diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-12-13 19:29:45 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-12-13 19:29:45 -0800 |
commit | e2ca6ba6ba0152361aa4fcbf6067db71b2c7a770 (patch) | |
tree | f7ed7753a2e66486a4ffe0fbbf98404ec4ba2212 /tools/testing/selftests/cgroup | |
parent | 7e68dd7d07a28faa2e6574dd6b9dbd90cdeaae91 (diff) | |
parent | c45bc55a99957b20e4e0333bcd42e12d1833a7f5 (diff) |
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
Diffstat (limited to 'tools/testing/selftests/cgroup')
-rw-r--r-- | tools/testing/selftests/cgroup/test_memcontrol.c | 91 |
1 files changed, 55 insertions, 36 deletions
diff --git a/tools/testing/selftests/cgroup/test_memcontrol.c b/tools/testing/selftests/cgroup/test_memcontrol.c index 8833359556f3..1e616a8c6a9c 100644 --- a/tools/testing/selftests/cgroup/test_memcontrol.c +++ b/tools/testing/selftests/cgroup/test_memcontrol.c @@ -238,6 +238,8 @@ static int cg_test_proc_killed(const char *cgroup) return -1; } +static bool reclaim_until(const char *memcg, long goal); + /* * First, this test creates the following hierarchy: * A memory.min = 0, memory.max = 200M @@ -266,6 +268,12 @@ static int cg_test_proc_killed(const char *cgroup) * unprotected memory in A available, and checks that: * a) memory.min protects pagecache even in this case, * b) memory.low allows reclaiming page cache with low events. + * + * Then we try to reclaim from A/B/C using memory.reclaim until its + * usage reaches 10M. + * This makes sure that: + * (a) We ignore the protection of the reclaim target memcg. + * (b) The previously calculated emin value (~29M) should be dismissed. */ static int test_memcg_protection(const char *root, bool min) { @@ -385,6 +393,9 @@ static int test_memcg_protection(const char *root, bool min) if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3)) goto cleanup; + if (!reclaim_until(children[0], MB(10))) + goto cleanup; + if (min) { ret = KSFT_PASS; goto cleanup; @@ -646,6 +657,48 @@ cleanup: } /* + * Reclaim from @memcg until usage reaches @goal by writing to + * memory.reclaim. + * + * This function will return false if the usage is already below the + * goal. + * + * This function assumes that writing to memory.reclaim is the only + * source of change in memory.current (no concurrent allocations or + * reclaim). + * + * This function makes sure memory.reclaim is sane. It will return + * false if memory.reclaim's error codes do not make sense, even if + * the usage goal was satisfied. + */ +static bool reclaim_until(const char *memcg, long goal) +{ + char buf[64]; + int retries, err; + long current, to_reclaim; + bool reclaimed = false; + + for (retries = 5; retries > 0; retries--) { + current = cg_read_long(memcg, "memory.current"); + + if (current < goal || values_close(current, goal, 3)) + break; + /* Did memory.reclaim return 0 incorrectly? */ + else if (reclaimed) + return false; + + to_reclaim = current - goal; + snprintf(buf, sizeof(buf), "%ld", to_reclaim); + err = cg_write(memcg, "memory.reclaim", buf); + if (!err) + reclaimed = true; + else if (err != -EAGAIN) + return false; + } + return reclaimed; +} + +/* * This test checks that memory.reclaim reclaims the given * amount of memory (from both anon and file, if possible). */ @@ -653,8 +706,7 @@ static int test_memcg_reclaim(const char *root) { int ret = KSFT_FAIL, fd, retries; char *memcg; - long current, expected_usage, to_reclaim; - char buf[64]; + long current, expected_usage; memcg = cg_name(root, "memcg_test"); if (!memcg) @@ -705,41 +757,8 @@ static int test_memcg_reclaim(const char *root) * Reclaim until current reaches 30M, this makes sure we hit both anon * and file if swap is enabled. */ - retries = 5; - while (true) { - int err; - - current = cg_read_long(memcg, "memory.current"); - to_reclaim = current - MB(30); - - /* - * We only keep looping if we get EAGAIN, which means we could - * not reclaim the full amount. - */ - if (to_reclaim <= 0) - goto cleanup; - - - snprintf(buf, sizeof(buf), "%ld", to_reclaim); - err = cg_write(memcg, "memory.reclaim", buf); - if (!err) { - /* - * If writing succeeds, then the written amount should have been - * fully reclaimed (and maybe more). - */ - current = cg_read_long(memcg, "memory.current"); - if (!values_close(current, MB(30), 3) && current > MB(30)) - goto cleanup; - break; - } - - /* The kernel could not reclaim the full amount, try again. */ - if (err == -EAGAIN && retries--) - continue; - - /* We got an unexpected error or ran out of retries. */ + if (!reclaim_until(memcg, MB(30))) goto cleanup; - } ret = KSFT_PASS; cleanup: |