summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/cgroup
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-12-13 19:29:45 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2022-12-13 19:29:45 -0800
commite2ca6ba6ba0152361aa4fcbf6067db71b2c7a770 (patch)
treef7ed7753a2e66486a4ffe0fbbf98404ec4ba2212 /tools/testing/selftests/cgroup
parent7e68dd7d07a28faa2e6574dd6b9dbd90cdeaae91 (diff)
parentc45bc55a99957b20e4e0333bcd42e12d1833a7f5 (diff)
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: - More userfaultfs work from Peter Xu - Several convert-to-folios series from Sidhartha Kumar and Huang Ying - Some filemap cleanups from Vishal Moola - David Hildenbrand added the ability to selftest anon memory COW handling - Some cpuset simplifications from Liu Shixin - Addition of vmalloc tracing support by Uladzislau Rezki - Some pagecache folioifications and simplifications from Matthew Wilcox - A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it - Miguel Ojeda contributed some cleanups for our use of the __no_sanitize_thread__ gcc keyword. This series should have been in the non-MM tree, my bad - Naoya Horiguchi improved the interaction between memory poisoning and memory section removal for huge pages - DAMON cleanups and tuneups from SeongJae Park - Tony Luck fixed the handling of COW faults against poisoned pages - Peter Xu utilized the PTE marker code for handling swapin errors - Hugh Dickins reworked compound page mapcount handling, simplifying it and making it more efficient - Removal of the autonuma savedwrite infrastructure from Nadav Amit and David Hildenbrand - zram support for multiple compression streams from Sergey Senozhatsky - David Hildenbrand reworked the GUP code's R/O long-term pinning so that drivers no longer need to use the FOLL_FORCE workaround which didn't work very well anyway - Mel Gorman altered the page allocator so that local IRQs can remnain enabled during per-cpu page allocations - Vishal Moola removed the try_to_release_page() wrapper - Stefan Roesch added some per-BDI sysfs tunables which are used to prevent network block devices from dirtying excessive amounts of pagecache - David Hildenbrand did some cleanup and repair work on KSM COW breaking - Nhat Pham and Johannes Weiner have implemented writeback in zswap's zsmalloc backend - Brian Foster has fixed a longstanding corner-case oddity in file[map]_write_and_wait_range() - sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang Chen - Shiyang Ruan has done some work on fsdax, to make its reflink mode work better under xfstests. Better, but still not perfect - Christoph Hellwig has removed the .writepage() method from several filesystems. They only need .writepages() - Yosry Ahmed wrote a series which fixes the memcg reclaim target beancounting - David Hildenbrand has fixed some of our MM selftests for 32-bit machines - Many singleton patches, as usual * tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits) mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio mm: mmu_gather: allow more than one batch of delayed rmaps mm: fix typo in struct pglist_data code comment kmsan: fix memcpy tests mm: add cond_resched() in swapin_walk_pmd_entry() mm: do not show fs mm pc for VM_LOCKONFAULT pages selftests/vm: ksm_functional_tests: fixes for 32bit selftests/vm: cow: fix compile warning on 32bit selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem mm,thp,rmap: fix races between updates of subpages_mapcount mm: memcg: fix swapcached stat accounting mm: add nodes= arg to memory.reclaim mm: disable top-tier fallback to reclaim on proactive reclaim selftests: cgroup: make sure reclaim target memcg is unprotected selftests: cgroup: refactor proactive reclaim code to reclaim_until() mm: memcg: fix stale protection of reclaim target memcg mm/mmap: properly unaccount memory on mas_preallocate() failure omfs: remove ->writepage jfs: remove ->writepage ...
Diffstat (limited to 'tools/testing/selftests/cgroup')
-rw-r--r--tools/testing/selftests/cgroup/test_memcontrol.c91
1 files changed, 55 insertions, 36 deletions
diff --git a/tools/testing/selftests/cgroup/test_memcontrol.c b/tools/testing/selftests/cgroup/test_memcontrol.c
index 8833359556f3..1e616a8c6a9c 100644
--- a/tools/testing/selftests/cgroup/test_memcontrol.c
+++ b/tools/testing/selftests/cgroup/test_memcontrol.c
@@ -238,6 +238,8 @@ static int cg_test_proc_killed(const char *cgroup)
return -1;
}
+static bool reclaim_until(const char *memcg, long goal);
+
/*
* First, this test creates the following hierarchy:
* A memory.min = 0, memory.max = 200M
@@ -266,6 +268,12 @@ static int cg_test_proc_killed(const char *cgroup)
* unprotected memory in A available, and checks that:
* a) memory.min protects pagecache even in this case,
* b) memory.low allows reclaiming page cache with low events.
+ *
+ * Then we try to reclaim from A/B/C using memory.reclaim until its
+ * usage reaches 10M.
+ * This makes sure that:
+ * (a) We ignore the protection of the reclaim target memcg.
+ * (b) The previously calculated emin value (~29M) should be dismissed.
*/
static int test_memcg_protection(const char *root, bool min)
{
@@ -385,6 +393,9 @@ static int test_memcg_protection(const char *root, bool min)
if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
goto cleanup;
+ if (!reclaim_until(children[0], MB(10)))
+ goto cleanup;
+
if (min) {
ret = KSFT_PASS;
goto cleanup;
@@ -646,6 +657,48 @@ cleanup:
}
/*
+ * Reclaim from @memcg until usage reaches @goal by writing to
+ * memory.reclaim.
+ *
+ * This function will return false if the usage is already below the
+ * goal.
+ *
+ * This function assumes that writing to memory.reclaim is the only
+ * source of change in memory.current (no concurrent allocations or
+ * reclaim).
+ *
+ * This function makes sure memory.reclaim is sane. It will return
+ * false if memory.reclaim's error codes do not make sense, even if
+ * the usage goal was satisfied.
+ */
+static bool reclaim_until(const char *memcg, long goal)
+{
+ char buf[64];
+ int retries, err;
+ long current, to_reclaim;
+ bool reclaimed = false;
+
+ for (retries = 5; retries > 0; retries--) {
+ current = cg_read_long(memcg, "memory.current");
+
+ if (current < goal || values_close(current, goal, 3))
+ break;
+ /* Did memory.reclaim return 0 incorrectly? */
+ else if (reclaimed)
+ return false;
+
+ to_reclaim = current - goal;
+ snprintf(buf, sizeof(buf), "%ld", to_reclaim);
+ err = cg_write(memcg, "memory.reclaim", buf);
+ if (!err)
+ reclaimed = true;
+ else if (err != -EAGAIN)
+ return false;
+ }
+ return reclaimed;
+}
+
+/*
* This test checks that memory.reclaim reclaims the given
* amount of memory (from both anon and file, if possible).
*/
@@ -653,8 +706,7 @@ static int test_memcg_reclaim(const char *root)
{
int ret = KSFT_FAIL, fd, retries;
char *memcg;
- long current, expected_usage, to_reclaim;
- char buf[64];
+ long current, expected_usage;
memcg = cg_name(root, "memcg_test");
if (!memcg)
@@ -705,41 +757,8 @@ static int test_memcg_reclaim(const char *root)
* Reclaim until current reaches 30M, this makes sure we hit both anon
* and file if swap is enabled.
*/
- retries = 5;
- while (true) {
- int err;
-
- current = cg_read_long(memcg, "memory.current");
- to_reclaim = current - MB(30);
-
- /*
- * We only keep looping if we get EAGAIN, which means we could
- * not reclaim the full amount.
- */
- if (to_reclaim <= 0)
- goto cleanup;
-
-
- snprintf(buf, sizeof(buf), "%ld", to_reclaim);
- err = cg_write(memcg, "memory.reclaim", buf);
- if (!err) {
- /*
- * If writing succeeds, then the written amount should have been
- * fully reclaimed (and maybe more).
- */
- current = cg_read_long(memcg, "memory.current");
- if (!values_close(current, MB(30), 3) && current > MB(30))
- goto cleanup;
- break;
- }
-
- /* The kernel could not reclaim the full amount, try again. */
- if (err == -EAGAIN && retries--)
- continue;
-
- /* We got an unexpected error or ran out of retries. */
+ if (!reclaim_until(memcg, MB(30)))
goto cleanup;
- }
ret = KSFT_PASS;
cleanup: