summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tools/memory-model/Documentation/README4
-rw-r--r--tools/memory-model/Documentation/access-marking.txt10
-rw-r--r--tools/memory-model/lock.cat62
3 files changed, 49 insertions, 27 deletions
diff --git a/tools/memory-model/Documentation/README b/tools/memory-model/Documentation/README
index db90a26dbdf4..304162743a5b 100644
--- a/tools/memory-model/Documentation/README
+++ b/tools/memory-model/Documentation/README
@@ -47,6 +47,10 @@ DESCRIPTION OF FILES
README
This file.
+access-marking.txt
+ Guidelines for marking intentionally concurrent accesses to
+ shared memory.
+
cheatsheet.txt
Quick-reference guide to the Linux-kernel memory model.
diff --git a/tools/memory-model/Documentation/access-marking.txt b/tools/memory-model/Documentation/access-marking.txt
index 65778222183e..f531b0837356 100644
--- a/tools/memory-model/Documentation/access-marking.txt
+++ b/tools/memory-model/Documentation/access-marking.txt
@@ -6,7 +6,8 @@ normal accesses to shared memory, that is "normal" as in accesses that do
not use read-modify-write atomic operations. It also describes how to
document these accesses, both with comments and with special assertions
processed by the Kernel Concurrency Sanitizer (KCSAN). This discussion
-builds on an earlier LWN article [1].
+builds on an earlier LWN article [1] and Linux Foundation mentorship
+session [2].
ACCESS-MARKING OPTIONS
@@ -31,7 +32,7 @@ example:
WRITE_ONCE(a, b + data_race(c + d) + READ_ONCE(e));
Neither plain C-language accesses nor data_race() (#1 and #2 above) place
-any sort of constraint on the compiler's choice of optimizations [2].
+any sort of constraint on the compiler's choice of optimizations [3].
In contrast, READ_ONCE() and WRITE_ONCE() (#3 and #4 above) restrict the
compiler's use of code-motion and common-subexpression optimizations.
Therefore, if a given access is involved in an intentional data race,
@@ -594,5 +595,8 @@ REFERENCES
[1] "Concurrency bugs should fear the big bad data-race detector (part 2)"
https://lwn.net/Articles/816854/
-[2] "Who's afraid of a big bad optimizing compiler?"
+[2] "The Kernel Concurrency Sanitizer"
+ https://www.linuxfoundation.org/webinars/the-kernel-concurrency-sanitizer
+
+[3] "Who's afraid of a big bad optimizing compiler?"
https://lwn.net/Articles/793253/
diff --git a/tools/memory-model/lock.cat b/tools/memory-model/lock.cat
index 53b5a492739d..03c12efed66a 100644
--- a/tools/memory-model/lock.cat
+++ b/tools/memory-model/lock.cat
@@ -54,6 +54,12 @@ flag ~empty LKR \ domain(lk-rmw) as unpaired-LKR
*)
empty ([LKW] ; po-loc ; [LKR]) \ (po-loc ; [UL] ; po-loc) as lock-nest
+(*
+ * In the same way, spin_is_locked() inside a critical section must always
+ * return True (no RU events can be in a critical section for the same lock).
+ *)
+empty ([LKW] ; po-loc ; [RU]) \ (po-loc ; [UL] ; po-loc) as nested-is-locked
+
(* The final value of a spinlock should not be tested *)
flag ~empty [FW] ; loc ; [ALL-LOCKS] as lock-final
@@ -79,42 +85,50 @@ empty ([UNMATCHED-LKW] ; loc ; [UNMATCHED-LKW]) \ id as unmatched-locks
(* rfi for LF events: link each LKW to the LF events in its critical section *)
let rfi-lf = ([LKW] ; po-loc ; [LF]) \ ([LKW] ; po-loc ; [UL] ; po-loc)
-(* rfe for LF events *)
+(* Utility macro to convert a single pair to a single-edge relation *)
+let pair-to-relation p = p ++ 0
+
+(*
+ * If a given LF event e is outside a critical section, it cannot read
+ * internally but it may read from an LKW event in another thread.
+ * Compute the relation containing these possible edges.
+ *)
+let possible-rfe-noncrit-lf e = (LKW * {e}) & loc & ext
+
+(* Compute set of sets of possible rfe edges for LF events *)
let all-possible-rfe-lf =
(*
- * Given an LF event r, compute the possible rfe edges for that event
- * (all those starting from LKW events in other threads),
- * and then convert that relation to a set of single-edge relations.
+ * Convert the possible-rfe-noncrit-lf relation for e
+ * to a set of single edges
*)
- let possible-rfe-lf r =
- let pair-to-relation p = p ++ 0
- in map pair-to-relation ((LKW * {r}) & loc & ext)
- (* Do this for each LF event r that isn't in rfi-lf *)
- in map possible-rfe-lf (LF \ range(rfi-lf))
+ let set-of-singleton-rfe-lf e =
+ map pair-to-relation (possible-rfe-noncrit-lf e)
+ (* Do this for each LF event e that isn't in rfi-lf *)
+ in map set-of-singleton-rfe-lf (LF \ range(rfi-lf))
(* Generate all rf relations for LF events *)
with rfe-lf from cross(all-possible-rfe-lf)
let rf-lf = rfe-lf | rfi-lf
(*
- * RU, i.e., spin_is_locked() returning False, is slightly different.
- * We rely on the memory model to rule out cases where spin_is_locked()
- * within one of the lock's critical sections returns False.
+ * A given RU event e may read internally from the last po-previous UL,
+ * or it may read from a UL event in another thread or the initial write.
+ * Compute the relation containing these possible edges.
*)
-
-(* rfi for RU events: an RU may read from the last po-previous UL *)
-let rfi-ru = ([UL] ; po-loc ; [RU]) \ ([UL] ; po-loc ; [LKW] ; po-loc)
-
-(* rfe for RU events: an RU may read from an external UL or the initial write *)
-let all-possible-rfe-ru =
- let possible-rfe-ru r =
- let pair-to-relation p = p ++ 0
- in map pair-to-relation (((UL | IW) * {r}) & loc & ext)
- in map possible-rfe-ru RU
+let possible-rf-ru e = (((UL * {e}) & po-loc) \
+ ([UL] ; po-loc ; [UL] ; po-loc)) |
+ (((UL | IW) * {e}) & loc & ext)
+
+(* Compute set of sets of possible rf edges for RU events *)
+let all-possible-rf-ru =
+ (* Convert the possible-rf-ru relation for e to a set of single edges *)
+ let set-of-singleton-rf-ru e =
+ map pair-to-relation (possible-rf-ru e)
+ (* Do this for each RU event e *)
+ in map set-of-singleton-rf-ru RU
(* Generate all rf relations for RU events *)
-with rfe-ru from cross(all-possible-rfe-ru)
-let rf-ru = rfe-ru | rfi-ru
+with rf-ru from cross(all-possible-rf-ru)
(* Final rf relation *)
let rf = rf | rf-lf | rf-ru