struct *p, struct sched_attr *attr)
-{
- if (task_has_dl_policy(p))
- __getparam_dl(p, attr);
- else if (task_has_rt_policy(p))
- attr->sched_priority = p->rt_priority;
- else
- attr->sched_nice = task_nice(p);
-}
-
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
-{
- if (policy < 0)
- return -EINVAL;
-
- return do_sched_setscheduler(pid, policy, param);
-}
-
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-{
- return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
-}
-
-/**
- * sys_sched_setattr - same as above, but with extended sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @flags: for future extension.
- */
-SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, flags)
-{
- struct sched_attr attr;
- int retval;
-
- if (!uattr || pid < 0 || flags)
- return -EINVAL;
-
- retval = sched_copy_attr(uattr, &attr);
- if (retval)
- return retval;
-
- if ((int)attr.sched_policy < 0)
- return -EINVAL;
- if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
- attr.sched_policy = SETPARAM_POLICY;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
- get_params(p, &attr);
-
- return sched_setattr(p, &attr);
-}
-
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- *
- * Return: On success, the policy of the thread. Otherwise, a negative error
- * code.
- */
-SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-{
- struct task_struct *p;
- int retval;
-
- if (pid < 0)
- return -EINVAL;
-
- guard(rcu)();
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (!retval) {
- retval = p->policy;
- if (p->sched_reset_on_fork)
- retval |= SCHED_RESET_ON_FORK;
- }
- return retval;
-}
-
-/**
- * sys_sched_getparam - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- *
- * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
- * code.
- */
-SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-{
- struct sched_param lp = { .sched_priority = 0 };
- struct task_struct *p;
- int retval;
-
- if (!param || pid < 0)
- return -EINVAL;
-
- scoped_guard (rcu) {
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- if (task_has_rt_policy(p))
- lp.sched_priority = p->rt_priority;
- }
-
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-}
-
-/*
- * Copy the kernel size attribute structure (which might be larger
- * than what user-space knows about) to user-space.
- *
- * Note that all cases are valid: user-space buffer can be larger or
- * smaller than the kernel-space buffer. The usual case is that both
- * have the same size.
- */
-static int
-sched_attr_copy_to_user(struct sched_attr __user *uattr,
- struct sched_attr *kattr,
- unsigned int usize)
-{
- unsigned int ksize = sizeof(*kattr);
-
- if (!access_ok(uattr, usize))
- return -EFAULT;
-
- /*
- * sched_getattr() ABI forwards and backwards compatibility:
- *
- * If usize == ksize then we just copy everything to user-space and all is good.
- *
- * If usize < ksize then we only copy as much as user-space has space for,
- * this keeps ABI compatibility as well. We skip the rest.
- *
- * If usize > ksize then user-space is using a newer version of the ABI,
- * which part the kernel doesn't know about. Just ignore it - tooling can
- * detect the kernel's knowledge of attributes from the attr->size value
- * which is set to ksize in this case.
- */
- kattr->size = min(usize, ksize);
-
- if (copy_to_user(uattr, kattr, kattr->size))
- return -EFAULT;
-
- return 0;
-}
-
-/**
- * sys_sched_getattr - similar to sched_getparam, but with sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @usize: sizeof(attr) for fwd/bwd comp.
- * @flags: for future extension.
- */
-SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, usize, unsigned int, flags)
-{
- struct sched_attr kattr = { };
- struct task_struct *p;
- int retval;
-
- if (!uattr || pid < 0 || usize > PAGE_SIZE ||
- usize < SCHED_ATTR_SIZE_VER0 || flags)
- return -EINVAL;
-
- scoped_guard (rcu) {
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- kattr.sched_policy = p->policy;
- if (p->sched_reset_on_fork)
- kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- get_params(p, &kattr);
- kattr.sched_flags &= SCHED_FLAG_ALL;
-
-#ifdef CONFIG_UCLAMP_TASK
- /*
- * This could race with another potential updater, but this is fine
- * because it'll correctly read the old or the new value. We don't need
- * to guarantee who wins the race as long as it doesn't return garbage.
- */
- kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
- kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
-#endif
- }
-
- return sched_attr_copy_to_user(uattr, &kattr, usize);
-}
-
-#ifdef CONFIG_SMP
-int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
-{
- /*
- * If the task isn't a deadline task or admission control is
- * disabled then we don't care about affinity changes.
- */
- if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
- return 0;
-
- /*
- * Since bandwidth control happens on root_domain basis,
- * if admission test is enabled, we only admit -deadline
- * tasks allowed to run on all the CPUs in the task's
- * root_domain.
- */
- guard(rcu)();
- if (!cpumask_subset(task_rq(p)->rd->span, mask))
- return -EBUSY;
-
- return 0;
-}
#endif
-static int
-__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
-{
- int retval;
- cpumask_var_t cpus_allowed, new_mask;
-
- if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
- return -ENOMEM;
-
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_free_cpus_allowed;
- }
-
- cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
-
- ctx->new_mask = new_mask;
- ctx->flags |= SCA_CHECK;
-
- retval = dl_task_check_affinity(p, new_mask);
- if (retval)
- goto out_free_new_mask;
-
- retval = __set_cpus_allowed_ptr(p, ctx);
- if (retval)
- goto out_free_new_mask;
-
- cpuset_cpus_allowed(p, cpus_allowed);
- if (!cpumask_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset update.
- * Just reset the cpumask to the cpuset's cpus_allowed.
- */
- cpumask_copy(new_mask, cpus_allowed);
-
- /*
- * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
- * will restore the previous user_cpus_ptr value.
- *
- * In the unlikely event a previous user_cpus_ptr exists,
- * we need to further restrict the mask to what is allowed
- * by that old user_cpus_ptr.
- */
- if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
- bool empty = !cpumask_and(new_mask, new_mask,
- ctx->user_mask);
-
- if (WARN_ON_ONCE(empty))
- cpumask_copy(new_mask, cpus_allowed);
- }
- __set_cpus_allowed_ptr(p, ctx);
- retval = -EINVAL;
- }
-
-out_free_new_mask:
- free_cpumask_var(new_mask);
-out_free_cpus_allowed:
- free_cpumask_var(cpus_allowed);
- return retval;
-}
-
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-{
- struct affinity_context ac;
- struct cpumask *user_mask;
- int retval;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- if (p->flags & PF_NO_SETAFFINITY)
- return -EINVAL;
-
- if (!check_same_owner(p)) {
- guard(rcu)();
- if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
- return -EPERM;
- }
-
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
-
- /*
- * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
- * alloc_user_cpus_ptr() returns NULL.
- */
- user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
- if (user_mask) {
- cpumask_copy(user_mask, in_mask);
- } else if (IS_ENABLED(CONFIG_SMP)) {
- return -ENOMEM;
- }
-
- ac = (struct affinity_context){
- .new_mask = in_mask,
- .user_mask = user_mask,
- .flags = SCA_USER,
- };
-
- retval = __sched_setaffinity(p, &ac);
- kfree(ac.user_mask);
-
- return retval;
-}
-
-static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- struct cpumask *new_mask)
-{
- if (len < cpumask_size())
- cpumask_clear(new_mask);
- else if (len > cpumask_size())
- len = cpumask_size();
-
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-}
-
-/**
- * sys_sched_setaffinity - set the CPU affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new CPU mask
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- cpumask_var_t new_mask;
- int retval;
-
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
- return -ENOMEM;
-
- retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
- if (retval == 0)
- retval = sched_setaffinity(pid, new_mask);
- free_cpumask_var(new_mask);
- return retval;
-}
-
-long sched_getaffinity(pid_t pid, struct cpumask *mask)
-{
- struct task_struct *p;
- int retval;
-
- guard(rcu)();
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- guard(raw_spinlock_irqsave)(&p->pi_lock);
- cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
-
- return 0;
-}
-
-/**
- * sys_sched_getaffinity - get the CPU affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current CPU mask
- *
- * Return: size of CPU mask copied to user_mask_ptr on success. An
- * error code otherwise.
- */
-SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- int ret;
- cpumask_var_t mask;
-
- if ((len * BITS_PER_BYTE) < nr_cpu_ids)
- return -EINVAL;
- if (len & (sizeof(unsigned long)-1))
- return -EINVAL;
-
- if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
- return -ENOMEM;
-
- ret = sched_getaffinity(pid, mask);
- if (ret == 0) {
- unsigned int retlen = min(len, cpumask_size());
-
- if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
- ret = -EFAULT;
- else
- ret = retlen;
- }
- free_cpumask_var(mask);
-
- return ret;
-}
-
-static void do_sched_yield(void)
-{
- struct rq_flags rf;
- struct rq *rq;
-
- rq = this_rq_lock_irq(&rf);
-
- schedstat_inc(rq->yld_count);
- current->sched_class->yield_task(rq);
-
- preempt_disable();
- rq_unlock_irq(rq, &rf);
- sched_preempt_enable_no_resched();
-
- schedule();
-}
-
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- *
- * Return: 0.
- */
-SYSCALL_DEFINE0(sched_yield)
-{
- do_sched_yield();
- return 0;
-}
-
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
int __sched __cond_resched(void)
{
@@ -8907,105 +7356,11 @@ PREEMPT_MODEL_ACCESSOR(none);
PREEMPT_MODEL_ACCESSOR(voluntary);
PREEMPT_MODEL_ACCESSOR(full);
-#else /* !CONFIG_PREEMPT_DYNAMIC */
+#else /* !CONFIG_PREEMPT_DYNAMIC: */
static inline void preempt_dynamic_init(void) { }
-#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
-
-/**
- * yield - yield the current processor to other threads.
- *
- * Do not ever use this function, there's a 99% chance you're doing it wrong.
- *
- * The scheduler is at all times free to pick the calling task as the most
- * eligible task to run, if removing the yield() call from your code breaks
- * it, it's already broken.
- *
- * Typical broken usage is:
- *
- * while (!event)
- * yield();
- *
- * where one assumes that yield() will let 'the other' process run that will
- * make event true. If the current task is a SCHED_FIFO task that will never
- * happen. Never use yield() as a progress guarantee!!
- *
- * If you want to use yield() to wait for something, use wait_event().
- * If you want to use yield() to be 'nice' for others, use cond_resched().
- * If you still want to use yield(), do not!
- */
-void __sched yield(void)
-{
- set_current_state(TASK_RUNNING);
- do_sched_yield();
-}
-EXPORT_SYMBOL(yield);
-
-/**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Return:
- * true (>0) if we indeed boosted the target task.
- * false (0) if we failed to boost the target.
- * -ESRCH if there's no task to yield to.
- */
-int __sched yield_to(struct task_struct *p, bool preempt)
-{
- struct task_struct *curr = current;
- struct rq *rq, *p_rq;
- int yielded = 0;
-
- scoped_guard (irqsave) {
- rq = this_rq();
-
-again:
- p_rq = task_rq(p);
- /*
- * If we're the only runnable task on the rq and target rq also
- * has only one task, there's absolutely no point in yielding.
- */
- if (rq->nr_running == 1 && p_rq->nr_running == 1)
- return -ESRCH;
-
- guard(double_rq_lock)(rq, p_rq);
- if (task_rq(p) != p_rq)
- goto again;
-
- if (!curr->sched_class->yield_to_task)
- return 0;
-
- if (curr->sched_class != p->sched_class)
- return 0;
-
- if (task_on_cpu(p_rq, p) || !task_is_running(p))
- return 0;
-
- yielded = curr->sched_class->yield_to_task(rq, p);
- if (yielded) {
- schedstat_inc(rq->yld_count);
- /*
- * Make p's CPU reschedule; pick_next_entity
- * takes care of fairness.
- */
- if (preempt && rq != p_rq)
- resched_curr(p_rq);
- }
- }
-
- if (yielded)
- schedule();
-
- return yielded;
-}
-EXPORT_SYMBOL_GPL(yield_to);
+#endif /* CONFIG_PREEMPT_DYNAMIC */
int io_schedule_prepare(void)
{
@@ -9048,123 +7403,6 @@ void __sched io_schedule(void)
}
EXPORT_SYMBOL(io_schedule);
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the maximum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_RT_PRIO-1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- break;
- }
- return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the minimum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- }
- return ret;
-}
-
-static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
-{
- unsigned int time_slice = 0;
- int retval;
-
- if (pid < 0)
- return -EINVAL;
-
- scoped_guard (rcu) {
- struct task_struct *p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- scoped_guard (task_rq_lock, p) {
- struct rq *rq = scope.rq;
- if (p->sched_class->get_rr_interval)
- time_slice = p->sched_class->get_rr_interval(rq, p);
- }
- }
-
- jiffies_to_timespec64(time_slice, t);
- return 0;
-}
-
-/**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- *
- * Return: On success, 0 and the timeslice is in @interval. Otherwise,
- * an error code.
- */
-SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
- struct __kernel_timespec __user *, interval)
-{
- struct timespec64 t;
- int retval = sched_rr_get_interval(pid, &t);
-
- if (retval == 0)
- retval = put_timespec64(&t, interval);
-
- return retval;
-}
-
-#ifdef CONFIG_COMPAT_32BIT_TIME
-SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
- struct old_timespec32 __user *, interval)
-{
- struct timespec64 t;
- int retval = sched_rr_get_interval(pid, &t);
-
- if (retval == 0)
- retval = put_old_timespec32(&t, interval);
- return retval;
-}
-#endif
-
void sched_show_task(struct task_struct *p)
{
unsigned long free = 0;
@@ -9732,7 +7970,7 @@ int sched_cpu_deactivate(unsigned int cpu)
* Specifically, we rely on ttwu to no longer target this CPU, see
* ttwu_queue_cond() and is_cpu_allowed().
*
- * Do sync before park smpboot threads to take care the rcu boost case.
+ * Do sync before park smpboot threads to take care the RCU boost case.
*/
synchronize_rcu();
@@ -9807,7 +8045,7 @@ int sched_cpu_wait_empty(unsigned int cpu)
* Since this CPU is going 'away' for a while, fold any nr_active delta we
* might have. Called from the CPU stopper task after ensuring that the
* stopper is the last running task on the CPU, so nr_active count is
- * stable. We need to take the teardown thread which is calling this into
+ * stable. We need to take the tear-down thread which is calling this into
* account, so we hand in adjust = 1 to the load calculation.
*
* Also see the comment "Global load-average calculations".
@@ -10001,7 +8239,7 @@ void __init sched_init(void)
/*
* How much CPU bandwidth does root_task_group get?
*
- * In case of task-groups formed thr' the cgroup filesystem, it
+ * In case of task-groups formed through the cgroup filesystem, it
* gets 100% of the CPU resources in the system. This overall
* system CPU resource is divided among the tasks of
* root_task_group and its child task-groups in a fair manner,
@@ -10303,7 +8541,7 @@ void normalize_rt_tasks(void)
#if defined(CONFIG_KGDB_KDB)
/*
- * These functions are only useful for kdb.
+ * These functions are only useful for KDB.
*
* They can only be called when the whole system has been
* stopped - every CPU needs to be quiescent, and no scheduling
@@ -10411,7 +8649,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)
online_fair_sched_group(tg);
}
-/* rcu callback to free various structures associated with a task group */
+/* RCU callback to free various structures associated with a task group */
static void sched_unregister_group_rcu(struct rcu_head *rhp)
{
/* Now it should be safe to free those cfs_rqs: */
@@ -11529,10 +9767,10 @@ const int sched_prio_to_weight[40] = {
};
/*
- * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
+ * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
*
* In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
+ * pre-calculated inverse to speed up arithmetics by turning divisions
* into multiplications:
*/
const u32 sched_prio_to_wmult[40] = {
@@ -11788,16 +10026,16 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
/*
* Move the src cid if the dst cid is unset. This keeps id
* allocation closest to 0 in cases where few threads migrate around
- * many cpus.
+ * many CPUs.
*
* If destination cid is already set, we may have to just clear
* the src cid to ensure compactness in frequent migrations
* scenarios.
*
* It is not useful to clear the src cid when the number of threads is
- * greater or equal to the number of allowed cpus, because user-space
+ * greater or equal to the number of allowed CPUs, because user-space
* can expect that the number of allowed cids can reach the number of
- * allowed cpus.
+ * allowed CPUs.
*/
dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
dst_cid = READ_ONCE(dst_pcpu_cid->cid);