diff options
Diffstat (limited to 'drivers/net/ethernet/intel/iavf/iavf_txrx.h')
-rw-r--r-- | drivers/net/ethernet/intel/iavf/iavf_txrx.h | 523 |
1 files changed, 523 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/iavf/iavf_txrx.h b/drivers/net/ethernet/intel/iavf/iavf_txrx.h new file mode 100644 index 000000000000..71e7d090f8db --- /dev/null +++ b/drivers/net/ethernet/intel/iavf/iavf_txrx.h @@ -0,0 +1,523 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* Copyright(c) 2013 - 2018 Intel Corporation. */ + +#ifndef _IAVF_TXRX_H_ +#define _IAVF_TXRX_H_ + +/* Interrupt Throttling and Rate Limiting Goodies */ +#define IAVF_DEFAULT_IRQ_WORK 256 + +/* The datasheet for the X710 and XL710 indicate that the maximum value for + * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec + * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing + * the register value which is divided by 2 lets use the actual values and + * avoid an excessive amount of translation. + */ +#define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ +#define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ +#define IAVF_MIN_ITR 2 /* reg uses 2 usec resolution */ +#define IAVF_ITR_100K 10 /* all values below must be even */ +#define IAVF_ITR_50K 20 +#define IAVF_ITR_20K 50 +#define IAVF_ITR_18K 60 +#define IAVF_ITR_8K 122 +#define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ +#define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) +#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) +#define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) + +#define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) +#define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) + +/* 0x40 is the enable bit for interrupt rate limiting, and must be set if + * the value of the rate limit is non-zero + */ +#define INTRL_ENA BIT(6) +#define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ +#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) +#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) +#define IAVF_INTRL_8K 125 /* 8000 ints/sec */ +#define IAVF_INTRL_62K 16 /* 62500 ints/sec */ +#define IAVF_INTRL_83K 12 /* 83333 ints/sec */ + +#define IAVF_QUEUE_END_OF_LIST 0x7FF + +/* this enum matches hardware bits and is meant to be used by DYN_CTLN + * registers and QINT registers or more generally anywhere in the manual + * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any + * register but instead is a special value meaning "don't update" ITR0/1/2. + */ +enum iavf_dyn_idx_t { + IAVF_IDX_ITR0 = 0, + IAVF_IDX_ITR1 = 1, + IAVF_IDX_ITR2 = 2, + IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ +}; + +/* these are indexes into ITRN registers */ +#define IAVF_RX_ITR IAVF_IDX_ITR0 +#define IAVF_TX_ITR IAVF_IDX_ITR1 +#define IAVF_PE_ITR IAVF_IDX_ITR2 + +/* Supported RSS offloads */ +#define IAVF_DEFAULT_RSS_HENA ( \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) + +#define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ + BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) + +/* Supported Rx Buffer Sizes (a multiple of 128) */ +#define IAVF_RXBUFFER_256 256 +#define IAVF_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ +#define IAVF_RXBUFFER_2048 2048 +#define IAVF_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ +#define IAVF_MAX_RXBUFFER 9728 /* largest size for single descriptor */ + +/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we + * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, + * this adds up to 512 bytes of extra data meaning the smallest allocation + * we could have is 1K. + * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) + * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) + */ +#define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256 +#define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) +#define iavf_rx_desc iavf_32byte_rx_desc + +#define IAVF_RX_DMA_ATTR \ + (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) + +/* Attempt to maximize the headroom available for incoming frames. We + * use a 2K buffer for receives and need 1536/1534 to store the data for + * the frame. This leaves us with 512 bytes of room. From that we need + * to deduct the space needed for the shared info and the padding needed + * to IP align the frame. + * + * Note: For cache line sizes 256 or larger this value is going to end + * up negative. In these cases we should fall back to the legacy + * receive path. + */ +#if (PAGE_SIZE < 8192) +#define IAVF_2K_TOO_SMALL_WITH_PADDING \ +((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048)) + +static inline int iavf_compute_pad(int rx_buf_len) +{ + int page_size, pad_size; + + page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); + pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; + + return pad_size; +} + +static inline int iavf_skb_pad(void) +{ + int rx_buf_len; + + /* If a 2K buffer cannot handle a standard Ethernet frame then + * optimize padding for a 3K buffer instead of a 1.5K buffer. + * + * For a 3K buffer we need to add enough padding to allow for + * tailroom due to NET_IP_ALIGN possibly shifting us out of + * cache-line alignment. + */ + if (IAVF_2K_TOO_SMALL_WITH_PADDING) + rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); + else + rx_buf_len = IAVF_RXBUFFER_1536; + + /* if needed make room for NET_IP_ALIGN */ + rx_buf_len -= NET_IP_ALIGN; + + return iavf_compute_pad(rx_buf_len); +} + +#define IAVF_SKB_PAD iavf_skb_pad() +#else +#define IAVF_2K_TOO_SMALL_WITH_PADDING false +#define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) +#endif + +/** + * iavf_test_staterr - tests bits in Rx descriptor status and error fields + * @rx_desc: pointer to receive descriptor (in le64 format) + * @stat_err_bits: value to mask + * + * This function does some fast chicanery in order to return the + * value of the mask which is really only used for boolean tests. + * The status_error_len doesn't need to be shifted because it begins + * at offset zero. + */ +static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc, + const u64 stat_err_bits) +{ + return !!(rx_desc->wb.qword1.status_error_len & + cpu_to_le64(stat_err_bits)); +} + +/* How many Rx Buffers do we bundle into one write to the hardware ? */ +#define IAVF_RX_INCREMENT(r, i) \ + do { \ + (i)++; \ + if ((i) == (r)->count) \ + i = 0; \ + r->next_to_clean = i; \ + } while (0) + +#define IAVF_RX_NEXT_DESC(r, i, n) \ + do { \ + (i)++; \ + if ((i) == (r)->count) \ + i = 0; \ + (n) = IAVF_RX_DESC((r), (i)); \ + } while (0) + +#define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ + do { \ + IAVF_RX_NEXT_DESC((r), (i), (n)); \ + prefetch((n)); \ + } while (0) + +#define IAVF_MAX_BUFFER_TXD 8 +#define IAVF_MIN_TX_LEN 17 + +/* The size limit for a transmit buffer in a descriptor is (16K - 1). + * In order to align with the read requests we will align the value to + * the nearest 4K which represents our maximum read request size. + */ +#define IAVF_MAX_READ_REQ_SIZE 4096 +#define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) +#define IAVF_MAX_DATA_PER_TXD_ALIGNED \ + (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) + +/** + * iavf_txd_use_count - estimate the number of descriptors needed for Tx + * @size: transmit request size in bytes + * + * Due to hardware alignment restrictions (4K alignment), we need to + * assume that we can have no more than 12K of data per descriptor, even + * though each descriptor can take up to 16K - 1 bytes of aligned memory. + * Thus, we need to divide by 12K. But division is slow! Instead, + * we decompose the operation into shifts and one relatively cheap + * multiply operation. + * + * To divide by 12K, we first divide by 4K, then divide by 3: + * To divide by 4K, shift right by 12 bits + * To divide by 3, multiply by 85, then divide by 256 + * (Divide by 256 is done by shifting right by 8 bits) + * Finally, we add one to round up. Because 256 isn't an exact multiple of + * 3, we'll underestimate near each multiple of 12K. This is actually more + * accurate as we have 4K - 1 of wiggle room that we can fit into the last + * segment. For our purposes this is accurate out to 1M which is orders of + * magnitude greater than our largest possible GSO size. + * + * This would then be implemented as: + * return (((size >> 12) * 85) >> 8) + 1; + * + * Since multiplication and division are commutative, we can reorder + * operations into: + * return ((size * 85) >> 20) + 1; + */ +static inline unsigned int iavf_txd_use_count(unsigned int size) +{ + return ((size * 85) >> 20) + 1; +} + +/* Tx Descriptors needed, worst case */ +#define DESC_NEEDED (MAX_SKB_FRAGS + 6) +#define IAVF_MIN_DESC_PENDING 4 + +#define IAVF_TX_FLAGS_HW_VLAN BIT(1) +#define IAVF_TX_FLAGS_SW_VLAN BIT(2) +#define IAVF_TX_FLAGS_TSO BIT(3) +#define IAVF_TX_FLAGS_IPV4 BIT(4) +#define IAVF_TX_FLAGS_IPV6 BIT(5) +#define IAVF_TX_FLAGS_FCCRC BIT(6) +#define IAVF_TX_FLAGS_FSO BIT(7) +#define IAVF_TX_FLAGS_FD_SB BIT(9) +#define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) +#define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 +#define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 +#define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 +#define IAVF_TX_FLAGS_VLAN_SHIFT 16 + +struct iavf_tx_buffer { + struct iavf_tx_desc *next_to_watch; + union { + struct sk_buff *skb; + void *raw_buf; + }; + unsigned int bytecount; + unsigned short gso_segs; + + DEFINE_DMA_UNMAP_ADDR(dma); + DEFINE_DMA_UNMAP_LEN(len); + u32 tx_flags; +}; + +struct iavf_rx_buffer { + dma_addr_t dma; + struct page *page; +#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) + __u32 page_offset; +#else + __u16 page_offset; +#endif + __u16 pagecnt_bias; +}; + +struct iavf_queue_stats { + u64 packets; + u64 bytes; +}; + +struct iavf_tx_queue_stats { + u64 restart_queue; + u64 tx_busy; + u64 tx_done_old; + u64 tx_linearize; + u64 tx_force_wb; + int prev_pkt_ctr; + u64 tx_lost_interrupt; +}; + +struct iavf_rx_queue_stats { + u64 non_eop_descs; + u64 alloc_page_failed; + u64 alloc_buff_failed; + u64 page_reuse_count; + u64 realloc_count; +}; + +enum iavf_ring_state_t { + __IAVF_TX_FDIR_INIT_DONE, + __IAVF_TX_XPS_INIT_DONE, + __IAVF_RING_STATE_NBITS /* must be last */ +}; + +/* some useful defines for virtchannel interface, which + * is the only remaining user of header split + */ +#define IAVF_RX_DTYPE_NO_SPLIT 0 +#define IAVF_RX_DTYPE_HEADER_SPLIT 1 +#define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 +#define IAVF_RX_SPLIT_L2 0x1 +#define IAVF_RX_SPLIT_IP 0x2 +#define IAVF_RX_SPLIT_TCP_UDP 0x4 +#define IAVF_RX_SPLIT_SCTP 0x8 + +/* struct that defines a descriptor ring, associated with a VSI */ +struct iavf_ring { + struct iavf_ring *next; /* pointer to next ring in q_vector */ + void *desc; /* Descriptor ring memory */ + struct device *dev; /* Used for DMA mapping */ + struct net_device *netdev; /* netdev ring maps to */ + union { + struct iavf_tx_buffer *tx_bi; + struct iavf_rx_buffer *rx_bi; + }; + DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS); + u16 queue_index; /* Queue number of ring */ + u8 dcb_tc; /* Traffic class of ring */ + u8 __iomem *tail; + + /* high bit set means dynamic, use accessors routines to read/write. + * hardware only supports 2us resolution for the ITR registers. + * these values always store the USER setting, and must be converted + * before programming to a register. + */ + u16 itr_setting; + + u16 count; /* Number of descriptors */ + u16 reg_idx; /* HW register index of the ring */ + u16 rx_buf_len; + + /* used in interrupt processing */ + u16 next_to_use; + u16 next_to_clean; + + u8 atr_sample_rate; + u8 atr_count; + + bool ring_active; /* is ring online or not */ + bool arm_wb; /* do something to arm write back */ + u8 packet_stride; + + u16 flags; +#define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) +#define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) + + /* stats structs */ + struct iavf_queue_stats stats; + struct u64_stats_sync syncp; + union { + struct iavf_tx_queue_stats tx_stats; + struct iavf_rx_queue_stats rx_stats; + }; + + unsigned int size; /* length of descriptor ring in bytes */ + dma_addr_t dma; /* physical address of ring */ + + struct iavf_vsi *vsi; /* Backreference to associated VSI */ + struct iavf_q_vector *q_vector; /* Backreference to associated vector */ + + struct rcu_head rcu; /* to avoid race on free */ + u16 next_to_alloc; + struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must + * return before it sees the EOP for + * the current packet, we save that skb + * here and resume receiving this + * packet the next time + * iavf_clean_rx_ring_irq() is called + * for this ring. + */ +} ____cacheline_internodealigned_in_smp; + +static inline bool ring_uses_build_skb(struct iavf_ring *ring) +{ + return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED); +} + +static inline void set_ring_build_skb_enabled(struct iavf_ring *ring) +{ + ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; +} + +static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring) +{ + ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED; +} + +#define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 +#define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 +#define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e +#define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 +#define IAVF_ITR_ADAPTIVE_BULK 0x0000 +#define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) + +struct iavf_ring_container { + struct iavf_ring *ring; /* pointer to linked list of ring(s) */ + unsigned long next_update; /* jiffies value of next update */ + unsigned int total_bytes; /* total bytes processed this int */ + unsigned int total_packets; /* total packets processed this int */ + u16 count; + u16 target_itr; /* target ITR setting for ring(s) */ + u16 current_itr; /* current ITR setting for ring(s) */ +}; + +/* iterator for handling rings in ring container */ +#define iavf_for_each_ring(pos, head) \ + for (pos = (head).ring; pos != NULL; pos = pos->next) + +static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring) +{ +#if (PAGE_SIZE < 8192) + if (ring->rx_buf_len > (PAGE_SIZE / 2)) + return 1; +#endif + return 0; +} + +#define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring)) + +bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); +netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); +void iavf_clean_tx_ring(struct iavf_ring *tx_ring); +void iavf_clean_rx_ring(struct iavf_ring *rx_ring); +int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); +int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); +void iavf_free_tx_resources(struct iavf_ring *tx_ring); +void iavf_free_rx_resources(struct iavf_ring *rx_ring); +int iavf_napi_poll(struct napi_struct *napi, int budget); +void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector); +u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw); +void iavf_detect_recover_hung(struct iavf_vsi *vsi); +int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); +bool __iavf_chk_linearize(struct sk_buff *skb); + +/** + * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed + * @skb: send buffer + * @tx_ring: ring to send buffer on + * + * Returns number of data descriptors needed for this skb. Returns 0 to indicate + * there is not enough descriptors available in this ring since we need at least + * one descriptor. + **/ +static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) +{ + const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; + unsigned int nr_frags = skb_shinfo(skb)->nr_frags; + int count = 0, size = skb_headlen(skb); + + for (;;) { + count += iavf_txd_use_count(size); + + if (!nr_frags--) + break; + + size = skb_frag_size(frag++); + } + + return count; +} + +/** + * iavf_maybe_stop_tx - 1st level check for Tx stop conditions + * @tx_ring: the ring to be checked + * @size: the size buffer we want to assure is available + * + * Returns 0 if stop is not needed + **/ +static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) +{ + if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) + return 0; + return __iavf_maybe_stop_tx(tx_ring, size); +} + +/** + * iavf_chk_linearize - Check if there are more than 8 fragments per packet + * @skb: send buffer + * @count: number of buffers used + * + * Note: Our HW can't scatter-gather more than 8 fragments to build + * a packet on the wire and so we need to figure out the cases where we + * need to linearize the skb. + **/ +static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) +{ + /* Both TSO and single send will work if count is less than 8 */ + if (likely(count < IAVF_MAX_BUFFER_TXD)) + return false; + + if (skb_is_gso(skb)) + return __iavf_chk_linearize(skb); + + /* we can support up to 8 data buffers for a single send */ + return count != IAVF_MAX_BUFFER_TXD; +} +/** + * @ring: Tx ring to find the netdev equivalent of + **/ +static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) +{ + return netdev_get_tx_queue(ring->netdev, ring->queue_index); +} +#endif /* _IAVF_TXRX_H_ */ |